Part Number Hot Search : 
52V9B5E 12030 2N5333 TIP49 4081BCN 40NSR 02011K CXP5056
Product Description
Full Text Search
 

To Download LT6233-10 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 sn623345 623345fas lt6233/LT6233-10/ lt6234/lt6235 n low noise voltage: 1.9nv/ ? hz n low supply current: 1.2ma/amp max n low offset voltage: 350 m v max n gain bandwidth product: lt6233: 60mhz; a v 3 1 LT6233-10: 375mhz; a v 3 10 n wide supply range: 3v to 12.6v n output swings rail-to-rail n common mode rejection ratio 115db typ n output current: 30ma n operating temperature range C 40 c to 85 c n lt6233 shutdown to 10 m a maximum n lt6233/LT6233-10 in sot-23 package n dual lt6234 in 8-pin so and tiny dfn packages n lt6235 in 16-pin ssop package applicatio s u features typical applicatio u descriptio u 60mhz, rail-to-rail output, 1.9nv/ ? hz, 1.2ma op amp family , ltc and lt are registered trademarks of linear technology corporation. the lt ? 6233/lt6234/lt6235 are single/dual/quad low noise, rail-to-rail output unity gain stable op amps that feature 1.9nv/ ? hz noise voltage and draw only 1.2ma of supply current per amplifier. these amplifiers combine very low noise and supply current with a 60mhz gain bandwidth product, a 17v/ m s slew rate and are optimized for low supply voltage signal conditioning systems. the LT6233-10 is a single amplifier optimized for higher gain applications resulting in higher gain bandwidth and slew rate. the lt6233 and LT6233-10 include an enable pin that can be used to reduce the supply current to less than 10 m a. the amplifier family has an output that swings within 50mv of either supply rail to maximize the signal dynamic range in low supply applications and is specified on 3.3v, 5v and 5v supplies. the e n ? ? i supply product of 2.1 per amplifier is among the most noise efficient of any op amp. the lt6233/LT6233-10 is available in the 6-lead sot-23 package and the lt6234 dual is available in the 8-pin so package with standard pinouts. for compact layouts, the dual is also available in a tiny dual fine pitch leadless package (dfn). the lt6235 is available in the 16-pin ssop package. lt6233/LT6233-10/ lt6234/lt6235 noise voltage and unbalanced noise current vs frequency frequency (hz) noise voltage (nv/ hz) 6 5 4 3 2 1 0 10 1k 10k 100k 623345 ta01b 100 v s = 2.5v t a = 25 c v cm = 0v noise voltage noise current unbalanced noise current (pa/ hz) 6 5 4 3 2 1 0 low noise low power instrumentation amplifier r6 499 v s + a v = 20 bw = 2.8mhz v s = 1.5v to 5v v out v s C in + in C v s C v s + r7 499 r4 499 r2 475 r1 49.9 r3 475 r5 499 en i s = 3ma e n = 8 v rms input referred, measurement bw = 4mhz 623345 ta01a C + lt6233 1/2 lt6234 1/2 lt6234 n ultrasound amplifiers n low noise, low power signal processing n active filters n driving a/d converters n rail-to-rail buffer amplifiers
lt6233/LT6233-10/ lt6234/lt6235 2 sn623345 623345fas total supply voltage (v + to v C ) ............................ 12.6v input current (note 2) ........................................ 40ma output short-circuit duration (note 3) ............ indefinite operating temperature range (note 4) ...C40 c to 85 c specified temperature range (note 5) ....C40 c to 85 c absolute axi u rati gs w ww u package/order i for atio uu w (note 1) junction temperature ........................................... 150 c junction temperature (dd package) ................... 125 c storage temperature range ..................C65 c to 150 c storage temperature range (dd package) ...................................... C 65 c to 125 c lead temperature (soldering, 10 sec).................. 300 c t jmax = 150 c, q ja = 190 c/w 6234 6234i lt6234cs8 lt6234is8 *the temperature grade is identified by a label on the shipping container.c onsult ltc marketing for parts specified with wider operating temperature ranges. order part number s6 part marking* ltafl ltafm lt6233cs6 lt6233is6 lt6233cs6-10 lt6233is6-10 order part number dd part marking* laet lt6234cdd lt6234idd t jmax = 125 c, q ja = 160 c/w underside metal connected to v C (pcb connection optional) t jmax = 150 c, q ja = 250 c/w s8 part marking order part number 6235 6235i lt6235cgn lt6235ign gn part marking order part number t jmax = 150 c, q ja = 135 c/w top view dd package 8-lead (3mm 3mm) plastic dfn 5 6 7 8 4 3 2 1 out a ?n a +in a v v + out b ?n b +in b + + 6 v + 5 enable 4 Cin out 1 top view s6 package 6-lead plastic tsot-23 v C 2 +in 3 top view v + out b ?n b +in b out a in a +in a v s8 package 8-lead plastic so 1 2 3 4 8 7 6 5 + + top view gn package 16-lead narrow plastic ssop 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 out a in a +in a v + +in b in b out b nc out d in d +in d v +in c in c out c nc + + + + a d bc
