Part Number Hot Search : 
TFR868C BCP71 15N06V CXA16 Z5221B 2SC181 UPD7514 UVG100
Product Description
Full Text Search
 

To Download TSH82IYDT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  this is information on a product in full production. july 2014 docid009413 rev 9 1/30 1 tsh80, tsh81, tsh82, tsh84 wide-band rail-to-rail operational amplifiers with standby function datasheet - production data features ? operating range from 4.5 to 12 v ? 3 db-bandwidth: 100 mhz ? slew rate 100 v/s ? output current up to 55 ma ? input single supply voltage ? output rail-to-rail ? specified for 150 loads ? low distortion, thd 0.1% ? sot23-5, so8, and tssop packages ? automotive qualification applications ? video buffers ? a/d converter drivers ? hi-fi applications description the tsh8x series offers single, dual and quad operational amplifiers featuring high video performance with large bandwidth, low distortion and excellent supply voltage rejection. these amplifiers also feature large output voltage swings and a high output current capability to drive standard 150 loads. running at single or dual supply voltages ranging from 4.5 to 12 v, these amplifiers are tested at 5 v (2.5 v) and 10 v (5 v) supplies. the tsh81 device also features a standby mode, which provides the oper ational amplifier with a low power consumption and high output impedance. this function allows power saving or signal switching/multiplexing for high-speed and video applications. for board space and weight saving, the tsh8x series is proposed in sot23-5, so8, tssop8, and tssop14 plastic micropackages. so8 sot23-5 tssop8 tssop14 www.st.com
contents tsh80, tsh81, tsh82, tsh84 2/30 docid009413 rev 9 contents 1 package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 absolute maximum ratings and operating c onditions . . . . . . . . . . . . . 6 3 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 video capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 precautions on asymmetrical supply operati on . . . . . . . . . . . . . . . . . 22 6 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1 sot23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2 so8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.3 tssop8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.4 tssop14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
docid009413 rev 9 3/30 tsh80, tsh81, tsh82, tsh84 list of tables list of tables table 1. absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 table 2. operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 table 3. electrical characteristics at v cc + = +5 v, v cc - = gnd, v ic = 2.5 v, t amb = 25 c (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 table 4. electrical characteristics at v cc + = +5 v, v cc - = -5 v, v ic = gnd, t amb = 25 c (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 table 5. standby mode - v cc +, v cc -, t amb = 25 c (unless otherwise specified). . . . . . . . . . . . . . 12 table 6. tsh81 standby control pin status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 table 7. video results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 table 8. sot23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 table 9. so8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 10. tssop8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 table 11. tssop14 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 table 12. order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 table 13. document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
list of figures tsh80, tsh81, tsh82, tsh84 4/30 docid009413 rev 9 list of figures figure 1. pin connections for each package (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 figure 2. closed loop gain and phase vs. frequency (gain = +2, v cc = 2.5 v) . . . . . . . . . . . . . . . . 13 figure 3. overshoot vs. output capacitance (v cc = 2.5 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 4. closed loop gain and phase vs. frequency (gain = -10, v cc = 2.5 v) . . . . . . . . . . . . . . . 13 figure 5. closed loop gain and phase vs. frequency (gain = +11, v cc = 2.5 v) . . . . . . . . . . . . . . . 13 figure 6. large signal measurement ? positive slew rate (v cc = 2.5 v) . . . . . . . . . . . . . . . . . . . . . 