Part Number Hot Search : 
P4468 MA112 1V221M 210000 ACST4 HY57V28 AD781 T6862
Product Description
Full Text Search
 

To Download NCP5304 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 NCP5304 High Voltage, High and Low Side Driver
The NCP5304 is a High Voltage Power gate Driver providing two outputs for direct drive of 2 N-channel power MOSFETs or IGBTs arranged in a half-bridge configuration. It uses the bootstrap technique to insure a proper drive of the High-side power switch. The driver works with 2 independent inputs with cross conduction protection.
Features http://onsemi.com MARKING DIAGRAMS
1 SOIC-8 D SUFFIX CASE 751 8 P5304 ALYW G 1
* * * * * * * * * * * * *
High Voltage Range: up to 600 V dV/dt Immunity 50 V/nsec Gate Drive Supply Range from 10 V to 20 V High and Low Drive Outputs Output Source / Sink Current Capability 250 mA / 500 mA 3.3 V and 5 V Input Logic Compatible Up to VCC Swing on Input Pins Matched Propagation Delays between Both Channels Outputs in Phase with the Inputs Cross Conduction Protection with 100 ns Internal Fixed Dead Time Under VCC LockOut (UVLO) for Both Channels Pin-to-Pin Compatible with Industry Standards These are Pb-Free Devices
1 PDIP-8 P SUFFIX CASE 626 NCP5304 A L or WL Y or YY W or WW G or G
NCP5304 AWLG YYWW
Typical Applications
* Half-bridge Power Converters * Full-bridge Converters
= Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package
PINOUT INFORMATION IN_LO IN_HI VCC GND 1 2 3 4 8 7 6 5 VBOOT DRV_HI BRIDGE DRV_LO
8 Pin Package
ORDERING INFORMATION
Device NCP5304PG NCP5304DR2G Package PDIP-8 (Pb-Free) Shipping 50 Units / Rail
SOIC-8 2500 / Tape & Reel (Pb-Free)
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
(c) Semiconductor Components Industries, LLC, 2007
1
July, 2007 - Rev. 1
Publication Order Number: NCP5304/D
NCP5304
Vbulk +
C1 D4 Q1 C3 GND U1 8 IN_LO VBOOT 2 7 IN_HI DRV_HI 3 6 Vcc Bridge 4 5 GND DRV_LO 1 NCP5304 GND GND D3 GND U2 R1 C4 Lf OutD2 Q2 C6 T1 D1 L1 + C3 Out+
GND Vcc
NCP1395
GND
Figure 1. Typical Application Resonant Converter (LLC type)
+
Vbulk
C1 D4 Q1 C3 GND U1 1 8 IN_LO VBOOT 2 7 IN_HI DRV_HI 3 6 Vcc Bridge 4 5 GND DRV_LO NCP5304 GND GND D3 GND U2 R1 C4 T1 D1 C5 L1 + C3 OutD2 Q2 C6 Out+
GND Vcc
NCP1395
GND
Figure 2. Typical Application Half Bridge Converter
VCC
VCC IN_HI
UV DETECT PULSE TRIGGER LEVEL SHIFTER SQ RQ UV DETECT
VBOOT
DRV_HI
BRIDGE VCC
GND
CROSS CONDUCTION PREVENTION
GND
IN_LO
DELAY
DRV_LO
GND GND GND
Figure 3. Detailed Block Diagram http://onsemi.com
2
NCP5304
PIN DESCRIPTIONS
Pin No. 1 2 3 4 5 6 7 8 Pin Name IN_LO IN_HI VCC GND DRV_LO BRIDGE DRV_HI VBOOT Logic Input for Low side driver output in phase Logic Input for High side driver output in phase Low side and main power supply Ground Low side gate drive output Bootstrap return or High side floating supply return High side gate drive output Bootstrap power supply Pin Function
MAXIMUM RATINGS