3 sn623345 623345fas lt6233/LT6233-10/ lt6234/lt6235 electrical characteristics t a = 25 c, v s = 5v, 0v; v s = 3.3v, 0v; v cm = v out = half supply, enable = 0v, unless otherwise noted. symbol parameter conditions min typ max units v os input offset voltage lt6233s6, lt6233s6-10 100 500 m v lt6234s8, lt6235gn 50 350 m v lt6234dd 75 450 m v input offset voltage match 80 600 m v (channel-to-channel) (note 6) i b input bias current 1.5 3 m a i b match (channel-to-channel) (note 6) 0.04 0.3 m a i os input offset current 0.04 0.3 m a input noise voltage 0.1hz to 10hz 220 nv p-p e n input noise voltage density f = 10khz, v s = 5v 1.9 3 nv/ ? hz i n input noise current density, balanced source f = 10khz, v s = 5v, r s = 10k 0.43 pa/ ? hz unbalanced source f = 10khz, v s = 5v, r s = 10k 0.78 pa/ ? hz input resistance common mode 22 m w differential mode 25 k w c in input capacitance common mode 2.5 pf differential mode 4.2 pf a vol large-signal gain v s = 5v, v o = 0.5v to 4.5v, r l = 10k to v s /2 73 140 v/mv r l = 1k to v s /2 18 35 v/mv v s = 3.3v, v o = 0.65v to 2.65v, r l = 10k to v s /2 53 100 v/mv r l = 1k to v s /2 11 20 v/mv v cm input voltage range guaranteed by cmrr, v s = 5v, 0v 1.5 4 v v s = 3.3v, 0v 1.15 2.65 v cmrr common mode rejection ratio v s = 5v, v cm = 1.5v to 4v 90 115 db v s = 3.3v, v cm = 1.15v to 2.65v 85 110 db cmrr match (channel-to-channel) (note 6) v s = 5v, v cm = 1.5v to 4v 84 115 db psrr power supply rejection ratio v s = 3v to 10v 90 115 db psrr match (channel-to-channel) (note 6) v s = 3v to 10v 84 115 db minimum supply voltage (note 7) 3 v v ol output voltage swing low (note 8) no load 4 40 mv i sink = 5ma 75 180 mv v s = 5v, i sink = 15ma 165 320 mv v s = 3.3v, i sink = 10ma 125 240 mv v oh output voltage swing high (note 8) no load 5 50 mv i source = 5ma 85 195 mv v s = 5v, i source = 15ma 220 410 mv v s = 3.3v, i source = 10ma 165 310 mv i sc short-circuit current v s = 5v 40 55 ma v s = 3.3v 35 50 ma i s supply current per amplifier 1.05 1.2 ma disabled supply current per amplifier enable = v + C 0.35v 0.2 10 m a
lt6233/LT6233-10/ lt6234/lt6235 4 sn623345 623345fas symbol parameter conditions min typ max units i enable enable pin current enable = 0.3v C25 C75 m a v l enable pin input voltage low 0.3 v v h enable pin input voltage high v + C 0.35 v output leakage current enable = v + C 0.35v, v o = 1.5v to 3.5v 0.2 10 m a t on turn-on time enable = 5v to 0v, r l = 1k, v s = 5v 500 ns t off turn-off time enable = 0v to 5v, r l = 1k, v s = 5v 76 m s gbw gain bandwidth product frequency = 1mhz, v s = 5v 55 mhz LT6233-10 320 mhz sr slew rate v s = 5v, a v = C1, r l = 1k, v o = 1.5v to 3.5v 10 15 v/ m s LT6233-10, v s = 5v, a v = C10, r l = 1k, 80 v/ m s v o = 1.5v to 3.5v fpbw full power bandwidth v s = 5v, v out = 3v p-p (note 9) 1.06 1.6 mhz LT6233-10, hd 2 = hd 3 1% 2.2 mhz t s settling time (lt6233, lt6234, lt6235) 0.1%, v s = 5v, v step = 2v, a v = C1, r l = 1k 175 ns t a = 25 c, v s = 5v, 0v; v s = 3.3v, 0v; v cm = v out = half supply, enable = 0v, unless otherwise noted. the l denotes the specifications which apply over 0 c < t a < 70 c temperature range. v s = 5v, 0v; v s = 3.3v, 0v; v cm = v out = half supply, enable = 0v, unless otherwise noted. symbol parameter conditions min typ max units v os input offset voltage lt6233s6, lt6233s6-10 l 600 m v lt6234s8, lt6235gn l 450 m v lt6234dd l 550 m v input offset voltage match l 800 m v (channel-to-channel) (note 6) v os tc input offset voltage drift (note 10) v cm = half supply l 0.5 3.0 m v/ c i b input bias current l 3.5 m a i b match (channel-to-channel) (note 6) l 0.4 m a i os input offset current l 0.4 m a a vol large-signal gain v s = 5v, v o = 0.5v to 4.5v, r l = 10k to v s /2 l 47 v/mv r l = 1k to v s /2 l 12 v/mv v s = 3.3v, v o = 0.65v to 2.65v, r l = 10k to v s /2 l 40 v/mv r l = 1k to v s /2 l 7.5 v/mv v cm input voltage range guaranteed by cmrr, v s = 5v, 0v l 1.5 4 v v s = 3.3v, 0v l 1.15 2.65 v cmrr common mode rejection ratio v s = 5v, v cm = 1.5v to 4v l 90 db v s = 3.3v, v cm = 1.15v to 2.65v l 85 db cmrr match (channel-to-channel) (note 6) v s = 5v, v cm = 1.5v to 4v l 84 db psrr power supply rejection ratio v s = 3v to 10v l 90 db psrr match (channel-to-channel) (note 6) v s = 3v to 10v l 84 db minimum supply voltage (note 7) l 3v v ol output voltage swing low (note 8) no load l 50 mv i sink = 5ma l 195 mv v s = 5v, i sink = 15ma l 360 mv v s = 3.3v, i sink = 10ma l 265 mv electrical characteristics
5 sn623345 623345fas lt6233/LT6233-10/ lt6234/lt6235 the l denotes the specifications which apply over 0 c < t a < 70 c temperature range. v s = 5v, 0v; v s = 3.3v, 0v; v cm = v out = half supply, enable = 0v, unless otherwise noted. the l denotes the specifications which apply over C 40 c < t a < 85 c temperature range. v s = 5v, 0v; v s = 3.3v, 0v; v cm = v out = half supply, enable = 0v, unless otherwise noted. (note 5) symbol parameter conditions min typ max units v os input offset voltage lt6233s6, lt6233s6-10 l 700 m v lt6234s8, lt6235gn l 550 m v lt6234dd l 650 m v input offset voltage match l 1000 m v (channel-to-channel) (note 6) v os tc input offset voltage drift (note 10) v cm = half supply l 0.5 3 m v/ c i b input bias current l 4 m a i b match (channel-to-channel) (note 6) l 0.4 m a i os input offset current l 0.5 m a a vol large-signal gain v s = 5v, v o = 0.5v to 4.5v, r l = 10k to v s /2 l 45 v/mv r l = 1k to v s /2 l 11 v/mv v s = 3.3v, v o = 0.65v to 2.65v,r l = 10k to v s /2 l 38 v/mv r l = 1k to v s /2 l 7v/mv v cm input voltage range guaranteed by cmrr, v s = 5v, 0v l 1.5 4 v v s = 3.3v, 0v l 1.15 2.65 v cmrr common mode rejection ratio v s = 5v, v cm = 1.5v to 4v l 90 db v s = 3.3v, v cm = 1.15v to 2.65v l 85 db cmrr match (channel-to-channel) (note 6) v s = 5v, v cm = 1.5v to 4v l 84 db psrr power supply rejection ratio v s = 3v to 10v l 