13 figure 7. large signal measurement ? negative slew rate (v cc = 2.5 v) . . . . . . . . . . . . . . . . . . . . 13 figure 8. small signal measurement ? rise time (v cc = 2.5 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 9. small signal measurement ? fall time (v cc = 2.5 v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 10. channel separation (cross talk) vs. frequency schematic (v cc = 2.5 v) . . . . . . . . . . . . . . 14 figure 11. channel separation (crosstalk) vs. frequency (v cc = 2.5 v) . . . . . . . . . . . . . . . . . . . . . . 14 figure 12. equivalent input noise voltage (v cc = 2.5 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 13. maximum output swing (v cc = 2.5 v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 16. group delay (v cc = 2.5 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 14. standby mode - t on , t off (v cc = 2.5 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 15. third order intermodulation (v cc = 2.5 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 17. closed loop gain and phase vs. frequency (gain = +2, v cc = 5 v) . . . . . . . . . . . . . . . . . 16 figure 18. overshoot vs. output capacitance (v cc = 5 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 19. closed loop gain and phase vs. frequency (gain = -10, v cc = 5 v) . . . . . . . . . . . . . . . . . 16 figure 20. closed loop gain and phase vs. frequency (gain = +11, v cc = 5 v) . . . . . . . . . . . . . . . . 16 figure 21. large signal measurement - positive slew rate (v cc = 5 v) . . . . . . . . . . . . . . . . . . . . . . . 16 figure 22. large signal measurement - negative slew rate (v cc = 5 v) . . . . . . . . . . . . . . . . . . . . . . 16 figure 23. small signal measurement - rise time (v cc = 5 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 24. small signal measurement - fall time (v cc = 5 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 25. channel separation (cross talk) vs. frequency schematic (v cc = 5 v) . . . . . . . . . . . . . . . 17 figure 26. channel separation (crosstalk) vs. frequency (v cc = 5 v) . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 27. equivalent input noise voltage (v cc = 5 v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 28. maximum output swing (v cc = 5 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 31. group delay (v cc = 5 v). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 29. standby mode - t on , t off (v cc = 5 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 30. third order intermodulation (v cc = 5 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 32. ccir330 video line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 33. measurement on rohde and schwarz vsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 34. asymmetrical supply schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 35. use of the tsh8x in a gain = -1 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 36. sot23-5 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 figure 37. so8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 figure 38. tssop8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 figure 39. tssop14 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
docid009413 rev 9 5/30 tsh80, tsh81, tsh82, tsh84 package pin connections 1 package pin connections figure 1. pin connections for each package (top view) pin connections tsh81 so8/tssop8 pin connections tsh82 so8/tssop8 pin connections tsh80/so8 pin connections tsh84 tssop14 pin connections tsh80/sot23-5
absolute maximum ratings and operating conditions tsh80, tsh81, tsh82, tsh84 6/30 docid009413 rev 9 2 absolute maximum ratings and operating conditions table 1. absolute maximum ratings symbol parameter value unit v cc supply voltage (1) 1. all voltage values, except differential voltage ar e with respect to the network ground terminal. 14 v v id differential input voltage (2) 2. the differential voltage is the non inverting input te rminal with respect to the inverting terminal. 2 v i input voltage (3) 3. the magnitude of input and output must never exceed v cc +0.3 v. 6 t oper operating free air temp erature range -40 to +85 c t stg storage temperature -65 to +150 t j maximum junction temperature 150 r thjc thermal resistance junction-to-case (4) sot23-5 so8 tssop8 tssop14 4. short-circuits can cause excessive heating. 