Rating VCC VCC_transient VBRIDGE VBOOT-VBRIDGE VDRV_HI VDRV_LO dVBRIDGE/dt VIN_XX Main power supply voltage Main transient power supply voltage: IVCC_max = 5 mA during 10 ms VHV: High Voltage BRIDGE pin VHV: Floating supply voltage VHV: High side output voltage Low side output voltage Allowable output slew rate Inputs IN_HI, IN_LO ESD Capability: - HBM model (all pins except pins 6-7-8 in 8 pins package or 11-12-13 in 14 pins package) - Machine model (all pins except pins 6-7-8 in 8 pins package or 11-12-13 in 14 pins package) Latch up capability per Jedec JESD78 RqJA Power dissipation and Thermal characteristics PDIP-8: Thermal Resistance, Junction-to-Air SO-8: Thermal Resistance, Junction-to-Air Operating Junction Temperature C/W 100 178 -55 +150 C Symbol Value -0.3 to 20 23 -1 to 600 -0.3 to 20 VBRIDGE - 0.3 to VBOOT + 0.3 -0.3 to VCC + 0.3 50 -1.0 to VCC + 0.3 2 200 Unit V V V V V V V/ns V kV V
TJ_min TJ_max
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
http://onsemi.com
3
NCP5304
ELECTRICAL CHARACTERISTIC (VCC = Vboot = 15 V, VGND = Vbridge, -40C < TJ < 125C, Outputs loaded with 1 nF)
TJ -40C to 125C Rating OUTPUT SECTION Output high short circuit pulsed current VDRV = 0 V, PW v 10 ms (Note 1) Output low short circuit pulsed current VDRV = Vcc, PW v 10 ms (Note 1) Output resistor (Typical value @ 25C) Source Output resistor (Typical value @ 25C) Sink High level output voltage, VBIAS-VDRV_XX @ IDRV_XX = 20 mA Low level output voltage VDRV_XX @ IDRV_XX = 20 mA DYNAMIC OUTPUT SECTION Turn-on propagation delay (Vbridge = 0 V) Turn-off propagation delay (Vbridge = 0 V or 50 V) (Note 2) Output voltage rise time (from 10% to 90% @ Vcc = 15 V) with 1 nF load Output voltage fall time (from 90% to 10% @VCC = 15 V) with 1 nF load Propagation delay matching between the High side and the Low side @ 25C (Note 3) Internal fixed dead time (Note 4) Minimum input width that changes the output Maximum input width that does not change the output INPUT SECTION Low level input voltage threshold Input pull-down resistor (VIN < 0.5 V) High level input voltage threshold Logic "1" input bias current @ VIN_XX = 5 V @ 25C Logic "0" input bias current @ VIN_XX = 0 V @ 25C SUPPLY SECTION Vcc UV Start-up voltage threshold Vcc UV Shut-down voltage threshold Hysteresis on Vcc Vboot Start-up voltage threshold reference to bridge pin (Vboot_stup = Vboot - Vbridge) Vboot UV Shut-down voltage threshold Hysteresis on Vboot Leakage current on high voltage pins to GND (VBOOT = VBRIDGE = DRV_HI = 600 V) Consumption in active mode (Vcc = Vboot, fsw = 100 kHz and 1 nF load on both driver outputs) Consumption in inhibition mode (Vcc = Vboot) Vcc current consumption in inhibition mode Vboot current consumption in inhibition mode 1. 2. 3. 4. Vcc_stup Vcc_shtdwn Vcc_hyst Vboot_stup Vboot_shtdwn Vboot_shtdwn IHV_LEAK ICC1 ICC2 ICC3 ICC4 8.0 7.3 0.3 8.0 7.3 0.3 8.9 8.2 0.7 8.9 8.2 0.7 5 4 250 200 50 9.9 9.1 9.9 9.1 40 5 400 V V V V V V mA mA mA mA mA VIN RIN VIN IIN+ IIN2.3 200 5 0.8 25 2.0 V kW V mA mA tON tOFF tr tf Dt DT tPW1 tPW2 65 20 100 100 85 35 20 100 170 170 160 75 35 190 50 ns ns ns ns ns ns ns ns IDRVsource IDRVsink ROH ROL VDRV_H VDRV_L 250 500 30 10 0.7 0.2 60 20 1.6 0.6 mA mA W W V V Symbol Min Typ Max Units
Parameter guaranteed by design Turn-off propagation delay @ Vbridge = 600 V is guaranteed by design See characterization curve for t parameters variation on the full range temperature. Both Integrated a dead time will be mesured and characterised. The first when IN_HI changes (High to Low and Low to High), and the second when HI_LO changes (High to Low and Low to High). These parameters will be updated after the characterization results. 5. Timing diagram definition see: Figure 5 and Figure 6.