90 db symbol parameter conditions min typ max units v oh output voltage swing high (note 8) no load l 60 mv i source = 5ma l 205 mv v s = 5v, i source = 15ma l 435 mv v s = 3.3v, i source = 10ma l 330 mv i sc short-circuit current v s = 5v l 35 ma v s = 3.3v l 30 ma i s supply current per amplifier l 1.45 ma disabled supply current per amplifier enable = v + C 0.25v l 1 m a i enable enable pin current enable = 0.3v l C85 m a v l enable pin input voltage low l 0.3 v v h enable pin input voltage high l v + C 0.25 v output leakage current enable = v + C 0.25v, v o = 1.5v to 3.5v l 1 m a t on turn-on time enable = 5v to 0v, r l = 1k, v s = 5v l 500 ns t off turn-off time enable = 0v to 5v, r l = 1k, v s = 5v l 120 m s sr slew rate v s = 5v, a v = C1, r l = 1k, v o = 1.5v to 3.5v l 9v/ m s LT6233-10, a v = C10, r l = 1k, l 75 v/ m s v o = 1.5v to 3.5v fpbw full power bandwidth (note 9) v s = 5v, v out = 3v p-p l 955 khz lt6233, lt6234, lt6235 electrical characteristics
lt6233/LT6233-10/ lt6234/lt6235 6 sn623345 623345fas symbol parameter conditions min typ max units v os input offset voltage lt6233s6, lt6233s6-10 100 500 m v lt6234s8, lt6235gn 50 350 m v lt6234dd 75 450 m v input offset voltage match 100 600 m v (channel-to-channel) (note 6) i b input bias current 1.5 3 m a i b match (channel-to-channel) (note 6) 0.04 0.3 m a i os input offset current 0.04 0.3 m a input noise voltage 0.1hz to 10hz 220 nv p-p e n input noise voltage density f = 10khz 1.9 3.0 nv/ ? hz i n input noise current density, balanced source f = 10khz, r s = 10k 0.43 pa/ ? hz unbalanced source f = 10khz, r s = 10k 0.78 pa/ ? hz symbol parameter conditions min typ max units psrr match (channel-to-channel) (note 6) v s = 3v to 10v l 84 db minimum supply voltage (note 7) l 3v v ol output voltage swing low (note 8) no load l 50 mv i sink = 5ma l 195 mv v s = 5v, i sink = 15ma l 370 mv v s = 3.3v, i sink = 10ma l 275 mv v oh output voltage swing high (note 6) no load l 60 mv i source = 5ma l 210 mv v s = 5v, i source = 15ma l 445 mv v s = 3.3v, i source = 10ma l 335 mv i sc short-circuit current v s = 5v l 30 ma v s = 3.3v l 20 ma i s supply current per amplifier l 1.5 ma disabled supply current per amplifier enable = v + C 0.2v l 1 m a i enable enable pin current enable = 0.3v l C100 m a v l enable pin input voltage low l 0.3 v v h enable pin input voltage high l v + C 0.2v v output leakage current enable = v + C 0.2v, v o = 1.5v to 3.5v l 1 m a t on turn-on time enable = 5v to 0v, r l = 1k, v s = 5v l 500 ns t off turn-off time enable = 0v to 5v, r l = 1k, v s = 5v l 135 m s sr slew rate v s = 5v, a v = C1, r l = 1k, v o = 1.5v to 3.5v l 8v/ m s LT6233-10, a v = C10, r l = 1k, l 70 v/ m s v o = 1.5v to 3.5v fpbw full power bandwidth (note 9) v s = 5v, v out = 3v p-p l 848 khz lt6233, lt6234, lt6235 electrical characteristics the l denotes the specifications which apply over C 40 c < t a < 85 c temperature range. v s = 5v, 0v; v s = 3.3v, 0v; v cm = v out = half supply, enable = 0v, unless otherwise noted. (note 5) t a = 25 c, v s = 5v, v cm = v out = 0v, enable = 0v, unless otherwise noted.
7 sn623345 623345fas lt6233/LT6233-10/ lt6234/lt6235 symbol parameter conditions min typ max units input resistance common mode 22 m w differential mode 25 k w c in input capacitance common mode 2.1 pf differential mode 3.7 pf a vol large-signal gain v o = 4.5v, r l = 10k 97 180 v/mv r l = 1k 28 55 v/mv v cm input voltage range guaranteed by cmrr C3 4 v cmrr common mode rejection ratio v cm = C3v to 4v 90 110 db cmrr match (channel-to-channel) (note 6) v cm = C3v to 4v 84 120 db psrr power supply rejection ratio v s = 1.5v to 5v 90 115 db psrr match (channel-to-channel) (note 6) v s = 1.5v to 5v 84 115 db v ol output voltage swing low (note 8) no load 4 40 mv i sink = 5ma 75 180 mv i sink = 15ma 165 320 mv v oh output voltage swing high (note 8) no load 5 50 mv i source = 5ma 85 195 mv i source = 15ma 220 410 mv i sc short-circuit current 40 55 ma i s supply current per amplifier 1.15 1.4 ma disabled supply current per amplifier enable = 4.65v 0.2 10 m a i enable enable pin current enable = 0.3v C35 C85 m a v l enable pin input voltage low 0.3 v v h enable pin input voltage high 4.65 v output leakage current enable = 4.65v, v o = 1v 0.2 10 m a t on turn-on time enable = 5v to 0v, r l = 1k 900 ns t off turn-off time enable = 0v to 5v, r l = 1k 100 m s gbw gain bandwidth product frequency = 1mhz 42 60 mhz LT6233-10 260 375 mhz sr slew rate a v = C1, r l = 1k, v o = C2v to 2v 12 17 v/ m s LT6233-10, a v = C10, r l = 1k, 115 v/ m s v o = C2v to 2v fpbw full power bandwidth v out = 3v p-p (note 9) 1.27 1.8 mhz LT6233-10, hd 2 = hd 3 1% 2.2 mhz t s settling time (lt6233, lt6234, lt6235) 0.1%, v step = 2v, a v = C1, r l = 1k 170 ns t a = 25 c, v s = 5v, v cm = v out = 0v, enable = 0v, unless otherwise noted. electrical characteristics
