Part Number Hot Search : 
2N323 TA143E MJ10013 KIA8000S 100CM ALC663 MHW8207A MC33072
Product Description
Full Text Search
 

To Download NCN4557MTG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 NCN4557 1.8 V/3.0 V Dual SIM/SAM/ Smart Card Power Supply and Level Shifter
The NCN4557 is a dual interface analog circuit designed to translate the voltages between SIM, SAM or Smart Cards and a microcontroller (or similar control device). It integrates two LDOs for power conversion and three level shifters per channel allowing the management of two independent chip cards. The device fulfills the ISO7816 and EMV smart card interface requirements as well as the GSM and 3G mobile standard. Due to a built-in sequencer, the device enables automatic activation and deactivation. Through the ENABLE pin a low current shutdown mode can be activated extending the battery life. The card power supply voltage (1.8 V or 3.0 V) and the card socket A or B are selected using two dedicated pins (SEL0 & SEL1).
Features http://onsemi.com MARKING DIAGRAM
1
QFN16 MT SUFFIX CASE 488AK
* Supports 1.8 V or 3.0 V Operating SIM/SAM/Smart Cards * The LDOs are able to Supply more than 50 mA Under 1.8 V and * * * * * * * * * *
3.0 V Built-in Active and Passive Pullup Resistor for I/O and CRD_IOA/B Pins in Both Directions All Pins are Fully ESD Protected According to ISO-7816 Specifications - ESD Protection on Card Pins in Excess of 8.0 kV (JEDEC HBM) Built-in Sequencer for Activation and Deactivation Supports up to more than 5.0 MHz Clock Very Compact Low-Profile 3x3 QFN-16 Package These are Pb-Free Devices*
A L Y W G or G
= Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package
ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.
Applications
SIM Card Interface Circuit for 2G, 2.5G and 3G Mobile Phones Wireless PC/Laptop Cards (PCMCIA Cards) POS Terminals (SAM Card Interfaces) Smart Card Readers
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
(c) Semiconductor Components Industries, LLC, 2006
1
June, 2006 - Rev. 0
Publication Order Number: NCN4557/D
CCC CCC
1
16
NCN 4557 ALYWG
NCN4557
VDD 1.8 V to 5.5 V 0.1 mF VBAT 2.7 V to 5.5 V 0.1 mF 1.8 V/3 V SIM/Smart Card VCC 2 MPU or Microcontroller 13 P4 P3 3 VBAT VDD ENABLE CRD_RSTA CRD_CLKA CRD_I/OA NCN4557 P2 P1 P0 GND 9 10 8 RST CLK I/O GND 6 5 7 1 mF 17 1 mF CRD_VCCA 4 CARD A 1 2 3 4 VCC RST CLK C4 GND Vpp I/O C8 5 6 7 8
12 SEL0 11 SEL1
CRD_I/OB 14 CRD_CLKB 16 CRD_RSTB 15
CARD B 4 3 2 1 C4 CLK RST VCC C8 I/O Vpp GND 8 7 6 5
CRD_VCCB 1
1.8 V/3 V SIM/Smart Card
Figure 1. Typical Interface Application
CRD_RSTB
CRD_CLKB
CRD_I/OB
ENABLE
Exposed Pad (EP)
16 CRD_VCCB VDD VBAT CRD_VCCA 1 2 3 4 5 CRD_CLKA
15
14
13 12 SEL0
NCN4557 17 GND
11 SEL1 10 CLK 9 RST
6 CRD_RSTA
7 CRD_I/OA 2
8 I/O
Figure 2. QFN-16 Pinout (Top View)
http://onsemi.com
NCN4557
VBAT 3
CRD_VCCB 1
LDO B > 50 mA 1.8 V/3.0 V/Enable CRD_VCCB
LDO A > 50 mA 1.8 V/3.0 V/Enable CRD_VCCA
4 CRD_VCCA
CRD_CLKB 16
En
En
5 CRD_CLKA
CRD_RSTB 15
En
En
6 CRD_RSTA
CRD_I/OB 14 14 k CRD_VCCB CLK 10 RST 9
I/O DATA DATA I/O En
I/O DATA DATA I/O En 7 CRD_I/OA 14 k
CRD_VCCA CONTROL LOGIC MUX 13 ENABLE 12 SEL0 11 SEL1 17 GROUND VDD