http://onsemi.com
4
NCP5304
IN_HI
IN_LO
DRV_HI
DRV_LO
Figure 4. Input/Output Timing Diagram
IN_HI (IN_LO) ton
50% tr
50% tf
toff 90% 90%
DRV_HI (DRV_LO)
10%
10%
Figure 5. Propagation Delay and Rise / Fall Time Definition
IN_HI
50%
50%
toff_HI ton_HI 90% DRV_HI 10% Matching Delay1=ton_HI-ton_LO Matching Delay2=toff_HI-toff_LO IN_LO 50% 50%
toff_LO 90% DRV_LO
ton_LO
10%
Figure 6. Matching Propagation Delay
http://onsemi.com
5
NCP5304
IN_HI
IN_LO
DRV_HI
DRV_LO Internal Deadtime Internal Deadtime
Figure 7. Input/Output Cross Conduction Output Protection Timing Diagram
http://onsemi.com
6
NCP5304
CHARACTERIZATION CURVES
140 TON, PROPAGATION DELAY (ns) 120 TON High Side 100 80 60 40 20 0 10 TON Low Side TON, PROPAGATION DELAY (ns) 140 TON Low Side 120 100 80 60 TON High Side 40 20 0 -40
12
14
16
18
20
-20
0
20
40
60
80
100
120
VCC, VOLTAGE (V)
TEMPERATURE (C)
Figure 8. Turn ON Propagation Delay vs. Supply Voltage (VCC = VBOOT)
Figure 9. Turn ON Propagation Delay vs. Temperature
140 TOFF, PROPAGATION DELAY (ns) 120 100 80 60 40 20 0 10 TOFF High Side TOFF, PROPAGATION DELAY (ns) TOFF Low Side
120 100 80 60 40 20 0 -40 TOFF High Side
TOFF Low Side
12
14
16
18
20
-20
0
VCC, VOLTAGE (V)
20 40 60 80 TEMPERATURE (C)
100
120
Figure 10. Turn OFF Propagation Delay vs. Supply Voltage (VCC = VBOOT)
140 TON, PROPAGATION DELAY (ns) TOFF PROPAGATION DELAY (ns) 120 100 80 60 40 20 0 0 10 20 30 40 50 BRIDGE PIN VOLTAGE (V) 160 140 120 100 80 60 40 20 0 0
Figure 11. Turn OFF Propagation Delay vs. Temperature
10
20
30
40
50
BRIDGE PIN VOLTAGE (V)
Figure 12. High Side Turn ON Propagation Delay vs. VBRIDGE Voltage
Figure 13. High Side Turn OFF Propagation Delay vs. VBRIDGE Voltage
http://onsemi.com
7
NCP5304
160 140 TON, RISETIME (ns) TON, RISETIME (ns) 120 100 80 60 40 tr Low Side 20 0 10 12 14 16 18 20 tr High Side 100 80 60 40 20 0 -40 tr Low Side tr High Side 140 120
-20
0
20
40
60
80
100
120
VCC, VOLTAGE (V)
TEMPERATURE (C)
Figure 14. Turn ON Risetime vs. Supply Voltage (VCC = VBOOT)
Figure 15. Turn ON Risetime vs. Temperature
80 70 TOFF, FALLTIME (ns) TOFF, FALLTIME (ns) 60 50 40 30 20 10 0 10 12 14 16 18 20 tf High Side tf Low Side
50 45 40 35 30 25 20 15 10 5 0 -40 -20 0 20 40 60 80 100 120 tf High Side tf Low Side
VCC, VOLTAGE (V)
TEMPERATURE (C)
Figure 16. Turn OFF Falltime vs. Supply Voltage (VCC = VBOOT)
PROPAGATION DELAY MATCHING (ns)
Figure 17. Turn OFF Falltime vs. Temperature
35 30 25 20 15 10 5 0 -40
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
Figure 18. Propagation Delay Matching Between High Side and Low Side Driver vs. Temperature
http://onsemi.com
8
NCP5304
LOW LEVEL INPUT VOLTAGE THRESHOLD (V)
1.4 LOW LEVEL INPUT VOLTAGE THRESHOLD (V) 12 14 16 18 20 1.2 1 0.8 0.6 0.4 0.2 0 10
1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40
-20
0
20
40
60
80
100
120
VCC, VOLTAGE (V)
TEMPERATURE (C)
Figure 19. Low Level Input Voltage Threshold vs. Supply Voltage (VCC = VBOOT)
2.5 HIGH LEVEL INPUT VOLTAGE THRESHOLD (V) HIGH LEVEL INPUT VOLTAGE THRESHOLD (V) 2.5