80 28 37 32 c/w r thja thermal resistance junction-to-ambient area sot23-5 so8 tssop8 tssop14 250 157 130 110 esd hbm: human body model (5) mm: machine model (6) cdm: charged device model (7) 5. human body model: a 100 pf capacit or is charged to the specifi ed voltage, then discharged through a 1.5 k resistor between two pins of the device. this is done for all couples of connected pin combinations while the other pins are floating. 6. machine model: a 200 pf capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 ). this is done for all couples of connected pin combinations whil e the other pins are floating. 7. charged device model: all pins and package are charged together to the specified voltage and then discharged directly to ground through only one pin. this is done for all pins. 2 0.2 1.5 kv table 2. operating conditions symbol parameter value unit v cc supply voltage 4.5 to 12 v v ic common mode input voltage range v cc - to (v cc + -1.1) standby (pin 8) threshold on pin 8 for tsh81 (v cc - ) to (v cc + )
docid009413 rev 9 7/30 tsh80, tsh81, tsh82, tsh84 electrical characteristics 3 electrical characteristics table 3. electrical characteristics at v cc + = +5 v, v cc - = gnd, v ic = 2.5 v, t amb = 25 c (unless otherwise specified) symbol parameter test conditions min. typ. max. unit |v io | input offset voltage t amb = 25 c t min < t amb < t max 1.1 10 12 mv v io / t input offset voltage drift vs. temperature t min < t amb < t max 3v/c i io input offset current t amb = 25 c t min < t amb < t max 0.1 3.5 5 a i ib input bias current t amb = 25 c t min < t amb < t max 615 20 c in input capacitance 0.3 pf i cc supply current per operator t amb = 25 c t min < t amb < t max 8.2 10.5 11.5 ma cmr common mode rejection ratio ( v ic / v io ) +0.1< v ic < 3.9 v and v out = 2.5 v t amb = 25 c t min < t amb < t max 72 70 97 db svr supply voltage rejection ratio ( v cc / v io ) t amb = 25 c t min < t amb < t max 68 65 75 psr power supply rejection ratio ( v cc / v out ) positive and negative rail 75 a vd large signal voltage gain r l = 150 connected to 1.5 v and v out = 1 v to 4 v t amb = 25 c t min < t amb < t max 75 70 84 i o |source| v id = +1, v out connected to 1.5 v t amb = 25 c t min < t amb < t max 35 28 55 ma sink v id = -1, v out connected to 1.5 v t amb = 25 c t min < t amb < t max 33 28 55
electrical characteristics tsh80, tsh81, tsh82, tsh84 8/30 docid009413 rev 9 v oh high-level output voltage t amb = 25 c r l = 150 connected to gnd r l = 600 connected to gnd r l = 2 k connected to gnd r l = 10 k connected to gnd r l = 150 connected to 2.5 v r l = 600 connected to 2.5 v r l = 2 k connected to 2.5 v r l = 10 k connected to 2.5 v t min < t amb < t max r l = 150 connected to gnd r l = 150 connected to 2.5 v 4.2 4.60 (1) 4.5 4.1 4.4 4.36 4.85 4.90 4.93 4.66 4.90 4.92 4.93 v v ol low-level output voltage t amb = 25 c r l = 150 connected to gnd r l = 600 connected to gnd r l = 2 k connected to gnd r l = 10 k connected to gnd r l = 150 connected to 2.5 v r l = 600 connected to 2.5 v r l = 2 k connected to 2.5 v r l = 10 k connected to 2.5 v t min < t amb < t max r l = 150 connected to gnd r l = 150 connected to 2.5 v 48 54 55 56 220 105 76 61 150 400 200 450 mv gbp gain bandwidth product f = 10 mhz a vcl = +11 a vcl = -10 65 55 mhz bw bandwidth at -3 db a vcl = +1 r l = 150 connected to 2.5 v 87 sr slew rate a vcl = +2 r l = 150 // c l to 2.5 v c l = 5 pf c l = 30 pf 60 104 105 v/ms m phase margin r l = 150 // 30 pf to 2.5 v 40 degree en equivalent input noise voltage f = 100 khz 11 nv/ hz thd total harmonic distortion a vcl = +2, f = 4 mhz r l = 150 // 30 pf to 2.5 v v out = 1v pp v out = 2v pp -61 -54 db im2 second order intermodulation product a vcl = +2, v out = 2 v pp r l = 150 connected to 2.5 v f in1 = 180 khz, f in2 = 280 khz spurious measurement at 100 khz -76 dbc table 3. electrical characteristics at v cc + = +5 v, v cc - = gnd, v ic = 2.5 v, t amb = 25 c (unless otherwise specified) (continued) symbol parameter test conditions min. typ. max. unit
