Part Number Hot Search : 
E741R041 1SS40 604BB 45010 VDZ10B MC9S0 FT302 MC9S0
Product Description
Full Text Search
 

To Download J308 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 motorola smallsignal transistors, fets and diodes device data
 

 nchannel e depletion maximum ratings rating symbol value unit drain source voltage v ds 25 vdc gatesource voltage v gs 25 vdc forward gate current i gf 10 madc total device dissipation @ t a = 25 c derate above 25 c p d 350 2.8 mw mw/ c junction temperature range t j 65 to +125 c storage temperature range t stg 65 to +150 c electrical characteristics (t a = 25 c unless otherwise noted) characteristic symbol min typ max unit off characteristics gate source breakdown voltage (i g = 1.0 m adc, v ds = 0) v (br)gss 25 e e vdc gate reverse current (v gs = 15 vdc, v ds = 0, t a = 25 c) (v gs = 15 vdc, v ds = 0, t a = +125 c) i gss e e e e 1.0 1.0 nadc m adc gate source cutoff voltage (v ds = 10 vdc, i d = 1.0 nadc) J308 j309 j310 v gs(off) 1.0 1.0 2.0 e e e 6.5 4.0 6.5 vdc on characteristics zero gate voltage drain current (1) (v ds = 10 vdc, v gs = 0) J308 j309 j310 i dss 12 12 24 e e e 60 30 60 madc gatesource forward voltage (v ds = 0, i g = 1.0 madc) v gs(f) e e 1.0 vdc small signal characteristics commonsource input conductance (v ds = 10 vdc, i d = 10 madc, f = 100 mhz) J308 j309 j310 re(y is ) e e e 0.7 0.7 0.5 e e e mmhos commonsource output conductance (v ds = 10 vdc, i d = 10 madc, f = 100 mhz) re(y os ) e 0.25 e mmhos commongate power gain (v ds = 10 vdc, i d = 10 madc, f = 100 mhz) g pg e 16 e db 1. pulse test: pulse width  300 m s, duty cycle  3.0%. order this document by J308/d   semiconductor technical data    motorola preferred devices case 2904, style 5 to92 (to226aa) 1 2 3 ? motorola, inc. 1997 1 drain 2 source 3 gate
   2 motorola smallsignal transistors, fets and diodes device data electrical characteristics (t a = 25 c unless otherwise noted) (continued) characteristic symbol min typ max unit small signal characteristics (continued) commonsource forward transconductance (v ds = 10 vdc, i d = 10 madc, f = 100 mhz) re(y fs ) e 12 e mmhos commongate input conductance (v ds = 10 vdc, i d = 10 madc, f = 100 mhz) re(y ig ) e 12 e mmhos commonsource forward transconductance (v ds = 10 vdc, i d = 10 madc, f = 1.0 khz) J308 j309 j310 g fs 8000 10000 8000 e e e 20000 20000 18000 m mhos commonsource output conductance (v ds = 10 vdc, i d = 10 madc, f = 1.0 khz) g os e e 250 m mhos commongate forward transconductance (v ds = 10 vdc, i d = 10 madc, f = 1.0 khz) J308 j309 j310 g fg e e e 13000 13000 12000 e e e m mhos commongate output conductance (v ds = 10 vdc, i d = 10 madc, f = 1.0 khz) J308 j309 j310 g og e e e 150 100 150 e e e m mhos gatedrain capacitance (v ds = 0, v gs = 10 vdc, f = 1.0 mhz) c gd e 1.8 2.5 pf gatesource capacitance (v ds = 0, v gs = 10 vdc, f = 1.0 mhz) c gs e 4.3 5.0 pf functional characteristics noise figure (v ds = 10 vdc, i d = 10 madc, f = 450 mhz) nf e 1.5 e db equivalent shortcircuit input noise voltage (v ds = 10 vdc, i d = 10 madc, f = 100 hz) e n e 10 e nv  hz 
   3 motorola smallsignal transistors, fets and diodes device data c1 = c2 = 0.8 10 pf, jfd #mvm010w. c3 = c4 = 8.35 pf erie #539002d. c5 = c6 = 5000 pf erie (2443000). c7 = 1000 pf, allen bradley #fa5c. rfc = 0.33 m h miller #923030. l1 = one turn #16 cu, 1/4 i.d. (air core). l2 p = one turn #16 cu, 1/4 i.d. (air core). l2 s = one turn #16 cu, 1/4 i.d. (air core). 50 w source 50 w load u 310 c3 c2 c6 c7 c4 1.0 k rfc l1 l2 p l2 s +v dd c1 c5 figure 1. 