I/O 8 18 k
SEQUENCING
VDD 2
GND
Figure 3. NCN4557 Block Diagram
http://onsemi.com
3
NCN4557
PIN DESCRIPTIONS
PIN 1 Name CRD_VCCB Type POWER Description This pin is connected to the Card power supply pin (C1) (Card B).The corresponding LDO is programmable using the pins SEL0, SEL1 and ENABLE to provide 1.8 V, 3.0 V or 0 V (disable). CRD_VCCB can not be active when CRD_VCCA is active and conversely. This pin is connected to the controller power supply. It configures the level shifter input stage to accept the signal coming from the microcontroller. A 0.1 mF capacitor shall be used to bypass the power supply voltage. When VDD is below 1.5 V typical CRD_VCCA and B are disabled; the NCN4557 comes into a shutdown mode. DC/DC converter power supply input shared by the LDOs A & B. This pin has to be bypassed by a 0.1 mF capacitor. This pin is connected to the Card power supply pin (C1) (Card A).The corresponding LDO is programmable using the pins SEL0, SEL1 and ENABLE to provide 1.8 V, 3.0 V or 0 V (disable). CRD_VCCA can not be active when CRD_VCCB is active and conversely. This pin is connected to the clock pin (C3) of the card connector A. The clock (CLK) signal comes from the external clock generator (standalone clock source or microcontroller). The internal level shifter adapts the voltage levels CLK to CRD_CLKA. An internal active pull- down NMOS device maintains this pin to Ground during either the CRD_VCCA start-up sequence, or when CRD_VCCA = 0 V. This pin is connected to the RESET pin (C2) of the card connector A. A level translator adapts the RESET signal from the microcontroller to the external card A. The output current is internally limited to 15 mA max. Similarly to the CRD_CLK A or B pins this pin is maintained Low when CRD_VCCA = 0 V and during the corresponding LDO transient phase of power-up. This pin handles the connection to the serial I/O pin (C7) of the card connector A. A bidirectional level translator adapts the serial I/O signal between the card and the micro-controller. A 14 kW (typical) pull-up resistor provides a High Impedance state to the card I/O link; during the operating phase, a dynamic pull-up circuit is activated making the CRD_I/OA rise time compliant with the ISO7816, EMV, GSM and related standards. An internal active pull-down MOS device forces this pin to Ground during either the CRD_VCCA start-up sequence or when CRD_VCCA = 0 V. The CRD_I/OA pin is internally limited by a 15 mA max current. This pin is connected to an external microcontroller or cellular phone management unit (Baseband circuit or PMU). A bidirectional level translator adapts the serial I/O signal between the smart card A or B and the controller. Only one card, the selected card, communicates through the bidirectional I/O interface. A built-in 18 kW typical resistor provides a high impedance state when the interface is not activated. An additional dynamic pullup circuit accelerates the I/O rise time making the bidirectional channel perfectly balanced in regards to the standard rise time requirements. The RESET signal present at this pin is connected to the card through the internal level shifter which