lt6233/LT6233-10/ lt6234/lt6235 8 sn623345 623345fas symbol parameter conditions min typ max units v os input offset voltage lt6233s6, lt6233s6-10 l 600 m v lt6234s8, lt6235gn l 450 m v lt6234dd l 550 m v input offset voltage match l 800 m v (channel-to-channel) (note 6) v os tc input offset voltage drift (note 10) l 0.5 3 m v/ c i b input bias current l 3.5 m a i b match (channel-to-channel) (note 6) l 0.4 m a i os input offset current l 0.4 m a a vol large-signal gain v o = 4.5v, r l = 10k l 75 v/mv r l = 1k l 22 v/mv v cm input voltage range guaranteed by cmrr l C3 4 v cmrr common mode rejection ratio v cm = C3v to 4v l 90 db cmrr match (channel-to-channel) (note 6) v cm = C3v to 4v l 84 db psrr power supply rejection ratio v s = 1.5v to 5v l 90 db psrr match (channel-to-channel) (note 6) v s = 1.5v to 5v l 84 db v ol output voltage swing low (note 8) no load l 50 mv i sink = 5ma l 195 mv i sink = 15ma l 360 mv v oh output voltage swing high (note 8) no load l 60 mv i source = 5ma l 205 mv i source = 15ma l 435 mv i sc short-circuit current l 35 ma i s supply current per amplifier l 1.7 ma disabled supply current per amplifier enable = 4.75v l 1 m a i enable enable pin current enable = 0.3v l C95 m a v l enable pin input voltage low l 0.3 v v h enable pin input voltage high l 4.75 v output leakage current enable = 4.75v, v o = 1v l 1 m a t on turn-on time enable = 5v to 0v, r l = 1k l 900 ns t off turn-off time enable = 0v to 5v, r l = 1k l 150 m s sr slew rate a v = C1, r l = 1k, v o = C2v to 2v l 11 v/ m s LT6233-10, a v = C10, r l = 1k, l 105 v/ m s v o = C2v to 2v fpbw full power bandwidth (note 9) v out = 3v p-p l 1.16 mhz lt6233, lt6234, lt6235 the l denotes the specifications which apply over 0 c < t a < 70 c temperature range. v s = 5v, v cm = v out = 0v, enable = 0v, unless otherwise noted. electrical characteristics
9 sn623345 623345fas lt6233/LT6233-10/ lt6234/lt6235 symbol parameter conditions min typ max units v os input offset voltage lt6233s6, lt6233s6-10 l 700 m v lt6234s8, lt6235gn l 550 m v lt6234dd l 650 m v input offset voltage match l 1000 m v (channel-to-channel) (note 6) v os tc input offset voltage drift (note 10) l 0.5 3 m v/ c i b input bias current l 4 m a i b match (channel-to-channel) (note 6) l 0.4 m a i os input offset current l 0.5 m a a vol large-signal gain v o = 4.5v, r l = 10k l 68 v/mv r l = 1k l 20 v/mv v cm input voltage range guaranteed by cmrr l C3 4 v cmrr common mode rejection ratio v cm = C3v to 4v l 90 db cmrr match (channel-to-channel) (note 6) v cm = C3v to 4v l 84 db psrr power supply rejection ratio v s = 1.5v to 5v l 90 db psrr match (channel-to-channel) (note 6) v s = 1.5v to 5v l 84 db v ol output voltage swing low (note 8) no load l 50 mv i sink = 5ma l 195 mv i sink = 15ma l 370 mv v oh output voltage swing high (note 8) no load l 70 mv i source = 5ma l 210 mv i source = 15ma l 445 mv i sc short-circuit current l 30 ma i s supply current per amplifier l 1.75 ma disabled supply current per amplifier enable = 4.8v l 1 m a i enable enable pin current enable = 0.3v l C110 m a v l enable pin input voltage low l 0.3 v v h enable pin input voltage high l 4.8 v output leakage current enable = 4.8v, v o = 1v l 1 m a t on turn-on time enable = 5v to 0v, r l = 1k l 900 ns t off turn-off time enable = 0v to 5v, r l = 1k l 160 m s sr slew rate a v = C1, r l = 1k, v o = C2v to 2v l 10 v/ m s LT6233-10, a v = C10, r l = 1k, l 95 v/ m s v o = C2v to 2v fpbw full power bandwidth (note 9) v out = 3v p-p l 1.06 mhz lt6233, lt6234, lt6235 the l denotes the specifications which apply over C40 c < t a < 85 c temperature range. v s = 5v, v cm = v out = 0v, enable = 0v, unless otherwise noted. (note 5) electrical characteristics
lt6233/LT6233-10/ lt6234/lt6235 10 sn623345 623345fas temperature ( c) C50 input bias current ( a) 25 623345 go5 C25 0 50 6 5 4 3 2 1 0 C1 75 100 125 v cm = 4v v cm = 1.5v v s = 5v, 0v typical perfor a ce characteristics uw note 1: absolute maximum ratings are those values beyond which the life of the device may be impaired. note 2: inputs are protected by back-to-back diodes. if the differential input voltage exceeds 0.7v, the input current must be limited to less than 40ma. note 3: a heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely. note 4: the lt6233c/lt6233i the lt6234c/lt6234i, and lt6235c/ lt6235i are guaranteed functional over the temperature range of C40 c and 85 c. note 5: the lt6233c/lt6234c/lt6235c are guaranteed to meet specified performance from 0 c to 70 c. the lt6233c/lt6234c/lt6235c are designed, characterized and expected to meet specified performance from C40 c to 85 c, but are not tested or qa sampled at these temperatures. the lt6233i/lt6234i/lt6235i are guaranteed to meet specified performance from C40 c to 85 c. note 6: matching parameters are the difference between the two amplifiers a and d and between b and c of the lt6235; between the two amplifiers of the lt6234. cmrr and psrr match are defined as follows: cmrr and psrr are measured in m v/v on the matched amplifiers. the difference is calculated between the matching sides in m v/v. the result is converted to db. note 7: minimum supply voltage is guaranteed by power supply rejection ratio test. note 8: output voltage swings are measured between the output and power supply rails. note 9: full-power bandwidth is calculated from the slew rate: fpbw = sr/2 p v p note 10: this parameter is not 100% tested. electrical characteristics v os distribution supply current vs supply voltage (per amplifier) offset voltage vs input common mode voltage input bias current vs common mode voltage input bias current vs temperature output saturation voltage vs load current (output low) (lt6233/lt6234/lt6235) input offset voltage ( v) C200 0 number of units 10 20 30 40 C100 0 100 200 623345 go1 50 60 C150 C50 50 150 v s = 5v, 0v v cm = v + /2 s8 total supply voltage (v) 0 supply current (ma) 6 623345 go2 24 8 2.0 1.5 1.0 0.5 0 10 12 14 t a = 125 c t a = 25 c t a = C55 c input common mode voltage (v) 0 offset voltage ( v) 1.5 623345 go3 0.5 1 2 500 400 300 200 100 0 C100 C200 C300 C400 C500 345 2.5 3.5 4.5 t a = C55 c t a = 25 c t a = 125 c v s = 5v, 0v common mode voltage (v) C1 input bias current ( a) 2 623345 go4 01 3 6 5 4 3 2 1 0 C2 C1 456 t a = 125 c t a = C55 c t a = 25 c v s = 5v, 0v load current (ma) 0.01 0.1 0.0001 output saturation voltage (v) 0.01 10 1 100 10 623345 go6 0.001 0.1 1 v s = 5v, 0v t a = C55 c t a = 125 c t a = 25 c