450 mhz commongate amplifier test circuit 70 60 50 40 30 20 , saturation drain current (ma) 5.0 4.0 3.0 2.0 1.0 0 i d v gs , gatesource voltage (volts) i dss 10 0 70 60 50 40 30 20 10 , drain current (ma) i d i dss v gs , gatesource cutoff voltage (volts) figure 2. drain current and transfer characteristics versus gatesource voltage v ds = 10 v i dss +25 c t a = 55 c +25 c +25 c 55 c +150 c +150 c v gs , gatesource voltage (volts) 5.0 4.0 3.0 2.0 1.0 0 35 30 25 20 15 10 5.0 0 , forward transconductance (mmhos) y fs figure 3. forward transconductance versus gatesource voltage v ds = 10 v f = 1.0 mhz t a = 55 c +25 c +150 c +25 c 55 c +150 c i d , drain current (ma) 100 k 10 k 1.0 k 100 1.0 k 100 10 1.0 0.01 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100 , f or w ard t ransconduc t ance ( mhos) y fs m , output admittance ( mhos) y os m v gs(off) = 2.3 v = v gs(off) = 5.7 v = figure 4. commonsource output admittance and forward transconductance versus drain current y fs y fs y os v gs , gate source voltage (volts) 5.0 4.0 3.0 2.0 1.0 0 6.0 7.0 8.0 9.0 10 capacitance (pf) 10 7.0 4.0 1.0 0 120 96 72 48 24 0 , on resistance (ohms) r ds r ds c gs c gd figure 5. on resistance and junction capacitance versus gatesource voltage
   4 motorola smallsignal transistors, fets and diodes device data |y 11 |, |y 21 |, |y 22 | (mmhos) y 12 (mmhos) 30 24 18 12 6.0 0 1000 100 200 300 500 700 f, frequency (mhz) 3.0 2.4 1.8 1.2 0.6 |s 21 |, |s 11 | 0.45 0.39 0.33 0.27 0.21 0.15 0.85 0.79 0.73 0.67 0.61 0.55 |s 12 |, |s 22 | 0.060 0.048 0.036 0.024 0.012 1.00 0.98 0.96 0.94 0.92 0.90 1000 100 200 300 500 700 f, frequency (mhz) figure 6. commongate y parameter magnitude versus frequency figure 7. commongate s parameter magnitude versus frequency f, frequency (mhz) i d , drain current (ma) nf, noise figure (db) nf, noise figure (db) g , power gain (db) pg g , power gain (db) pg 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0 4.0 6.0 8.0 10 12 14 16 18 20 22 24 24 21 18 15 12 9.0 6.0 3.0 0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0 50 100 200 300 500 700 1000 26 22 18 14 10 6.0 2.0 v ds = 10 v i d = 10 ma t a = 25 c y 11 y 21 y 22 y 12 s 22 s 21 s 11 s 12 g pg nf v ds = 10 v i d = 10 ma t a = 25 c v dd = 20 v f = 450 mhz bw 10 mhz circuit in figure 1 v ds = 10 v i d = 10 ma t a = 25 c circuit in figure 1 g pg nf f, frequency (mhz) q 21 , q 11 50 40 30 20 10 0 180 170 160 150 140 130 q 12 , q 22 2 0 40 80 120 160 200 20 60 100 140 180 87 86 85 84 83 82 1000 100 200 300 500 700 figure 8. commongate y parameter phaseangle versus frequency f, frequency (mhz) q 11 , q 12 120 100 80 60 40 20 20 40 60 80 100 120 q 21 , q 22 0 40 80 20 60 100 1000 100 200 300 500 700 figure 9. s parameter phaseangle versus frequency q 22 q 21 q 12 q 11 v ds = 10 v i d = 10 ma t a = 25 c q 11 q 21 q 22 q 21 q 11 q 12 v ds = 10 v i d = 10 ma t a = 25 c figure 10. noise figure and power gain versus drain current figure 11. noise figure and power gain versus frequency
   5 motorola smallsignal transistors, fets and diodes device data figure 12. 450 mhz imd evaluation amplifier b w (3 db) 36.5 mhz i d 10 madc v ds 20 vdc device case grounded im test tones f1 = 449.5 mhz, f2 = 450.5 mhz c1 = 110 pf johanson air variable trimmer. c2, c5 = 100 pf feed thru button capacitor. c3, c4, c6 = 0.56 pf johanson air variable trimmer. l1 = 1/8 x 1/32 x 15/8 copper bar. l2, l4 = ferroxcube vk200 choke. l3 = 1/8 x 1/32 x 17/8 copper bar. input r s = 50 w c1 c2 l1 l2 v s s g d shield c3 u310 c4 v d l3 c5 l4 c6 output r l = 50 w amplifier power gain and imd products are a function of the load impedance. for the amplifier design shown above with c4 and c6 adjusted to reflect a load to the drain resulting in a nominal power gain of 9 db, the 3rd order intercept point (ip) value is 29 dbm. adjusting c4, c6 to provide larger load values will result in higher gain, smaller bandwidth and lower ip values. for example, a nominal gain of 13 db can be achieved