Part Number Hot Search : 
SCH5000 LC7537AN CAT9554A AWS5522 ADP1711 78310 TSM1NB60 ADP1711
Product Description
Full Text Search
 

To Download COMCHIPTECHNOLOGYCOLTD-CZRB2075 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  voltage: 11 - 100 volts power: 2.0 watt czrb2011 thru czrb2100 features - for surf ace mounted applications in order to optimize board space - low profile package - built-in strain relief - glass passivated junction - low inductance - excellent clamping capability - typical i less than 1ua above 11v d - high temperature soldering 260c /10 seconds at terminals - plastic package has underwriters laboratory flammability classification 94v-o mechanical data - case: jedec do -214aa, molded plastic over passivated junction - terminals: solder plated, solderable per mil- std-750, method 2026 - polarity: color band denotes positive end (cathode) except bidirectional - standard packaging: 12mm tape (eia-481) - weight: 0.002 ounce, 0.064 gram s u r f a c e m o u n t z e n e r d i o d e www.comchip.com.tw comchip comchip maximum ratings and electrical characterics mds0 302004a page 1 rating symbol value units peak pulse power dissipation (note a) 2 watts derate above 75 c 24 mw/c peak forward surge current 8.3ms single half s ine-wave superimposed on rated load (jedec method) (note b) operating junction and storage temperature range t j ,t stg -55 to +150 c p d 15 amps ratings at 25c ambient temperature unless otherwise specified. i fsm smb/do-214aa dimensions in inches and (maillimeter) 0.008(0.20) 0.203(0.10) 0.083(2.11) 0.075(1.91) 0.096(2.44) 0.083(2.13) 0.050(1.27) 0.030(0.76) 0.155(3.94) 0.130(3.30) 0.185(4.70) 0.160(4.06) 0.012(0.31) 0.006(0.15) 0.220(5.59) 0.200(5.08)
www.comchip.com.tw comchip comchip mds0302004a page 2 s u r f a c e m o u n t z e n e r d i o d e rating and characteristic curevs (czrb2011 thru czrb2100) i zk v r (volts) (ma) (ohms) (ohms) (ma) (ua) (volts) (ma) ir - ma czrb2011 11 45.5 4 700 0.25 1.0 8.4 166 1.82 czrb2012 12 41.5 4.5 700 0.25 1.0 9.1 152 1.66 czrb2013 13 38.5 5 700 0.25 0.5 9.9 138 1.54 czrb2014 14 35.7 5.5 700 0.25 0.5 10.6 130 1.43 czrb2015 15 33.4 7 700 0.25 0.5 11.4 122 1.33 czrb2016 16 31.2 8 700 0.25 0.5 12.2 114 1.25 czrb2017 17 29.4 9 750 0.25 0.5 13 107 1.18 czrb2018 18 27.8 10 750 0.25 0.5 13.7 100 1.11 czrb2019 19 26.3 11 750 0.25 0.5 14.4 95 1.05 czrb2020 20 25 11 750 0.25 0.5 15.2 90 1.00 czrb2022 22 22.8 12 750 0.25 0.5 16.7 82 0.91 czrb2024 24 20.8 13 750 0.25 0.5 18.2 76 0.83 czrb2027 27 18.5 18 750 0.25 0.5 20.6 68 0.74 czrb2030 30 16.6 20 1000 0.25 0.5 22.5 60 0.67 czrb2033 33 15.1 23 1000 0.25 0.5 25.1 55 0.61 czrb2036 36 13.9 25 1000 0.25 0.5 27.4 50 0.56 czrb2039 39 12.8 30 1000 0.25 0.5 29.7 47 0.51 czrb2043 43 11.6 35 1500 0.25 0.5 32.7 43 0.45 czrb2047 47 10.6 40 1500 0.25 0.5 35.6 39 0.42 czrb2051 51 9.8 48 1500 0.25 0.5 38.8 36 0.39 czrb2056 56 9 55 2000 0.25 0.5 42.6 32 0.36 czrb2062 62 8.1 60 2000 0.25 0.5 47.1 29 0.32 czrb2068 68 7.4 75 2000 0.25 0.5 51.7 27 0.29 czrb2075 75 6.7 90 2000 0.25 0.5 56 24 0.27 czrb2082 82 6.1 100 3000 0.25 0.5 62.2 22 0.24 czrb2091 91 5.5 125 3000 0.25 0.5 69.2 20 0.22 czrb2100 100 5 175 3000 0.25 0.5 76 18 0.20 note: electrical characteristics (t a =25c unless otherwise noted) (v f =1.2volts max, i f =500ma for all types.) device (note 1.) nominal zener voltage v z @ i zt (note 2.) test current i zt maximum zener impedance (note 3.) leakage current surge current @t a =25c (note 4.) z zt @ i zt z zk @ i zk i r maximum zener current i zm 1. tolerances - suffix indicates 5% tol erance any other tolerance will be considered as a special devic e. 2. zener voltage (vz) measurement - guarantees the zener voltage when m easured at 40 ms 10ms from the diode body, and an ambient temperat ure of 25 c (+ 8 c , -2 c ). 3.zener impedance (zz) derivation - the zener im pedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms falue equal to 10% of the dc zener current (i zt or i zk ) is superimposed on i zt or i zk . 4. surge current (ir) non-repetitive - the rating li sted in the electrical characteris tics table is maximum peak, non-repetitive, reverse surge c urrent of 1/2 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the tes t current, i zt , per jedec standards, however, actual device capability is as described in figure 3.