docid009413 rev 9 9/30 tsh80, tsh81, tsh82, tsh84 electrical characteristics im3 third order intermodulation product a vcl = +2, v out = 2 v pp r l = 150 to 2.5 v f in1 = 180 khz, f in2 = 280 khz spurious measurement at 400 khz -68 dbc g differential gain a vcl = +2, r l = 150 to 2.5 v f = 4.5 mhz, v out = 2 v pp 0.5 % df differential phase a vcl = +2, r l = 150 to 2.5 v f = 4.5 mhz, v out = 2 v pp 0.5 degree gf gain flatness f = dc to 6 mhz, a vcl = +2 0.2 db vo1/vo2 channel separation f = 1 mhz to 10 mhz 65 1. tested on the tsh80ilt device only. table 3. electrical characteristics at v cc + = +5 v, v cc - = gnd, v ic = 2.5 v, t amb = 25 c (unless otherwise specified) (continued) symbol parameter test conditions min. typ. max. unit
electrical characteristics tsh80, tsh81, tsh82, tsh84 10/30 docid009413 rev 9 table 4. electrical characteristics at v cc + = +5 v, v cc - = -5 v, v ic = gnd, t amb = 25 c (unless otherwise specified) symbol parameter test conditions min. typ. max. unit |v io | input offset voltage t amb = 25 c t min < t amb < t max 0.8 10 12 mv v io / t input offset voltage drift vs. temperature t min < t amb < t max 2v/c i io input offset current t amb = 25 c t min < t amb < t max 0.1 3.5 5 a i ib input bias current t amb = 25 c t min < t amb < t max 615 20 c in input capacitance 0.7 pf i cc supply current per operator t amb = 25 c t min < t amb < t max 9.8 12.3 13.4 ma cmr common mode rejection ratio ( v ic / v io ) -4.9 < v ic < 3.9 v and v out = gnd t amb = 25 c t min < t amb < t max 81 72 106 db svr supply voltage rejection ratio ( v cc / v io ) t amb = 25 c t min < t amb < t max 71 65 77 psr power supply rejection ratio ( v cc / v out ) positive and negative rail 75 a vd large signal voltage gain r l = 150 connected to gnd and v out = -4 to +4 t amb = 25 c t min < t amb < t max 75 70 86 i o |source| v id = +1, v out connected to 1.5 v t amb = 25 c t min < t amb < t max 35 28 55 ma sink v id = -1, v out connected to 1.5 v t amb = 25 c t min < t amb < t max 30 28 55 v oh high-level output voltage t amb = 25 c r l = 150 connected to gnd r l = 600 connected to gnd r l = 2 k connected to gnd r l = 10 k connected to gnd t min < t amb < t max r l = 150 connected to gnd 4.2 4.1 4.36 4.85 4.9 4.93 v v ol low-level output voltage t amb = 25 c r l = 150 connected to gnd r l = 600 connected to gnd r l = 2 k connected to gnd r l = 10 k connected to gnd t min < t amb < t max r l = 150 connected to gnd -4.63 -4.86 -4.9 -4.93 -4.4 -4.3 mv
docid009413 rev 9 11/30 tsh80, tsh81, tsh82, tsh84 electrical characteristics gbp gain bandwidth product f = 10 mhz a vcl = +11 a vcl = -10 65 55 mhz bw bandwidth at -3 db a vcl = +1 r l = 150 // 30 pf to gnd 100 sr slew rate a vcl = +2 r l = 150 // c l to gnd c l = 5 pf c l = 30 pf 68 117 118 v/s fm phase margin r l = 150 connected to gnd 40 degree en equivalent input noise voltage f = 100 khz 11 nv/ hz thd total harmonic distortion a vcl = +2, f = 4 mhz r l = 150 // 30 pf to gnd v out = 1 v pp v out = 2 v pp -61 -54 db im2 second order intermodulation product a vcl = +2, v out = 2 v pp r l = 150 to gnd f in1 = 180 khz, f in2 = 280 khz spurious measurement at 100 khz -76 dbc im3 third order intermodulation product a vcl = +2, v out = 2 v pp r l = 150 to gnd f in1 = 180 khz, f in2 = 280 khz spurious measurement at 400 khz -68 g differential gain a vcl = +2, r l = 150 to gnd f = 4.5 mhz, v out = 2 v pp 0.5 % df differential phase a vcl = +2, r l = 150 to gnd f = 4.5 mhz, v out = 2 v pp 0.5 degree gf gain flatness f = dc to 6 mhz, a vcl = +2 0.2 db vo1/vo2 channel separation f = 1 mhz to 10 mhz 65 table 4. electrical characteristics at v cc + = +5 v, v cc - = -5 v, v ic = gnd, t amb = 25 c (unless otherwise specified) (continued) symbol parameter test conditions min. typ. max. unit
electrical characteristics tsh80, tsh81, tsh82, tsh84 12/30 docid009413 rev 9 table 5. standby mode - v cc + , v cc - , t amb = 25 c (unless otherwise specified) symbol parameter test conditions min. typ. max. unit v low standby low level v cc - (v cc - +0.8) v v high standby high level (v cc - +2) (v cc + ) i cc-stby current consumption per operator when standby is active pin 8 (tsh81) to v cc - 20 55 a z out output impedance (r out //c out ) r out c out 10 17 m pf t on time from standby mode to active mode 2 s t off time from active mode to standby mode down to i cc-stby = 10 a 10 table 6. tsh81 standby control pin status tsh81 standby control pin 8 (standby ) operator status v low standby v high active