with an intercept point of 19 dbm. example of intercept point plot use: assume two inband signals of 20 dbm at the amplifier input. they will result in a 3rd order imd signal at the output of 90 dbm. also, each signal level at the output will be 11 dbm, showing an amplifier gain of 9.0 db and an intermodulation ratio (imr) capability of 79 db. the gain and imr values apply only for signal levels below comparison. figure 13. two tone 3rd order intercept point 20 40 60 80 100 120 output power per tone (dbm) 120 +20 100 80 60 input power per tone (dbm) 0 +20 +40 40 20 0 3rd order intercept point fundamental output 3rd order imd output u310 jfet v ds = 20 vdc i d = 10 madc f1 = 449.5 mhz f2 = 450.5 mhz
   6 motorola smallsignal transistors, fets and diodes device data package dimensions case 02904 (to226aa) notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 3. contour of package beyond dimension r is uncontrolled. 4. dimension f applies between p and l. dimension d and j apply between l and k minimum. lead dimension is uncontrolled in p and beyond dimension k minimum. r a p j l f b k g h section xx c v d n n xx seating plane dim min max min max millimeters inches a 0.175 0.205 4.45 5.20 b 0.170 0.210 4.32 5.33 c 0.125 0.165 3.18 4.19 d 0.016 0.022 0.41 0.55 f 0.016 0.019 0.41 0.48 g 0.045 0.055 1.15 1.39 h 0.095 0.105 2.42 2.66 j 0.015 0.020 0.39 0.50 k 0.500 12.70 l 0.250 6.35 n 0.080 0.105 2.04 2.66 p 0.100 2.54 r 0.115 2.93 v 0.135 3.43 1 style 5: pin 1. drain 2. source 3. gate issue ad
   7 motorola smallsignal transistors, fets and diodes device data motorola reserves the right to make changes without further notice to any products herein. motorola makes no warranty, represe ntation or guarantee regarding the suitability of its products for any particular purpose, nor does motorola assume any liability arising out of the applicati on or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. atypicalo para meters which may be provided in motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all ope rating parameters, including atypicalso must be validated for each customer application by customer's technical experts. motorola does not convey any license under it s patent rights nor the rights of others. motorola products are not designed, intended, or authorized for use as components in systems intended for surgical imp lant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the motorola product cou ld create a situation where personal injury or death may occur. should buyer purchase or use motorola products for any such unintended or unauthorized application, buyer shall indemnify and hold motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expens es, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized u se, even if such claim alleges that motorola was negligent regarding the design or manufacture of the part. motorola and are registered trademarks of motoro la, inc. motorola, inc. is an equal opportunity/affirmative action employer.
   8 motorola smallsignal transistors, fets and diodes device data mfax is a trademark of motorola, inc. how to reach us: usa / europe / locations not listed : motorola literature distribution; japan : nippon motorola ltd.: spd, strategic planning office, 4321, p.o. box 5405, denver, colorado 80217. 3036752140 or 18004412447 nishigotanda, shinagawaku, tokyo 141, japan. 8135487 8488 mfax ? : rmfax0@email.sps.mot.com touchtone 6 022446609 asia / pacific : motorola semiconductors h.k. ltd.; 8b tai ping industrial park, us & canada only 18007741848 51 ting kok road, tai po, n.t., hong kong. 85226629298 internet : http://motorola.com/sps J308/d ?


▲Up To Search▲   

 
Price & Availability of J308

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X