11 sn623345 623345fas lt6233/LT6233-10/ lt6234/lt6235 typical perfor a ce characteristics uw output saturation voltage vs load current (output high) minimum supply voltage output short circuit current vs power supply voltage load current (ma) output saturation voltage (v) 623345 g07 0.01 0.1 0.01 10 1 100 10 0.001 0.1 1 v s = 5v, 0v t a = C55 c t a = 125 c t a = 25 c total supply voltage (v) 0 offset voltage (mv) 1.5 623345 g08 0.5 1 2 1.0 0.8 0.6 0.4 0.2 0 C0.2 C0.4 C0.6 C0.8 C1.0 345 2.5 3.5 4.5 t a = C55 c t a = 125 c t a = 25 c v cm = v s /2 power supply voltage ( v) 1.5 output short-circuit current (ma) 3.0 623345 go9 2.0 2.5 3.5 80 60 40 20 0 C20 C40 C80 C60 4.0 4.5 5.0 t a = 125 c t a = C55 c t a = C55 c t a = 25 c sinking sourcing t a = 25 c t a = 125 c open loop gain open loop gain open loop gain offset voltage vs output current warm-up drift vs time total noise vs total source resistance output voltage (v) 0 input voltage (mv) 1.5 623345 g10 0.5 1.0 2.0 2.5 2.0 1.5 1.0 0.5 0 C0.5 C1.0 C1.5 C2.0 C2.5 3.0 2.5 r l = 100 r l = 1k v s = 3v, 0v t a = 25 c output voltage (v) 0 input voltage (mv) 1.5 623345 g11 0.5 1 2 0 345 2.5 3.5 4.5 r l = 100 r l = 1k v s = 5v, 0v t a = 25 c 2.5 2.0 1.5 1.0 0.5 C0.5 C1.0 C1.5 C2.0 C2.5 output voltage (v) C5 input voltage (mv) C2 623345 g12 C4 C3 C1 0 135 024 r l = 100 r l = 1k v s = 5v t a = 25 c 2.5 2.0 1.5 1.0 0.5 C0.5 C1.0 C1.5 C2.0 C2.5 output current (ma) C90 offset voltage (mv) 623345 g13 C60 C30 2.0 1.5 1.0 0.5 0 C0.5 C1.0 C1.5 C2.0 030 90 60 t a = C55 c t a = 125 c v s = 5v t a = 25 c time after power-up (s) 0 change in offset voltage ( v) 20 623345 g14 10 30 40 35 30 25 20 15 10 0 40 50 t a = 25 c v s = 5v v s = 2.5v v s = 1.5v total source resistance ( ) 1 total noise (nv/ hz) 10 10 1k 10k 100k 623345 g15 0.1 100 100 v s = 2.5v v cm = 0v f = 100khz unbalanced source resistors total noise resistor noise amplifier noise voltage (lt6233/lt6234/lt6235)
lt6233/LT6233-10/ lt6234/lt6235 12 sn623345 623345fas typical perfor a ce characteristics uw noise voltage and unbalanced noise current vs frequency 0.1hz to 10hz output voltage noise gain bandwidth and phase margin vs temperature open loop gain vs frequency gain bandwidth and phase margin vs supply voltage slew rate vs temperature output impedance vs frequency common mode rejection ratio vs frequency channel separation vs frequency frequency (hz) noise voltage (nv/ hz) 6 5 4 3 2 1 0 10 1k 10k 100k 623345 g16 100 v s = 2.5v t a = 25 c v cm = 0v noise voltage noise current unbalanced noise current (pa/ hz) 6 5 4 3 2 1 0 temperature ( c) C55 gain bandwidth (mhz) 5 623345 g18 C25 35 90 80 70 60 40 50 phase margin (deg) 70 60 50 40 65 95 125 v s = 5v v s = 3v, 0v v s = 5v v s = 3v, 0v phase margin gain bandwidth c l = 5pf r l = 1k v cm = v s /2 frequency (hz) gain (db) 80 70 50 30 0 ?0 60 40 10 20 ?0 phase (deg) 120 100 60 20 ?0 80 40 ?0 ?0 0 ?0 100k 10m 100m 1g 623345 g19 1m c l = 5pf r l = 1k v cm = v s /2 phase gain v s = 5v v s = 3v, 0v v s = 5v v s = 3v, 0v total supply voltage (v) 0 gain bandwidth (mhz) 6 623345 g20 24 8 70 60 50 30 40 phase margin (deg) 80 70 60 50 40 10 12 14 phase margin gain bandwidth t a = 25 c c l = 5pf r l = 1k temperature ( c) ?5 slew rate (v/ s) 5 623345 g21 ?5 ?5 45 20 22 24 26 18 16 14 10 12 85 25 65 105 125 v s = 5v falling v s = 2.5v rising a v = ? r f = r g = 1k v s = 2.5v falling v s = 5v rising frequency (hz) 1 output impedance ( ) 10 100k 10m 100m 623345 g22 0.1 1m 1k 100 v s = 5v, 0v a v = 10 a v = 1 a v = 2 frequency (hz) 20 common mode rejection ratio (db) 40 60 80 120 100 10k 100m 100k 1g 10m 623345 g23 0 1m v s = 5v, 0v v cm = v s /2 frequency (hz) 100k channel separation (db) C40 C50 C60 C70 C80 C90 C100 C110 C120 C130 C140 1m 10m 100m 623345 g24 a v = 1 t a = 25 c v s = 5v 5s/div 623345 g17 100nv 100nv/div C100nv v s = 2.5v (lt6233/lt6234/lt6235)