docid009413 rev 9 13/30 tsh80, tsh81, tsh82, tsh84 electrical characteristics figure 2. closed loop gain and phase vs. frequency (gain = +2, v cc = 2.5 v) figure 3. overshoot vs. output capacitance (v cc = 2.5 v) figure 4. closed loop gain and phase vs. frequency (gain = -10, v cc = 2.5 v) figure 5. closed loop gain and phase vs. frequency (gain = +11, v cc = 2.5 v) figure 6. large signal measurement ? positive slew rate (v cc = 2.5 v) figure 7. large signal measurement ? negative slew rate (v cc = 2.5 v) 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -1 5 -1 0 -5 0 5 10 gain (db) -200 -100 0 100 200 phase ( ) gai n phase r l = 150 , t amb = 25 c 1e+6 1e+7 1e+8 1e+9 frequen cy (hz ) -5 0 5 10 gain (db) 15 0 150 //10p f 150 //33p f 150 //22p f gain = +2, t amb = 25 c 150 150 // 10 pf 150 // 33 pf 150 // 22 pf 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz ) -10 0 10 20 30 gain (db) -100 -50 0 50 100 150 200 phase ( ) gai n phase r l = 150 , t amb = 25 c 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz ) -10 0 10 20 30 gain (db) -150 -100 -50 0 phase ( ) gai n phas e phase gain r l = 150 , t amb = 25 c 01020304050607080 time (ns ) -3 -2 -1 0 1 2 3 v out (v) gain = +2, z l = 150 //5.6 pf, v in = 400 mvpk 010203040506070 time (ns ) -3 -2 -1 0 1 2 3 v out (v) gain = +2, z l = 150 //5.6 pf, v in = 400 mvpk
electrical characteristics tsh80, tsh81, tsh82, tsh84 14/30 docid009413 rev 9 figure 8. small signal measurement ? rise time (v cc = 2.5 v) figure 9. small signal measurement ? fall time (v cc = 2.5 v) figure 10. channel separation (crosstalk) vs. frequency schematic (v cc = 2.5 v) figure 11. channel separation (crosstalk) vs. frequency (v cc = 2.5 v) figure 12. equivalent input noise voltage (v cc = 2.5 v) figure 13. maximum output swing (v cc = 2.5 v) 0 102030405060 -0.06 -0.04 -0.02 0 0.02 0.0 4 0.0 6 v in ,v out (v) v i n v out time (ns ) gain = +2, r l = 150 , v in = 400 mvpk 0102030405060 time (ns ) -0.06 -0.04 - 0.0 2 0 0.0 2 0.0 4 0.0 6 v in , v out (v) v in v out gain = +2, r l = 150 , v in = 400 mvpk measurement configuration: crosstalk = 20 log (v0/v1) 1e+4 1e+5 1e+6 1e+7 frequency (hz ) -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 xtalk (db) 3/1output 4/1outpu t 2/1outpu t 4/1 output 3/1 output 2/1 output gain = +11, z l = 150 //27 pf 0.1 1 10 100 1000 5 10 15 20 25 30 en (nv/ hz) _ + frequency (khz) gain = +100, no load 0.0e+0 5.0e-2 1. 0e -1 1.5 e - 1 2 .0e -1 time (ms) -3 -2 -1 0 1 2 3 v in ,v out (v) v ou t v in gain = +11, r l = 150
docid009413 rev 9 15/30 tsh80, tsh81, tsh82, tsh84 electrical characteristics figure 16. group delay (v cc = 2.5 v) figure 14. standby mode - t on , t off (v cc = 2.5 v) figure 15. third order intermodulation (v cc = 2.5 v) (1) 1. the ifr2026 synthesizer generates a two-tone signal (f1 = 180 khz, f2 = 280 khz), each tone having the same amplitude. the hp3585 spectrum analyzer measures the interm odulation products as a function of the output voltage. the generator and the spectrum analyzer ar e phase locked for better accuracy. 0 2e-64e-66e-68e-61e-5 time (s) -3 -2 -1 0 1 2 3 v in , v out (v) v ou t t o n t of f standby open loop 01234 vout pe ak (v) -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 im3 (dbc) 7 40kh z 380kh z 640kh z 80kh z 80 khz 740 khz 380 khz 640 khz gain = +2, z l = 150 //27 pf, t amb = 25 c gain = +2, z l = 150 //27 pf, t amb = 25 c
electrical characteristics tsh80, tsh81, tsh82, tsh84 16/30 docid009413 rev 9 figure 17. closed loop gain and phase vs. frequency (gain = +2, v cc = 5 v) figure 18. overshoot vs. output capacitance (v cc = 5 v) figure 19. closed loop gain and phase vs. frequency (gain = -10, v cc = 5 v) figure 20. closed loop gain and phase vs. frequency (gain = +11, v cc = 5 v) figure 21. large signal measurement - positive slew rate (v cc = 5 v) figure 22. large signal measurement - negative slew rate (v cc = 5 v) 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz ) -20 -15 -10 -5 0 5 10 gain (db) -200 -100 0 100 200 phase () gai n phase r l = 150 , t amb = 25 c gain = +2, t amb = 25 c 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz ) -30 -20 -10 0 10 20 gain (db) 15 0 150 //10p f 150 //33p f 150 //22p f 150 w // 33 pf 150 150 // 22 pf 150 // 10 pf 1e+ 4 1e+5 1 e+6 1e+7 1 e+8 1e+9 frequency (hz ) -10 0 10 20 30 gain (db) -5 0 0 50 10 0 15 0 20 0 phase ( ) gai n phase phase gain r l = 150 , t amb = 25 c 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz ) -10 0 10 20 30 gain (db) -150 -100 -50 0 phase ( ) gai n phase r l = 150 , t amb = 25 c 020406080100 time (ns) -5 -4 -3 -2 -1 0 1 2 3 4 5 v out (v) gain = +2, z l = 150 //5.6 pf, v in = 400 mvpk 020406080100 time (ns ) -5 -4 -3 -2 -1 0 1 2 3 4 5 v out (v) gain = +2, z l = 150 //5.6 pf, v in = 400 mvpk