translates the levels according to the CRD_VCCA or B programmed value. The clock signal, coming from the external controller, must have a Duty Cycle within the Min/Max values defined by the specification (typically 50%). The built-in level shifter translates the input signal to the external card CLK input. SEL1 allows the selection of the Card A or B (Table 1). SEL1 = Low ! Card A selected SEL1 = High ! Card B selected SEL0 allows programming CRD_VCCA or B (1.8 V or 3.0 V) (Table 1). SEL0 = Low ! CRD_VCCA/B = 1.8 V SEL0 = High ! CRD_VCCA/B = 3.0 V Power Up and Down pin: ENABLE = Low ! Low current shutdown mode activated ENABLE = High ! Normal Operation A Low level on this pin switches off the card interface. This pin handles the connection to the serial I/O pin (C7) of the card connector B. A bidirectional level translator adapts the serial I/O signal between the card and the micro-controller. A 14 kW (typical) pull-up resistor provides a High Impedance state to the card I/O link; during the operating phase a dynamic pull-up circuit is activated making the CRD_I/OB rise time compliant with the ISO7816, EMV, GSM and related standards. An internal active pulldown MOS device forces this pin to Ground during either the CRD_VCCB start-up sequence or when CRD_VCCB = 0 V. The CRD_I/OB pin is internally limited by a 15 mA maximum current. This pin is connected to the RESET pin of the card connector B. A level translator adapts the RESET signal from the microcontroller to the external card B. The output current is internally limited by a 15 mA max current. Similarly to the CRD_CLK A or B pins this pin is maintained Low when CRD_VCCB = 0 V and during the corresponding LDO transient phase of powerup. This pin is connected to the clock pin (C3) of the card connector B. The clock (CLK) signal comes from the external clock generator (standalone clock source or microcontroller). The internal level shifter adapts the voltage levels CLK to CRD_CLKB. An internal active pull down NMOS device maintains this pin to Ground during either the CRD_VCCB start-up sequence, or when CRD_VCCB = 0 V. This pin number is the Exposed Pad which is the electrical Ground of the device. It must be soldered to the PCB ground plane.
2
VDD
POWER
3 4
VBAT CRD_VCCA
POWER POWER
5
CRD_CLKA
OUTPUT
6
CRD_RSTA
OUTPUT
7
CRD_I/OA
INPUT / OUTPUT
8
I/O
INPUT / OUTPUT
9 10
RST CLK
INPUT INPUT
11
SEL1
INPUT
12
SEL0
INPUT
13
ENABLE
INPUT
14
CRD_I/OB
INPUT / OUTPUT
15
CRD_RSTB
OUTPUT
16
CRD_CLKB
OUTPUT
17
GND
GND
http://onsemi.com
4
NCN4557
ATTRIBUTES
Characteristics ESD protection Human Body Model (HBM): Card Pins (1, 4, 5, 6, 7, 14, 15 , 16 & 17) (Note 1) All Other Pins (Note 1) Machine Model (MM): Card Pins (1, 4, 5, 6, 7, 14, 15 , 16 & 17) All Other Pins Charged Device Model (CDM): Card Pins (1, 4, 5, 6, 7, 14, 15 , 16 & 17) All Other Pins Moisture sensitivity (Note 2) Flammability Rating QFN-16 Oxygen Index: 28 to 34 Values
8 kV 2 kV 600 V 200 V 2 kV 400 V Level 1 UL 94 V-0 @ 0.125 in
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. Human Body Model (HBM): R =1500 W, C = 100 pF. 2. For additional information, see Application Note AND8003/D.