rating and characteristic curves (czrb2011 thru czrb2100) www.comchip.com.tw c o m c h i p mds0302004a page 3 s u r f a c e m o u n t z e n e r d i o d e 30 20 10 7 5 3 2 1 0.7 0.5 0.3 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 d=0.5 0.2 0.1 0.05 0.02 0.01 d=0 note below 0.1 second , thermal response curve is applicable to a ny lead length ( l ) single pulse tjl = jl(t)ppk repetitive pulses tjl = j l ( t , d ) ppk fig. 2-typical thermal response l, 1k 500 300 200 100 50 30 20 10 .1 .2.3 5 1 2 3 5 10 20 50 100 rectangular nonrepet itive waveform tj = 25c prior to initial pulse p.w. pulse width ( ms ) 0.1 0.05 0.03 0.02 0.01 0.005 0.003 0.002 0.001 0.0005 0.0003 0.0002 0.0001 1 2 5 10 20 50 100 200 500 1k nominal vz ( volts ) fig. 3-maximum surge power fig. 4-typical reverse leakage 8 6 4 2 0 -2 -4 3 4 6 8 10 12 range vz , zener voltage @ izt ( volts ) 200 100 50 40 30 20 10 0 20406080100 range vz , zener voltage @ izt ( volts ) fig. 5 - units to 12 volts fig. 6 - units 10 to 100 volts transient thermal resistance junction-to-lead(c/w) ppk, peak surge power(watts) ir, reverse leadage(uadc) @vr as specified in elec. char. table temperature coefficient(mv/c ) @ izt temperature c oefficient(mv/c) @ izt
rating and characteristic curves (czrb2011 thru czrb2100) www.comchip.com.tw c o m c h i p mds0302004a page 4 s u r f a c e m o u n t z e n e r d i o d e 100 50 30 20 10 5 3 2 1 0.5 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 vz, zener voltage ( volts ) 100 50 30 20 10 5 3 2 1 0.5 0.3 0.2 0.1 0 10 20 30 40 50 60 70 80 90 100 vz, zener voltage ( volts ) 80 70 60 50 40 30 20 10 0 0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 primary path of conduction is through the cathode lead l, lead length to heat sink ( inch ) fig. 9 -typical thermal resistance iz, zener current (ma) junction-lead thermal resistance (c/w)
application note: since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. the following procedure is recommended: lead temperature, t l , should be determined from: t l =  la p d + t a  la is the lead-to-ambient thermal resistance (c/w) and pd is the power dissipation. the value for  la will vary and depends on the device mounting method.  la is generally 30-40 c/w for the various chips and tie points in common use and for printed circuit board wiring. the temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. the thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. using the measured value of t l , the junction temperature may be determined by: t j = t l + t jl t jl is the increase in junction temperature above the lead temperature and may be found from figure 2 for a train of power pulses or from figure 10 for dc power. t jl =  la p d for worst-case design, using expected limits of iz, limits of pd and the extremes of tj ( t jl ) may be estimated. changes in voltage, vz, can then be found from: v =  vz t j  vz , the zener voltage temperature coefficient, is found from figures 5 and 6. under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly be the zener resistance. for best regulation, keep current excursions as low as possible. data of figure 2 should not be used to compute surge capability. surge limitations are given in figure 3. they are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of figure 3 be exceeded. www.comchip.com.tw c o m c h i p mds0302004a page 5 s u r f a c e m o u n t z e n e r d i o d e


▲Up To Search▲   

 
Price & Availability of COMCHIPTECHNOLOGYCOLTD-CZRB2075

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X