docid009413 rev 9 17/30 tsh80, tsh81, tsh82, tsh84 electrical characteristics figure 23. small signal me asurement - rise time (v cc = 5 v) figure 24. small signal measurement - fall time (v cc = 5 v) figure 25. channel separation (crosstalk) vs. frequency schematic (v cc = 5 v) figure 26. channel separation (crosstalk) vs. frequency (v cc = 5 v) figure 27. equivalent input noise voltage (v cc = 5 v) figure 28. maximum output swing (v cc = 5 v) 0102030405060 ti m e (ns ) -0.06 -0.04 - 0.02 0 0.02 0.04 0.06 v in , v out (v) v in v out gain = +2, r l = 150 , v in = 400 mvpk 0 102030405060 time (ns) -0.06 -0.04 -0.02 0 0.02 0.04 0.06 v in , v ou t (v) v i n v out gain = +2, r l = 150 , v in = 400 mvpk       measurement configuration: crosstalk = 20 log (v0/v1) 1e+4 1e+5 1e+6 1e+7 frequency (hz ) -110 -1 00 -9 0 -8 0 -7 0 -6 0 -5 0 -4 0 -3 0 -2 0 xtalk (db) 3/1outpu t 4/1outpu t 2/1out pu t 4/1 output 3/1 output 2/1 output gain = +11, z l = 150 //27 pf 0.1 1 10 100 1000 5 10 15 20 25 30 en (nv / hz) _ + frequency (khz) gain = +100, no load 0.0e+0 5.0e-2 1.0e-1 1.5e-1 2. 0e-1 ti me (m s ) -5 -4 -3 -2 -1 0 1 2 3 4 5 v in , v out (v) v ou t v in gain = +11, r l = 150
electrical characteristics tsh80, tsh81, tsh82, tsh84 18/30 docid009413 rev 9 figure 31. group delay (v cc = 5 v) figure 29. standby mode - t on , t off (v cc = 5 v) figure 30. third order intermodulation (v cc = 5 v) (1) 1. the ifr2026 synthesizer generates a two-tone signal (f1 = 180 khz, f2 = 280 khz), each tone having the same amplitude. the hp3585 spectrum analyzer measures the interm odulation products as a function of the output voltage. the generator and the spectrum analyzer ar e phase locked for better accuracy. 02e-64e-66e-68e-6 time(s) -5 0 5 v in , v out (v) v ou t t on t off standby open loop 01234 vout peak(v ) -10 0 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 im3 (dbc) 80khz 380khz 640khz 740kh z 80 khz 740 khz 380 khz 640 khz gain = +2, z l = 150 //27 pf, t amb = 25 c gain = +2, z l = 150 //27 pf, t amb = 25 c
docid009413 rev 9 19/30 tsh80, tsh81, tsh82, tsh84 test conditions 4 test conditions 4.1 layout precautions to make the best use of the tsh8x circuits at high frequencies, some precautions have to be taken with regard to the power supplies. ? in high-speed circuit applications, the implemen tation of a proper ground plane on both sides of the pcb is mandatory to ensure low inductance and low resistance common return. ? power supply bypass capacitors (4.7 f and ceramic 100 pf) should be placed as close as possible to the ic pins in order to improve high frequency bypassing and reduce harmonic distortion. the power supply capacitors must be incorporated for both the negative and positive pins. ? all inputs and outputs must be properly te rminated with output resistors. thus, the amplifier load is resistive only and the stability of the amplifier is improved. all leads must be wide and must be as short as possible, especially for op-amp inputs and outputs, in order to decrease parasitic capacitance and inductance. ? time constants result from parasitic capacitance. to reduce time constants in lower- gain applications, use a low feedback resistance (under 1 k ). ? choose the smallest component size possible (smd). ? on the output, the load capaci tance must be negligible to maintain good stability. place ca serial resistance as close as possible to the output pin to minimize the effect of the load capacitance. figure 32. ccir330 video line