MAXIMUM RATINGS
Rating LDO Power Supply Voltage Power Supply Microcontroller Side External Card Power Supply Digital Input Pins Symbol VBAT VDD CRD_VCC Vin Iin Digital Output Pins Vout Iout CRD Output Pins CRD_I/O & CRD_RST Pins CRD_CLK Pin QFN-16 Low Profile package Power Dissipation @ TA = +85C Thermal Resistance Junction-to-Air Operating Ambient Temperature Range Operating Junction Temperature Range Maximum Junction Temperature Storage Temperature Range Vout Iout Value -0.5 VBAT 6 -0.5 VDD 6 -0.5 CRD_VCC 6 -0.5 Vin VDD + 0.5 but < 6.0 5 -0.5 Vout VDD + 0.5 but < 6.0 10 -0.5 Vout CRD_VCC + 0.5 but < 6.0 15 (Internally Limited) 70 (Internally Limited) 450 90 -40 to +85 -40 to +125 +125 -65 to + 150 Unit V V V V mA V mA V mA
PD RqJA TA TJ TJmax Tstg
mW C/W C C C C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
http://onsemi.com
5
NCN4557
POWER SUPPLY SECTION (-40C to +85C)
Pin 3 3 Symbol VBAT IVBAT Power Supply Operating current CRD_VCCA = 3.0 V, CRD_VCCB = 0 V, ICCA & B = 0 mA CRD_VCCA = 1.8 V, CRD_VCCB = 0 V, ICCA & B = 0 mA CRD_VCCA = 0 V, CRD_VCCB = 3.0 V, ICCA & B = 0 mA CRD_VCCA = 0 V, CRD_VCCB = 1.8 V, ICCA & B = 0 mA Shutdown current - ENABLE = Low Operating Voltage Operating Current (CLK & RST Low) Shutdown Current - ENABLE = Low Undervoltage Lockout 3.0 V Mode, VBAT = 3.3 V to 5.5 V, ICRD_VCC = 0 mA to 50 mA 1.8 V Mode, VBAT = 2.7 V to 5.5 V, ICRD_VCC = 0 mA to 50 mA Short -Circuit Current - CRD_VCC Shorted to GND, TA = 25C Channel Turn-on Time ICCA or B = 0 mA, ENABLE rise edge to CRD_I/OA or B rise edge 0.6 2.75 1.65 3.0 1.8 50 0.8 1.8 0.1 0.05 Rating Min 2.7 26 25 26 25 Typ Max 5.5 80 80 80 80 3 5.5 2 1 1.5 3.25 1.95 175 2.5 mA V mA mA V V mA ms Unit V mA
3 2 2 2 2 1,4 1,4 7,13,14
IVBAT_SD VDD IVDD IVDD_SD VDD CRD_VCCA or B ICRD_VCC_SC
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
DIGITAL INPUT/OUTPUT SECTION CLK, RST, I/O, ENABLE, SEL0, SEL1 (-40C to + 85C)
Pin 9,10 11,12,13 9,10,11, 12,13 8 8 8 Symbol VIH VIL VIH VIL IIH, IIL VOH_I/O VOL_I/O tR, tF Rpu_I/O Rating High Level Input Voltage (RST, CLK) Low Level Input Voltage (RST, CLK) High Level Input Voltage (ENABLE, SEL0, SEL1) Low Level Input Voltage (ENABLE, SEL0, SEL1) Input current (RST, CLK, ENABLE, SEL0, SEL1) High Level Output Voltage (CRD_ I/O = CRD_VCC, IOH_I/O=-20 mA) Low Level Output Voltage (CRD_ I/O = 0 V, IOL_I/O = 500 mA) Rise and Fall times (I/O), Cout = 30 pF I/0 Pullup Resistor 12 18 Min 0.85 * VDD 0.85 * VDD -1 0.75 * VDD Typ Max VDD 0.15 * VDD VDD 0.15 * VDD 1 VDD 0.3 0.8 24 Unit V V mA V ms kW
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
http://onsemi.com
6
NCN4557
CARD INTERFACE SECTION (-40C to +85C)