13 sn623345 623345fas lt6233/LT6233-10/ lt6234/lt6235 typical perfor a ce characteristics uw power supply rejection ratio vs frequency series output resistance and overshoot vs capacitive load series output resistance and overshoot vs capacitive load frequency (hz) 20 power supply rejection ratio (db) 40 60 80 120 100 1k 10k 100m 100k 10m 623345 g25 0 1m v s = 5v, 0v t a = 25 c v cm = v s /2 negative supply positive supply output step (v) ? settling time (ns) 0 623345 g28 ? ? ? 1 300 400 350 250 200 150 50 100 234 1mv 10mv 1mv 10mv v s = 5v t a = 25 c a v = 1 + 500 v out v in settling time vs output step (non-inverting) settling time vs output step (inverting) maximum undistorted output signal vs frequency distortion vs frequency distortion vs frequency distortion vs frequency output step (v) C4 settling time (ns) 0 623345 g29 C3 C2 C1 1 300 400 350 250 200 150 50 100 234 1mv 10mv 1mv 10mv v s = 5v t a = 25 c a v = C1 + C 500 500 v out v in capacitive load (pf) 10 overshoot (%) 50 45 40 35 30 25 20 15 10 5 0 100 1000 623345 g26 v s = 5v, 0v a v = 1 r s = 10 r s = 20 r s = 50 r l = 50 capacitive load (pf) 10 overshoot (%) 50 45 40 35 30 25 20 15 10 5 0 100 1000 623345 g27 v s = 5v, 0v a v = 2 r s = 10 r s = 20 r s = 50 r l = 50 frequency (hz) 10k output voltage swing (v pCp ) 10 9 8 7 6 5 4 3 2 100k 1m 10m 623345 g30 v s = 5v t a = 25 c hd 2 , hd 3 < C40dbc a v = C1 a v = 2 frequency (hz) 10k distortion (dbc) C40 C50 C60 C70 C80 C90 C100 100k 1m 10m 623345 g31 v s = 2.5v a v = 1 v out = 2v (pCp) r l = 100 , 3rd r l = 1k, 3rd r l = 1k, 2nd r l = 100 , 2nd frequency (hz) 10k distortion (dbc) C40 C50 C60 C70 C80 C90 C100 100k 1m 10m 623345 g32 v s = 5v a v = 1 v out = 2v (pCp) r l = 100 , 3rd r l = 1k, 3rd r l = 1k, 2nd r l = 100 , 2nd frequency (hz) 10k distortion (dbc) C30 C40 C50 C60 C70 C80 C90 C100 100k 1m 10m 623345 g33 v s = 2.5v a v = 2 v out = 2v (pCp) r l = 100 , 3rd r l = 1k, 3rd r l = 1k, 2nd r l = 100 , 2nd (lt6233/lt6234/lt6235)
lt6233/LT6233-10/ lt6234/lt6235 14 sn623345 623345fas typical perfor a ce characteristics uw large signal response small signal response distortion vs frequency large signal response output overdrive recovery supply current vs enable pin voltage enable pin current vs enable pin voltage enable pin response time (lt6233) enable characteristics 50mv/div v s = 2.5v 200ns/div a v = 1 r l = 1k 623345 g36 0v 2v/div v s = 5v 200ns/div a v = 1 r l = 1k 623345 g37 C5v 5v 0v pin voltage (v) supply current (ma) C1.0 623345 g39 C2.0 0 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 1.0 2.0 t a = 125 c v s = 2.5v t a = 25 c t a = C55 c pin voltage (v) enable pin current ( a) 623345 g40 35 30 25 20 15 10 5 0 t a = 125 c v s = 2.5v a v = 1 t a = 25 c t a = C55 c C1.0 C2.0 0 1.0 2.0 frequency (hz) 10k distortion (dbc) C30 C40 C50 C60 C70 C80 C90 C100 100k 1m 10m 623345 g34 v s = 5v a v = 2 v out = 2v (pCp) r l = 100 , 3rd r l = 1k, 3rd r l = 1k, 2nd r l = 100 , 2nd (lt6233/lt6234/lt6235) 1v/div v s = 2.5v 200ns/div a v = C1 r l = 1k 623345 g35 C2v 2v 0v v s = 2.5v 200 m s/div v in = 0.5v a v = 1 r l = 1k 623345 g41 0.5v 5v 0v 0v v out enable pin v in (1v/div) v s = 2.5v 200ns/div a v = 3 623345 g38 0v 0v v out (2v/div)
15 sn623345 623345fas lt6233/LT6233-10/ lt6234/lt6235 typical perfor a ce characteristics uw gain bandwidth and phase margin vs temperature slew rate vs temperature series output resistance and overshoot vs capacitive load open loop gain vs frequency gain bandwidth and phase margin vs supply voltage gain bandwidth vs resistor load common mode rejection ratio vs frequency maximum undistorted output vs frequency 2 nd and 3 rd harmonic distortion vs frequency temperature ( c) C50 gain bandwidth (mhz) 25 623345 g42 C25 0 50 450 400 350 300 200 250 phase margin (deg) 70 60 50 40 75 100 125 v s = 5v v s = 3v, 0v v s = 5v v s = 3v, 0v phase margin gain bandwidth a v = 10 frequency (hz) gain (db) 80 70 60 50 40 30 20 10 0 C10 C20 phase (deg) 120 100 80 60 40 20 0 C20 C40 C60 C80 100k 10m 100m 1g 623345 g45 1m a v = 10 c l = 5pf r l = 1k v cm = v s /2 v s = 3v, 0v v s = 5v phase gain v s = 5v v s = 3v, 0v total supply voltage (v) 0 gain bandwidth (mhz) 6 623345 g46 24 8 450 375 300 225 phase margin (deg) 100 50 0 10 12 phase margin gain bandwidth t a = 25 c a v = 10 c l = 5pf r l = 1k total resistor load ( ) (includes feedback r) 0 gain bandwidth (mhz) 600 623345 g47 200 400 800 400 350 300 200 150 100 50 0 250 1000 a v = 10 v s = 5v t a = 25 c r f = 1k r g = 100 frequency (hz) 20 common mode rejection ratio (db) 40 60 80 120 100 10k 1g 100m 100k 10m 623345 g48 0 1m v s = 5v, 0v v cm = v s /2 frequency (hz) 10k output voltage swing (v pCp ) 10 9 8 7 6 5 4 3 2 1 0 100k 1m 10m 623345 g49 v s = 5v t a = 25 c a v = 10 hd 2 , hd 3 40dbc frequency (hz) 10k distortion (dbc) C30 C40 C50 C60 C70 C80 C90 C100 100k 1m 10m 623345 g50 v s = 2.5v a v = 10 v out = 2v (pCp) r l = 100 , 3rd r l = 100 , 2nd r l = 1k, 3rd r l = 1k, 2nd capacitive load (pf) 10 overshoot (%) 70 60 50 40 30 20 10 0 100 1000 10000 623345 g44 v s = 5v, 0v a v = 10 r s = 10 r s = 20 r s = 50 (LT6233-10) temperature ( c) ?5 slew rate (v/ s) 5 623345 g43 ?5 ?5 45 140 160 180 200 120 100 60 0 20 80 40 85 25 65 105 125 v s = 5v falling v s = 2.5v rising a v = ?0 r f = 1k r g = 100 v s = 2.5v falling v s = 5v rising
lt6233/LT6233-10/ lt6234/lt6235 16 sn623345 623345fas typical perfor a ce characteristics uw 2 nd and 3 rd harmonic distortion vs frequency large signal response output-overload recovery small signal response input referred high frequency noise spectrum v s = 5v 100ns/div a v = 10 r f = 900 w , r g = 100 w 623345 g52 0v v out (2v/div) v s = 5v, 0v 100ns/div a v = 10 r f = 900 w , r g = 100 w 623345 g53 0v v out (2v/div) 0v v in (0.5v/div) v s = 5v, 0v 100ns/div a v = 10 r f = 900 w , r g = 100 w 623345 g54 2.5v v out (100mv/div) frequency (hz) 10k distortion (dbc) C30 C40 C50 C60 C70 C80 C90 C100 100k 1m 10m 623345 g51 v s = 5v a v = 10 v out = 2v (pCp) r l = 100 , 3rd r l = 100 , 2nd r l = 1k, 3rd r l = 1k, 2nd (LT6233-10) 100khz 20mhz 2mhz/div 623345 g55 1nv/ ? hz/div 10 0