test conditions tsh80, tsh81, tsh82, tsh84 20/30 docid009413 rev 9 4.2 video capabilities to characterize the differential phase and di fferential gain, a ccir330 video line is used. the video line contains of five (flat) levels of luminance onto which the chrominance signal is superimposed. the luminance gives various amplitudes which define the saturation of the signal. the chrominance gives various phas es which define the color of the signal. differential phase (or differential gain) distorti on is present if a si gnal chrominance phase (gain) is affected by the luminance level. the differential phase and gain represent the ability to uniformly process the high frequen cy information at a ll luminance levels. when a differential gain is present, colo r saturation is not correctly reproduced. the input generator is the rohde & schwar z ccvs. the output measurement is made by the rohde and schwarz vsa. figure 33. measurement on rohde and schwarz vsa
docid009413 rev 9 21/30 tsh80, tsh81, tsh82, tsh84 test conditions table 7. video results parameter value (v cc = 2.5 v) value (v cc = 5 v) unit lum nl 0.1 0.3 % lum nl step1 100 100 lum nl step2 100 99.9 lum nl step3 99.9 99.8 lum nl step4 99.9 99.9 lum nl step5 99.9 99.7 diff gain pos 0 0 diff gain neg -0.7 -0.6 diff gain pp 0.7 0.6 diff gain step1 -0.5 -0.3 diff gain step2 -0.7 -0.6 diff gain step3 -0.3 -0.5 diff gain step4 -0.1 -0.3 diff gain step5 -0.4 -0.5 diff phase pos 0 0.1 degree diff phase neg -0.2 -0.4 diff phase pp 0.2 0.5 diff phase step1 -0.2 -0.4 diff phase step2 -0.1 -0.4 diff phase step3 -0.1 -0.3 diff phase step4 0 0.1 diff phase step5 -0.2 -0.1
precautions on asymmetrical supply op eration tsh80, tsh81, tsh82, tsh84 22/30 docid009413 rev 9 5 precautions on asymmetrical supply operation the tsh8x device can be used with either a dual or a single supply. if a single supply is used, the inputs are biased to the mid-supply voltage (+v cc /2). this bias network must be carefully designed so as to reject any noise present on the supply rail. as the bias current is 15 a, use a high resistance r1 (approximately 10 k ) to avoid introducing an offset mismatch at the amplifier?s inputs. figure 34. asymmetrical supply schematic diagram c1, c2, c3 are bypass capacitors intended to filter perturbations from v cc . the following capacitor values are appropriate: c1 = 100 nf and c2 = c3 = 100 f r2 and r3 are such that the current running through them must be superior to 100 times the bias current. therefore, use the following resistance values: r2 = r3 = 4.7 k c in and c out are chosen to filter the dc sign al by the low-pass filters (r1, c in ) and (r out , c out ). with r1 = 10 k , r out = r l = 150 , and c in = 2 f, c out = 220 f the cutoff frequency obtained is lower than 10 hz. figure 35. use of the tsh8x in a gain = -1 configuration in r1 out r2 r3 c1 c3 + - r4 c2 r5 cf rl cin cout am00845 vcc+ in r1 out r2 r3 c1 c3 + - c2 am00846
docid009413 rev 9 23/30 tsh80, tsh81, tsh82, tsh84 package information 6 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack specifications, grade definitions a nd product status are available at: www.st.com . ecopack is an st trademark.
package information tsh80, tsh81, tsh82, tsh84 24/30 docid009413 rev 9 6.1 sot23-5 package information figure 36. sot23-5 package outline table 8. sot23-5 package mechanical data symbol dimensions millimeters inches min. typ. max. min. typ. max. a 0.90 1.20 1.45 0.035 0.047 0.057 a1 0.15 0.006 a2 0.90 1.05 1.30 0.035 0.041 0.051 b 0.35 0.40 0.50 0.013 0.015 0.019 c 0.09 0.15 0.20 0.003 0.006 0.008 d 2.80 2.90 3.00 0.110 0.114 0.118 d1 1.90 0.075 e 0.95 0.037 e 2.60 2.80 3.00 0.102 0.110 0.118 f 1.50 1.60 1.75 0.059 0.063 0.069 l 0.10 0.35 0.60 0.004 0.013 0.023 k 0 10
docid009413 rev 9 25/30 tsh80, tsh81, tsh82, tsh84 package information 6.2 so8 package information figure 37. so8 package outline table 9. so8 package mechanical data symbol dimensions millimeters inches min. typ. max. min. typ. max. a1.750.069 a1 0.10 0.25 0.004 0.010 a2 1.25 0.049 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 d 4.80 4.90 5.00 0.189 0.193 0.197 e 5.80 6.00 6.20 0.228 0.236 0.244 e1 3.80 3.90 4.00 0.150 0.154 0.157 e 1.27 0.050 h 0.25 0.50 0.010 0.020 l 0.40 1.27 0.016 0.050 l1 1.04 0.040 k1 81 8 ccc 0.10 0.004 62
package information tsh80, tsh81, tsh82, tsh84 26/30 docid009413 rev 9 6.3 tssop8 package information figure 38. tssop8 package outline table 10. tssop8 package mechanical data symbol dimensions millimeters inches min. typ. max. min. typ. max. a1.200.047 a1 0.05 0.15 0.002 0.006 a2 0.80 1.00 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 d 2.90 3.00 3.10 0.114 0.118 0.122 e 6.20 6.40 6.60 0.244 0.252 0.260 e1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 0.0256 k0 80 8 l 0.45 0.60 0.75 0.018 0.024 0.030 l1 1 0.039 aaa 0.10 0.004 76623