Pin 6,15 Symbol CRD_RSTA CRD_RSTB Rating CRD_VCC = +3 V Output RESET VOH @ ICRD_rst = -20 mA Output RESET VOL @ ICRD_rst = +200 mA Output RESET Rise Time @ Cout = 30 pF Output RESET Fall Time @ Cout = 30 pF CRD_VCC = +1.8 V Output RESET VOH @ ICRD_rst = -20 mA Output RESET VOL @ ICRD_rst = +200 mA Output RESET Rise Time @ Cout = 30 pF Output RESET Fall Time @ Cout = 30 pF 5,16 CRD_CLKA CRD_CLKB CRD_VCC = +3 V Output Duty Cycle Max Output Frequency Output VOH @ ICRD_clk = -20 mA Output VOL @ ICRD_clk = +200 mA Output CRD_CLK Rise Time @ Cout = 30 pF Output CRD_CLK Fall Time @ Cout = 30 pF CRD_VCC = +1.8 V Output Duty Cycle Max Output Frequency Output VOH @ ICRD_clk = -20 mA Output VOL @ ICRD_clk = +200 mA Output CRD_CLK Rise Time @ Cout = 30 pF Output CRD_CLK Fall Time @ Cout = 30 pF 7,14 CRD_I/OA CRD_I/OB CRD_VCC = +3 V Output VOH @ ICRD_IO = -20 mA, VI/O =VDD Output VOL @ ICRD_IO = +1 mA, VI/O = 0V CRD_I/O Rise Time @ Cout = 30pF CRD_I/O Fall Time @ Cout = 30 pF CRD_VCC = +1.8 V Output VOH @ ICRD_IO = -20 mA, VI/O = VDD Output VOL @ ICRD_IO = +1 mA, VI/O = 0 V CRD_I/O Rise Time @ Cout = 30 pF CRD_I/O Fall Time @ Cout = 30 pF Short-Circuit Current, VI/O = 0 V 8 Rpu_CRD_I/O Card I/O Pullup Resistor 10 Min 0.9 * CRD_VCC 0 Typ Max CRD_VCC 0.3 0.8 0.8 CRD_VCC 0.3 0.8 0.8 60 CRD_VCC 0.3 18 18 60 CRD_VCC 0.3 18 18 CRD_VCC 0.4 0.8 0.8 CRD_VCC 0.3 0.8 0.8 4 14 15 18 Unit V V ms ms V V ms ms
0.9 * CRD_VCC 0
40 5 0.9 * CRD_VCC 0
% MHz V V ns ns % MHz V V ns ns V V ms ms V V ms ms mA kW
40 5 0.9 * CRD_VCC 0
0.8 * CRD_VCC 0
0.8 * CRD_VCC 0
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 3. All the dynamic specifications (AC specifications) are guaranteed by design over the operating temperature range.
http://onsemi.com
7
NCN4557
TYPICAL CHARACTERISTICS
30 1.2 1.0 -40C Drop-out IBAT (mA) 26 CRD_VCCA/B = 3.0 V 24 CRD_VCCA/B = 1.8 V 22 20 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 VBAT (V) IBAT_SD (mA) 0.8 0.6 85C 0.4 0.2 0 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 VBAT (V) 25C
28
Figure 4. IBAT Operating Current vs. VBAT, TA = 25C, ICC = 0 mA
50
Figure 5. IBAT Shutdown Current vs. VBAT
40 IVDD_SD (nA)
30
20
10 0 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 Y AXIS LABEL (UNIT)
Figure 6. IVDD Shutdown Current vs. VDD, TA = 25C, VBAT = 5.5 V
Figure 7. Activation Sequence, Ch1 : CRD_VCC, Ch2 : CRD_IO, Ch4 : CRD_RST, Ch3 : CRD_CLK
Figure 8. Automatic Deactivation Ch4: CRD_RST, Ch3: CRD_CLK, Ch2: CRD_IO, Ch1: CRD_VCC
http://onsemi.com
8
NCN4557
APPLICATION INFORMATION The NCN4557 is a dual LDO-based DC/DC converter and level shifter able to handle independently 2 smart card interfaces. When one of these interfaces is operating the other one is not active and conversely. Class B (3.0 V) and C (1.8 V) cards can be used. The Card and the CRD_VCC power supply are selected using the pins SEL0, SEL1 and ENABLE according to Table 1.