17 sn623345 623345fas lt6233/LT6233-10/ lt6234/lt6235 input protection there are back-to-back diodes, d1 and d2 across the + and C inputs of these amplifiers to limit the differential input voltage to 0.7v. the inputs of the lt6233/lt6234/ lt6235 do not have internal resistors in series with the input transistors. this technique is often used to protect the input devices from over voltage that causes excessive current to flow. the addition of these resistors would significantly degrade the low noise voltage of these ampli- fiers. for instance, a 100 w resistor in series with each input would generate 1.8nv/ ? hz of noise, and the total amplifier noise voltage would rise from 1.9nv/ ? hz to 2.6nv/ ? hz. once the input differential voltage exceeds 0.7v, steady state current conducted through the protec- tion diodes should be limited to 40ma. this implies 25 w of protection resistance is necessary per volt of overdrive beyond 0.7v. these input diodes are rugged enough to applicatio s i for atio wu u u amplifier characteristics figure 1 is a simplified schematic of the lt6233/lt6234/ lt6235, which has a pair of low noise input transistors q1 and q2. a simple current mirror q3/q4 converts the differential signal to a single-ended output, and these transistors are degenerated to reduce their contribution to the overall noise. capacitor c1 reduces the unity cross frequency and improves the frequency stability without degrading the gain bandwidth of the amplifier. capacitor c m sets the overall amplifier gain bandwidth. the differential drive generator supplies current to transistors q5 and q6 that swing the output from rail-to-rail. handle transient currents due to amplifier slew rate over- drive and clipping without protection resistors. the photo of figure 2 shows the output response to an input overdrive with the amplifier connected as a voltage follower. with the input signal low, current source i 1 saturates and the differential drive generator drives q6 into saturation so the output voltage swings all the way to v C . the input can swing positive until transistor q2 satu- rates into current mirror q3/q4. when saturation occurs, the output tries to phase invert, but diode d2 conducts current from the signal source to the output through the feedback connection. the output is clamped a diode drop below the input. in this photo, the input signal generator is limiting at about 20ma. with the amplifier connected in a gain of a v 3 2, the output can invert with very heavy overdrive. to avoid this inver- sion, limit the input overdrive to 0.5v beyond the power supply rails. esd the lt6233/lt6234/lt6235 have reverse-biased esd protection diodes on all inputs and outputs as shown in figure 1. if these pins are forced beyond either supply, unlimited current will flow through these diodes. if the current is transient and limited to one hundred milliamps or less, no damage to the device will occur. noise the noise voltage of the lt6233/lt6234/lt6235 is equiva- lent to that of a 225 w resistor, and for the lowest possible noise it is desirable to keep the source and feedback resistance at or below this value, i.e. r s + r g ||r fb 225 w . figure 2. v s = 2.5v, a v = 1 with large overdrive 1v/div 500 m s/div 623345 f02 C2.5v 2.5v 0v figure 1. simplified schematic enable desd6 desd5 Cv +v +v in Cv in +v 623345 f01 bias differential drive generator v out +v c m i 1 Cv desd3 Cv Cv desd4 +v desd1 Cv desd2 +v d1 c1 d2 q5 q6 q4 q2 q3 q1
lt6233/LT6233-10/ lt6234/lt6235 18 sn623345 623345fas applicatio s i for atio wu u u with r s + r g ||r fb = 225 w the total noise of the amplifier is: e n = ? (1.9nv) 2 +(1.9nv) 2 = 2.69nv/ ? hz below this resistance value, the amplifier dominates the noise, but in the region between 225 w and about 30k, the noise is dominated by the resistor thermal noise. as the total resistance is further increased beyond 30k, the amplifier noise current multiplied by the total resistance eventually dominates the noise. the product of e n ? ? i supply is an interesting way to gauge low noise amplifiers. most low noise amplifiers with low e n have high i supply current. in applications that require low noise voltage with the lowest possible supply current, this product can prove to be enlightening. the lt6233/ lt6234/lt6235 have an e n ? ? i supply product of only 2.1 per amplifier, yet it is common to see amplifiers with similar noise specifications to have e n ? ? i supply as high as 13.5. for a complete discussion of amplifier noise, see the lt1028 data sheet. enable pin the lt6233 and LT6233-10 include an enable pin that shuts down the amplifier to 10 m a maximum supply cur- rent. the enable pin must be driven high to within 0.35v of v + to shut down the supply current. this can be accomplished with simple gate logic; however care must be taken if the logic and the lt6233 operate from different supplies. if this is the case, then open drain logic can be used with a pull-up resistor to ensure that the amplifier remains off. see typical characteristic curves. the output leakage current when disabled is very low; however, current can flow into the input protection diodes d1 and d2 if the output voltage exceeds the input voltage by a diode drop.