docid009413 rev 9 27/30 tsh80, tsh81, tsh82, tsh84 package information 6.4 tssop14 package information figure 39. tssop14 package outline table 11. tssop14 package mechanical data symbol dimensions millimeters inches min. typ. max. min. typ. max. a1.200.047 a1 0.05 0.15 0.002 0.004 0.006 a2 0.80 1.00 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 d 4.90 5.00 5.10 0.193 0.197 0.201 e 6.20 6.40 6.60 0.244 0.252 0.260 e1 4.30 4.40 4.50 0.169 0.173 0.176 e 0.65 0.0256 l 0.45 0.60 0.75 0.018 0.024 0.030 l1 1.00 0.039 k0 80 8 aaa 0.10 0.004 76623
ordering information tsh80, tsh81, tsh82, tsh84 28/30 docid009413 rev 9 7 ordering information table 12. order codes type temperature range package packaging marking tsh80ilt -40 to +85 c sot23-5 tape and reel k303 tsh80iylt (1) 1. qualified and characterized according to aec q100 and q003 or equivalent, advanced screening according to aec q001 and q002 or equivalent. sot23-5 (automotive grade level) k310 tsh80iydt (1) so8 (automotive grade level) sh80iy tsh81ipt tssop8 sh81i tsh82idt so8 tape and reel tsh82i TSH82IYDT (1) so8 (automotive grade level) tape and reel tsh82iy tsh82ipt tssop8 sh82i tsh84ipt tssop14 sh84i
docid009413 rev 9 29/30 tsh80, tsh81, tsh82, tsh84 revision history 8 revision history table 13. document revision history date revision changes 1-feb-2003 1 first release. 2-aug-2005 2 ppap references inserted in the datasheet, see table 12: order codes on page 28 . 12-apr-2007 3 corrected temperature range for tsh80iyd/iydt and tsh82iyd/iydt order codes in table 12: order codes on page 28 . 24-oct-2007 4 tsh81iypt ppap references inserted in the datasheet, see table 12: order codes on page 28 . 19-may-2009 5 added data relating to the quad tsh84 device. removed tsh81iypt, tsh81iyd-iydt, tsh82iypt and tsh82iyd-iydt order codes in table 12: order codes . 24-jul-2012 6 added tssop14 package to figure on page 1, updated titles of figure 2 to figure 31 , updated section 6: package information , removed tsh80id-idt, tsh80iyd, tsh81id-idt and tsh82id order codes from table 12: order codes . modified note 1 below table 12: order codes , minor corrections throughout document. 13-sep-2012 7 updated tsh80iylt order code (status qualified) in table 12 . removed tsh80iyd, tsh80iydt, tsh80id/dt, tsh81id/dt, and tsh82id order code from table 12 . replaced tsh82dt by tsh82idt order code in table 12 . minor corrections throughout document. 30-apr-2013 8 updated features : added automotive qualification figure 1: pin connections for each package (top view) : updated pin connections of so8/tssop8 packages for tsh81 device. replaced figure 36: sot23-5 package outline table 12: order codes : added automotive order code TSH82IYDT 03-jul-2014 9 updated cdm to 1.5 kv in table 1: absolute maximum ratings table 12: order codes : added automotive order code tsh80iydt and removed shipping option in tubes from tsh82idt
tsh80, tsh81, tsh82, tsh84 30/30 docid009413 rev 9 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. st products are not designed or authorized for use in: (a) safety critical applications such as life supporting, active implanted devices or systems wi th product functional safety requirements; (b) aeronautic applications; (c) automotive applications or environments, and/or (d) aerospace applications or environments. where st products are not designed for such use, the purchaser shall use products at purchaser?s sole risk, even if st has been informed in writing of such usage, unless a product is expressly designated by st as being intended for ?automotive, automotive safety or medical? industry domains according to st product design specifications. products formally escc, qml or jan qualified are deemed suitable for use in aerospace by the corresponding governmental agency. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2014 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - philippines - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of TSH82IYDT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X