Table 1. CARD AND CRD_VCC SELECTION
ENABLE 1 1 1 1 0 SEL1 0 0 1 1 X SEL0 0 1 0 1 X Card# / CRD_VCC Card A / 1.8 V Card A / 3.0 V Card B / 1.8 V Card B / 3.0 V A & B Disabled
Card Supply Converter
The built-it NCN4557 DC/DC converters are Low Drop-Out Voltage Regulators capable to supply a current in excess of 50 mA under 1.8 V or 3.0 V. These voltages are selected according to Table 1. Using the Boolean input ENABLE pin the NCN4557 device can be disabled setting the circuit in a shutdown mode for which the power consumption features values typically in the range of a few tens of nA. Figure 9 shows a simplified view of the NCN4557 voltage regulator. The CRD_VCC output is internally current limited and protected against short circuits. The short-circuit current IVCC varies with VBAT typically in the range of 30 mA to 60 mA. In order to guarantee a stable and satisfying operating of the LDO the CRD_VCC output will be connected to a 1.0 mF bypass ceramic capacitor to the ground. At the input, VBAT will be bypassed to the ground with a 0.1 mF ceramic capacitor.
VBAT Q1 Ilim R1 CRD_VCC
- Cin = 0.1 mF + + ENABLE Vref R2 Cout = 1.0 mF
GND
Figure 9. Simplified Block Diagram of the LDO Voltage Regulator
Level Shifters
The level shifters accommodate the voltage difference that might exist between the microcontroller and the smart card. The RESET and CLOCK level shifters are mono-directional and feature both the same architecture. The bidirectional I/O line provides a way to automatically adapt the voltage difference between the
controller and the card in both directions. In addition with the pull-up resistor, a dynamic pullup circuit (Figure 10, Q1 and Q2) provides a fast charge of the stray capacitance, yielding a rise time fully within the ISO7816, EMV and GSM specifications.
http://onsemi.com
9
NCN4557
VDD CRD_VCC
Q1 18 k 200 ns 200 ns
Q2 14 k
I/O
CRD_I/O
GND Q3 IO/CONTROL LOGIC
GND
Figure 10. Basic I/O line Interface
The typical waveform provided in Figure 11 shows how the accelerator operates. During the first 200 ns (typical), the slope of the rise time is solely a function of the pullup resistor associated with the stray capacitance. During this period, the PMOS devices are not activated since the input voltage is below their Vgs threshold. When the input slope crosses the Vgsth, the opposite one shot is activated, providing a low impedance to charge the capacitance, thus increasing the rise time as depicted in Figure 11. The same mechanism applies for the opposite side of the line to make sure the system is optimum.
3.0 V). Figure 7 shows the typical NCN4557 activation sequence. About 800 ms after CRD_VCC has reached its nominal voltage value, CRD_IO and CRD_RST are released. CRD_CLK is enabled during the rising slope of the second clock cycle after CRD_IO and CRD_RST are enabled.
ENABLE CRD_VCCA/B CRD_IOA/B CRD_RSTA/B CRD_CLKA/B TON ~ 0.9 ms 2nd Rise Edge After CRD_IOA/B Rising
Figure 12. NCN4557 Power-Up
In all cases the application software is responsible for the smart card signal sequence (contact activation sequence, cold reset and warm reset sequences).