Figure 20. Low Level Input Voltage Threshold vs. Temperature
2
2.0
1.5
1.5
1
1.0
0.5
0.5
0 10
12
14
16
18
20
0.0 -40
-20
0
20
40
60
80
100
120
VCC, VOLTAGE (V)
TEMPERATURE (C)
Figure 21. High Level Input Voltage Threshold vs. Supply Voltage (VCC = VBOOT)
Figure 22. High Level Input Voltage Threshold vs. Temperature
4 LOGIC "0" INPUT CURRENT (mA) 3.5 3 2.5 2 1.5 1 0.5 0 10 12 14 16 18 20 LOGIC "0" INPUT CURRENT (mA)
6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 -40
-20
0
20
40
60
80
100
12
VCC, VOLTAGE (V)
TEMPERATURE (C)
Figure 23. Logic "0" Input Current vs. Supply Voltage (VCC = VBOOT)
Figure 24. Logic "0" Input Current vs. Temperature
http://onsemi.com
9
NCP5304
8 LOGIC "1" INPUT CURRENT (mA) 7 6 5 4 3 2 1 0 10 12 14 16 18 20 VCC, VOLTAGE (V) LOGIC "1" INPUT CURRENT (mA) 10
8
6
4
2
0 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (C)
Figure 25. Logic "1" Input Current vs. Supply Voltage (VCC = VBOOT)
1 LOW LEVEL OUTPUT VOLTAGE (V) LOW LEVEL OUTPUT VOLTAGE THRESHOLD (V) 1.0
Figure 26. Logic "1" Input Current vs. Temperature
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0 10 12 14 16 18 20 VCC, VOLTAGE (V)
0.0 -40
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
Figure 27. Low Level Output Voltage vs. Supply Voltage (VCC = VBOOT)
1.6 HIGH LEVEL OUTPUT VOLTAGE (V) HIGH LEVEL OUTPUT VOLTAGE THRESHOLD (V) 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 10 12 14 16 18 20 -40
Figure 28. Low Level Output Voltage vs. Temperature
1.2
0.8
0.4
0 VCC, VOLTAGE (V)
-20
0
20 40 60 TEMPERATURE (C)
80
100
120
Figure 29. High Level Output Voltage vs. Supply Voltage (VCC = VBOOT)
Figure 30. High Level Output Voltage vs. Temperature
http://onsemi.com
10
NCP5304
400 OUTPUT SOURCE CURRENT (mA) 350 300 250 200 150 100 50 0 10 12 14 16 18 Isrc Low Side OUTPUT SOURCE CURRENT (mA) Isrc High Side 400 350 Isrc High Side 300 250 200 150 100 50 0 -40 -20 0 20 40 60 80 100 120 Isrc Low Side
20
VCC, VOLTAGE (V)
TEMPERATURE (C)
Figure 31. Output Source Current vs. Supply Voltage (VCC = VBOOT)
600 OUTPUT SINK CURRENT (mA) 500 400 Isrc Low Side 300 200 100 0 10 Isrc High Side OUTPUT SINK CURRENT (mA) 600 500 400 300
Figure 32. Output Source Current vs. Temperature
Isrc High Side
Isrc Low Side 200 100 0
12
14
16
18
20
-40
-20
0
20
40
60
80
100 120
VCC, VOLTAGE (V)
TEMPERATURE (C)
Figure 33. Output Sink Current vs. Supply Voltage (VCC = VBOOT)
HIGH SIDE LEAKAGE CURRENT ON HV PINS TO GND (mA) 0.2 LEAKAGE CURRENT ON HIGH VOLTAGE PINS (600 V) to GND (mA) 20
Figure 34. Output Sink Current vs. Temperature
0.16
15
0.12
10
0.08
0.04
5
0 0 100 200 300 400 500 600 HV PINS VOLTAGE (V)
0 -40
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
Figure 35. Leakage Current on High Voltage Pins (600 V) to Ground vs. VBRIDGE Voltage (VBRIGDE = VBOOT = VDRV_HI)
Figure 36. Leakage Current on High Voltage Pins (600 V) to Ground vs. Temperature (VBRIDGE = VBOOT = VDRV_HI = 600 V)
http://onsemi.com
11
NCP5304
100 VBOOT CURRENT SUPPLY (mA) 0 4 8 12 16 20 VBOOT SUPPLY CURRENT (mA) 100
80
80
60
60