19 sn623345 623345fas lt6233/LT6233-10/ lt6234/lt6235 r2 732 r4 10k c3 0.1 f en f 0 = 1 = 1mhz c = c 1 c 2 , r = r1 = r2 f 0 = ( 732 ) mhz, maximum f 0 = 1mhz f C3db = f 0 a v = 20db at f 0 e n = 6 v rms input referred i s = 1.5ma for v + = 5v 623345 f03 0.1 f c2 47pf c1 1000pf r3 10k r1 732 v out v + v in 2 rc r 2.5 + C lt6233 applicatio s i for atio wu u u single supply, low noise, low power, bandpass filter with gain = 10 low power, low noise, single supply, instrumentation amplifier with gain = 100 + C r14 2k en u3 lt6233 v out = 100 (v in2 C v in1 ) gain = ( r2 + 1 ) ( r10 ) input resistance = r5 = r6 f C3db = 310hz to 2.5mhz e n = 10 v rms input referred i s = 4.7ma for v s = 5v, 0v 623345 f05 c8 68pf c3 1 f r13 2k r10 511 r15 88.7 r16 88.7 r4 511 r3 30.9 r1 30.9 r2 511 v out v in1 v in2 v + r1 r15 c9 68pf r12 511 + C en u2 LT6233-10 v + c1 1 f c2 2200pf + C en u1 LT6233-10 v + r5 511 r6 511 c4 10 f r1 = r3 r2 = r4 r10 = r12 r15 = r16 frequency (hz) 100k gain (db) 23 3 C7 1m 10m 623345 f04 frequency response plot of bandpass filter
lt6233/LT6233-10/ lt6234/lt6235 20 sn623345 623345fas s6 package 6-lead plastic tsot-23 (reference ltc dwg # 05-08-1636) 1.50 ?1.75 (note 4) 2.80 bsc 0.30 ?0.45 6 plcs (note 3) datum ? 0.09 ?0.20 (note 3) s6 tsot-23 0302 2.90 bsc (note 4) 0.95 bsc 1.90 bsc 0.80 ?0.90 1.00 max 0.01 ?0.10 0.20 bsc 0.30 ?0.50 ref pin one id note: 1. dimensions are in millimeters 2. drawing not to scale 3. dimensions are inclusive of plating 4. dimensions are exclusive of mold flash and metal burr 5. mold flash shall not exceed 0.254mm 6. jedec package reference is mo-193 3.85 max 0.62 max 0.95 ref recommended solder pad layout per ipc calculator 1.4 min 2.62 ref 1.22 ref u package descriptio
21 sn623345 623345fas lt6233/LT6233-10/ lt6234/lt6235 dd package 8-lead plastic dfn (3mm 3mm) (reference ltc dwg # 05-08-1698) 3.00 0.10 (4 sides) note: 1. drawing to be made a jedec package outline m0-229 variation of (weed-1) 2. drawing not to scale 3. all dimensions are in millimeters 4. dimensions of exposed pad on bottom of package do not include mold flash. mold flash, if present, shall not exceed 0.15mm on any side 5. exposed pad shall be solder plated 6. shaded area is only a reference for pin 1 location on top and bottom of package 0.38 0.10 bottom view?xposed pad 1.65 0.10 (2 sides) 0.75 0.05 r = 0.115 typ 2.38 0.10 (2 sides) 1 4 8 5 pin 1 top mark (note 6) 0.200 ref 0.00 ?0.05 (dd8) dfn 1203 0.25 0.05 2.38 0.05 (2 sides) recommended solder pad pitch and dimensions 1.65 0.05 (2 sides) 2.15 0.05 0.50 bsc 0.675 0.05 3.5 0.05 package outline 0.25 0.05 0.50 bsc u package descriptio
lt6233/LT6233-10/ lt6234/lt6235 22 sn623345 623345fas s8 package 8-lead plastic small outline (narrow .150 inch) (reference ltc dwg # 05-08-1610) .016 ?.050 (0.406 ?1.270) .010 ?.020 (0.254 ?0.508) 45 0 ?8 typ .008 ?.010 (0.203 ?0.254) so8 0303 .053 ?.069 (1.346 ?1.752) .014 ?.019 (0.355 ?0.483) typ .004 ?.010 (0.101 ?0.254) .050 (1.270) bsc 1 2 3 4 .150 ?.157 (3.810 ?3.988) note 3 8 7 6 5 .189 ?.197 (4.801 ?5.004) note 3 .228 ?.244 (5.791 ?6.197) .245 min .160 .005 recommended solder pad layout .045 .005 .050 bsc .030 .005 typ inches (millimeters) note: 1. dimensions in 2. drawing not to scale 3. these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed .006" (0.15mm) u package descriptio
23 sn623345 623345fas lt6233/LT6233-10/ lt6234/lt6235 package descriptio u gn package 16-lead plastic ssop (narrow .150 inch) (reference ltc dwg # 05-08-1641) gn16 (ssop) 0204 12 3 4 5 6 7 8 .229 ?.244 (5.817 ?6.198) .150 ?.157** (3.810 ?3.988) 16 15 14 13 .189 ?.196* (4.801 ?4.978) 12 11 10 9 .016 ?.050 (0.406 ?1.270) .015 .004 (0.38 0.10) 45 0 ?8 typ .007 ?.0098 (0.178 ?0.249) .0532 ?.0688 (1.35 ?1.75) .008 ?.012 (0.203 ?0.305) typ .004 ?.0098 (0.102 ?0.249) .0250 (0.635) bsc .009 (0.229) ref .254 min recommended solder pad layout .150 ?.165 .0250 bsc .0165 .0015 .045 .005 *dimension does not include mold flash. mold flash shall not exceed 0.006" (0.152mm) per side **dimension does not include interlead flash. interlead flash shall not exceed 0.010" (0.254mm) per side inches (millimeters) note: 1. controlling dimension: inches 2. dimensions are in 3. drawing not to scale information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no represen- tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
lt6233/LT6233-10/ lt6234/lt6235 24 sn623345 623345fas linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 (408) 432-1900 l fax: (408) 434-0507 l www.linear.com ? linear technology corporation 2003 lt/tp 0304 1k rev a ? printed in usa related parts part number description comments lt1028 single, ultra low noise 50mhz op amp 0.85nv/ ? hz lt1677 single, low noise rail-to-rail amplifier 3v operation, 2.5ma, 4.5nv/ ? hz, 60 m v max v os lt1806/lt1807 single/dual, low noise 325mhz rail-to-rail amplifier 2.5v operation, 550 m v max v os , 3.5nv/ ? hz lt6200/lt6201 single/dual, low noise 165mhz 0.95nv ? hz, rail-to-rail input and output lt6202/lt6203/lt6204 single/dual/quad, low noise, rail-to-rail amplifier 1.9nv/ ? hz, 3ma max, 100mhz gain bandwidth photodiode amplifier time domain response low power avalanche photodiode transimpedance amplifier i s = 1.2ma 50mv/div 100ns/div 623345 ta02b + C r1 10k r2 10k c2 0.1 f 5v C5v enable lt6233 200v bias advanced photonix 012-70-62-541 www.advancedphotonix.com output offset = 500 v typical bandwidth = 7.8mhz output noise = 1mv pCp (20mhz measurement bw) 623345 ta02a c1 2.7pf typical applicatio s u the lt6233 is applied as a transimpedance amplifier with an i-to-v conversion gain of 10k w set by r1. the lt6233 is ideally suited to this application because of its low input offset voltage and current, and its low noise. this is be- cause the 10k resistor has an inherent thermal noise of 13nv/ ? hz or 1.3pa/ ? hz at room temperature, while the lt6233 contributes only 2nv and 0.8pa / ? hz. so, with respect to both voltage and current noises, the lt6233 is actually quieter than the gain resistor. the circuit uses an avalanche photodiode with the cathode biased to approximately 200v. when light is incident on the photodiode, it induces a current i pd which flows into the amplifier circuit. the amplifier output falls negative to maintain balance at its inputs. the transfer function is therefore v out = Ci pd ? 10k. c1 ensures stability and good settling characteristics. output offset was measured at better than 500 m v, so low in part because r2 serves to cancel the dc effects of bias current. output noise was measured at below 1mv pCp on a 20mhz measurement bandwidth, with c2 shunting r2s thermal noise. as shown in the scope photo, the rise time is 45ns, indicating a signal bandwidth of 7.8mhz.


▲Up To Search▲   

 
Price & Availability of LT6233-10

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X