Figure 11. CRD_IO Typical Rise and Fall Times with Stray Capacitance > 30 pF (33 pF capacitor connected on the board) Powerup Sequence Powerdown Sequence
The powerup sequence makes sure all the card-related signals are LOW during the CRD_VCC positive going slope. The Powerup sequence is activated by setting the ENABLE Boolean signal HIGH. CRD_RST, CRD_CLK and CRD_I/O are maintained LOW during the activation stage until CRD_VCC reaches its nominal value (1.8 V or
The NCN4557 provides a powerdown sequence which is activated by setting the ENABLE Boolean signal LOW. The communication I/O session is terminated immediately according to the ISO7816 and EMV specifications as depicted in Figures 8 and 13. ISO7816 Sequence: * CRD_RST is forced to LOW * CRD_CLK is forced to LOW 2 clock cycles after ENABLE is set LOW unless CRD_CLK is already in
http://onsemi.com
10
NCN4557
this state or 8 ms after the ENABLE pin is set LOW in the other cases. CRD_I/O is forced to LOW about 8 ms after the ENABLE pin is set LOW. Then CRD_VCC Supply Shuts Off
ENABLE CRD_RSTA/B CRD_CLKA/B CRD_IOA/B CRD_VCCA/B TOFF ~ 8.0 ms
Shutdown Operating
* *
In order to save power or for other purpose required by the application it is possible to put the NCN4557 in a shutdown mode by setting LOW the pin ENABLE. On the other hand the device enters automatically in a shutdown mode when VDD becomes lower than 1.0 V typically.
ESD Protection
Figure 13. NCN4557 Power Down Sequence Input Schmitt Triggers
All the logic input pins (excepted I/O and CRD_I/O, Figure 3) have built-in Schmitt trigger circuits to prevent the NCN4557 against uncontrolled operation. The typical dynamic characteristics of the related pins are depicted in Figure 14.
OUTPUT
The NCN4557 CRD interface features an Human Body Model ESD voltage protection in excess of 8 kV for all the CRD pins (CRD_IOA & B, CRD_CLKA & B, CRD_RSTA & B, CRD_VCCA & B and GND). All the other pins (microcontroller side) sustain at least 2 kV. These values are guaranteed for the device in its full integrity without considering the external capacitors added to the circuit for a proper operating. Consequently in the operating conditions it is able to sustain much more than 8 kV on its CRD pins making it perfectly protected against electrostatic discharge well over the Human Body Model ESD voltages required by the ISO7816 standard (4 kV).
Printed Circuit Board Layout
VDD
ON
Careful layout routing will be applied to achieve a good and efficient operating of the device in its mobile or portable environment and fully exploit its performance. The bypass capacitors have to be connected as close as possible to the device pins (CRD_VCCA and B, VDD or VBAT) in order to reduce as much as possible parasitic behaviors (ripple and noise). It is recommended to use ceramic capacitors. The exposed pad of the QFN-16 package will be connected to the ground. A relatively large ground plane is recommended.
OFF INPUT 0.2 x VDD 0.7 x VDD or 0.4 V
Figure 14. Typical Schmitt Trigger Characteristics ORDERING INFORMATION
Device NCN4557MTG NCN4557MTR2G Package QFN-16 (Pb-Free) QFN-16 (Pb-Free) Shipping 123 Units / Rail 3000 / Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
http://onsemi.com
11
NCN4557
PACKAGE DIMENSIONS
QFN16 3*3*0.75 MM, 0.5 P CASE 488AK-01 ISSUE O
D A B
NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. 5. Lmax CONDITION CAN NOT VIOLATE 0.2 MM SPACING BETWEEN LEAD TIP AND FLAG. MILLIMETERS MIN MAX 0.70 0.80 0.00 0.05 0.20 REF 0.18 0.30 3.00 BSC 1.65 1.85 3.00 BSC 1.65 1.85 0.50 BSC 0.20 --- 0.30 0.50
PIN 1 LOCATION
0.15 C 0.15 C 0.10 C TOP VIEW
16 X
0.08 C SIDE VIEW A1 C
16X
L
5 8
NOTE 5 4
16X
K
1 12
16X
0.10 C A B 0.05 C
NOTE 3
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative
CCC CCC CCC
(A3) D2 e
9 16 13
E
A
SEATING PLANE
DIM A A1 A3 b D D2 E E2 e K L
EXPOSED PAD
E2
b BOTTOM VIEW
http://onsemi.com
12
NCN4557/D


▲Up To Search▲   

 
Price & Availability of NCN4557MTG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X