40
40
20
20
0
0 -40
-20
0
20
40
60
80
100
120
VBOOT, VOLTAGE (V)
TEMPERATURE (C)
Figure 37. VBOOT Supply Current vs. Bootstrap Supply Voltage
240 VCC SUPPLY CURRENT (mA) VCC CURRENT SUPPLY (mA) 200 160 120 80 40 0 0 4 8 12 16 20 VCC, VOLTAGE (V) 400
Figure 38. VBOOT Supply Current vs. Temperature
300
200
100
0 -40
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
Figure 39. VCC Supply Current vs. VCC Supply Voltage
10.0 UVLO STARTUP VOLTAGE (V) 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 -40 -20 0 20 40 60 80 100 120 VBOOT UVLO Startup UVLO SHUTDOWN VOLTAGE (V) VCC UVLO Startup 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 -40
Figure 40. VCC Supply Current vs. Temperature
VCC UVLO Shutdown
VBOOT UVLO Shutdown
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
TEMPERATURE (C)
Figure 41. UVLO Startup Voltage vs. Temperature
Figure 42. UVLO Shutdown Voltage vs. Temperature
http://onsemi.com
12
NCP5304
25 ICC+ IBOOT CURRENT SUPPLY (mA) CLOAD = 1 nF/Q = 15 nC 20 ICC+ IBOOT CURRENT SUPPLY (mA) 40 35 30 25 20 15 10 RGATE = 0 R to 22 R 5 0 0 100 200 300 400 500 600 0 100 200 300 400 500 600 SWITCHING FREQUENCY (kHz) SWITCHING FREQUENCY (kHz) CLOAD = 2.2 nF/Q = 33 nC
15
10
5 RGATE = 0 R to 22 R 0
Figure 43. ICC1 Consumption vs. Switching Frequency with 15 nC Load on Each Driver @ VCC = 15 V
70 ICC+ IBOOT CURRENT SUPPLY (mA) 60 50 40 30 20 10 0 0 100 200 300 400 500 600 RGATE = 0 R to 22 R CLOAD = 3.3 nF/Q = 50 nC ICC+ IBOOT CURRENT SUPPLY (mA) 120
Figure 44. ICC1 Consumption vs. Switching Frequency with 33 nC Load on Each Driver @ VCC = 15 V
CLOAD = 6.6 nF/Q = 100 nC 100 80 60 40 RGATE = 22 R 20 0 0 100 200 300 400 500 600 RGATE = 10 R RGATE = 0 R
SWITCHING FREQUENCY (kHz)
SWITCHING FREQUENCY (kHz)
Figure 45. ICC1 Consumption vs. Switching Frequency with 50 nC Load on Each Driver @ VCC = 15 V
Figure 46. ICC1 Consumption vs. Switching Frequency with 100 nC Load on Each Driver @ VCC = 15 V
http://onsemi.com
13
NCP5304
PACKAGE DIMENSIONS
SOIC-8 NB CASE 751-07 ISSUE AH
A
8 5
-X-
B
1 4
S
0.25 (0.010)
M
Y
M
-YG C -ZH D 0.25 (0.010)
M SEATING PLANE
K
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0_ 8_ 0.010 0.020 0.228 0.244
N
X 45 _
0.10 (0.004) M ZY
S
J
X
S
DIM A B C D G H J K M N S
SOLDERING FOOTPRINT*
1.52 0.060
7.0 0.275
4.0 0.155
0.6 0.024
1.270 0.050
SCALE 6:1 mm inches
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
14
NCP5304
PACKAGE DIMENSIONS
8 LEAD PDIP CASE 626-05 ISSUE L
NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC --10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC --10_ 0.030 0.040
8
5
-B1 4
F
NOTE 2
-AL
C -TSEATING PLANE
J N D K
M
M TA B
H
G 0.13 (0.005)
M M
The product described herein is covered by U.S. patents: 6,097,075; 7,176,723; 6,362,067. There may be some other patents pending.
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your loca Sales Representative
http://onsemi.com
15
NCP5304/D


▲Up To Search▲   

 
Price & Availability of NCP5304

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X