Part Number Hot Search : 
KL731JT EDZ16 01006 48D05 EDZ16 FSUSB GP1A71A1 4ALVCH1
Product Description
Full Text Search
 

To Download IRL5NJ7404SCS Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  absolute maximum ratings parameter units i d @ v gs = -10v, t c = 25c continuous drain current -11 i d @ v gs = -10v, t c = 100c continuous drain current -7.0 i dm pulsed drain current  -44 p d @ t c = 25c max. power dissipation 50 w linear derating factor 0.4 w/c v gs gate-to-source voltage 12 v e as single pulse avalanche energy  157 mj i ar avalanche current  -11 a e ar repetitive avalanche energy  5.0 mj dv/dt peak d iode recovery dv/dt  0.7 v/ns t j operating junction -55 to 150 t stg storage temperature range package mounting surface temperature 300 (for 5 s) weight 1.0 (t ypical) g c a  www.irf.com 1 product summary part number bv dss r ds(on) i d irl5nj7404 -20v 0.04 ? -11a  
   hexfet ? power mosfet surface mount (smd-0.5) 20v, p-channel fifth generation hexfet ? power mosfets from international rectifier utilize advanced processingtechniques to achieve the lowest possible on-resistance per silicon unit area. this benefit, combined with the fast switching speed and ruggedized device design that hexfet power mosfets are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications. these devices are well-suited for applications such as switching power supplies, motor controls, invert- ers, choppers, audio amplifiers and high-energy pulse circuits. smd-0.5 features: logic level gate drive  low r ds(on)  avalanche energy ratings  dynamic dv/dt rating  simple drive requirements  ease of paralleling  hermetically sealed  surface mount  light weight logic level irl5nj7404 pd-94052b downloaded from: http:///
irl5nj7404 2 www.irf.com electrical characteristics @ tj = 25c (unless otherwise specified) parameter min typ max units t est conditions bv dss drain-to-source breakdown voltage -20 v v gs = 0v, i d = -250 a ? bv dss / ? t j temperature coefficient of breakdown 0.14 v/c reference to 25c, i d = -1.0ma voltage r ds(on) static drain-to-source on-state 0.04 ? v gs = -4.5v, i d = -11a resistance 0.07 v gs = -2.7v, i d = -7.0a v gs(th) gate threshold voltage -0.7 v v ds = v gs , i d = -250 a g fs forward transconductance 9.0 s v ds = -15v, i ds = -3.2a  i dss zero gate voltage drain current -1.0 v ds = -16v ,v gs = 0v -25 v ds = -16v, v gs = 0v, t j =125c i gss gate-to-source leakage forward -100 v gs = -12v i gss gate-to-source leakage reverse 100 v gs = 12v q g total gate charge 50 v gs = -4.5v, i d = -3.2a q gs gate-to-source charge 5.5 nc v ds = -16v q gd gate-to-drain (miller) charge 21 t d (on) turn-on delay time 25 v dd = -10v, i d = -3.2a, t r rise time 150 v gs =-4.5v, r g = 6.0 ? t d (off) turn-off delay time 72 t f fall time 90 l s + l d total inductance 4.0 measured from the center of drain pad to center of source pad c iss input capacitance 1450 v gs = 0v, v ds = -15v c oss output capacitance 830 p f f = 1.0mhz c rss reverse transfer capacitance 430 na  nh ns a thermal resistance parameter min typ max units t est conditions r thjc junction-to-case 2.5 c/w note: corresponding spice and saber models are available on international rectifier website.  
   source-drain diode ratings and characteristics parameter min typ max units t est conditions i s continuous source current (body diode) -11 i sm pulse source current (body diode)  -44 v sd diode forward voltage -1.0 v t j = 25c, i s = -3.2a, v gs = 0v  t rr reverse recovery time 80 ns t j = 25c, i f = -3.2a, di/dt 100a/ s q rr reverse recovery charge 100 nc v dd -20v  t on forward turn-on time intrinsic turn-on time is negligible. turn-on speed is substantially controlled by l s + l d . a downloaded from: http:///
www.irf.com 3 irl5nj7404 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 15 0.1 1 10 100 -v ds , drain-to-source voltage (v) 0.1 1 10 100 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) -1.5v 20s pulse width tj = 25c vgs top -7.5v -4.5v -3.5v -3.0v -2.7v - 2.0v -1.75v bottom -1.5v 0.1 1 10 100 -v ds , drain-to-source voltage (v) 0.1 1 10 100 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) -1.5v 20s pulse width tj = 150c vgs top -7.5v -4.5v -3.5v -3.0v -2.7v -2.0v -1.75v bottom -1.5v 0.1 1 10 100 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v = -15v 20s pulse width ds -v , gate-to-source voltage (v) -i , drain-to-source current (a) gs d t = 25 c j t = 150 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d -4.5v -11a downloaded from: http:///
irl5nj7404 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 0 500 1000 1500 2000 2500 3000 -v , drain-to-source voltage (v) c, capacitance (pf) ds v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted gs iss gs gd , ds rss gd oss ds gd 0 10 20 30 40 50 0 2 4 6 8 10 q , total gate charge (nc) -v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 -3.2a v = -4v ds v = -10v ds v = -16v ds 0.1 1 10 100 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 -v ,source-to-drain voltage (v) -i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 150 c j 1 10 100 -v ds , drain-tosource voltage (v) 1 10 100 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1ms 10ms operation in this area limited by r ds (on) downloaded from: http:///
www.irf.com 5 irl5nj7404 fig 10b. switching time waveforms fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature   
 
   
 1     0.1 %          + - v ds 90% 10% v gs t d(on) t r t d(off) t f 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 0 2 4 6 8 10 12 t , case temperature ( c) -i , drain current (a) c d v gs downloaded from: http:///
irl5nj7404 6 www.irf.com fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit r g i as 0.01 ? t p d.u.t l v ds v dd driver a 15v -20v t p v ( br ) dss i as fig 13b. gate charge test circuit fig 13a. basic gate charge waveform q g q gs q gd v g charge  d.u.t. v ds i d i g -3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  25 50 75 100 125 150 0 100 200 300 400 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom -5.0a -7.0a -11a v gs v ds + - downloaded from: http:///
www.irf.com 7 irl5nj7404  repetitive rating; pulse width limited bymaximum junction temperature.  i sd -11a, di/dt  -84 a/ s, v dd -20v, t j 150c  pulse width 300 s; duty cycle 2%  v dd = -15 v, starting t j = 25c, l= 2.6  peak i as = -11a, v gs =-10v, r g =  ? footnotes: case outline and dimensions smd-0.5 1 = drain 2 = gate 3 = source pad assignments ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa tel: (310) 252-7105 ir leominster : 205 crawford st., leominster, massachusetts 01453, usa tel: (978) 534-5776 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . data and specifications subject to change without notice. 03/2013 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRL5NJ7404SCS

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X