Part Number Hot Search : 
857CD HMC31 LVC1624 KRFR6215 40003R MLX7530 14NM5 RT9187
Product Description
Full Text Search
 

To Download IRAMX16UP60B Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD-96-957 RevD
Integrated Power Hybrid IC for Appliance Motor Drive Applications.
Description
IRAMX16UP60B Series 16A, 600V
with Internal Shunt Resistor
International Rectifier's IRAMX16UP60B is a 16A, 600V Integrated Power Hybrid IC with Internal Shunt Resistor for Appliance Motor Drives applications such as air conditioning systems and compressor drivers as well as for light industrial application. IR's technology offers an extremely compact, high performance AC motor-driver in a single isolated package to simplify design. This advanced HIC is a combination of IR's low VCE(on) Punch-Through IGBT technology and the industry benchmark 3 phase high voltage, high speed driver in a fully isolated thermally enhanced package. A built-in temperature monitor and over-current protection, along with the short-circuit rated IGBTs and integrated under-voltage lockout function, deliver high level of protection and fail-safe operation. Using a Single in line package (SiP2) with full transfer mold structure minimizes PCB space and resolve isolation problems to heatsink.
* * * * * * * * *
Internal Shunt Resistor Integrated Gate Drivers and Bootstrap Diodes Temperature Monitor Low VCE(on) Non Punch Through IGBT Technology Undervoltage lockout for all channels Matched propagation delay for all channels Schmitt-triggered input logic Cross-conduction prevention logic Lower di/dt gate driver for better noise immunity * Motor Power range 0.75~2.2kW / 85~253 Vac * Isolation 2000VRMS min * UL certification pending (UL number: E78996)
Features
Absolute Maximum Ratings
Parameter VCES / VRRM V+ IO @ TC=25C IO @ TC=100C IO FPWM PD VISO TJ (IGBT & Diodes) TJ (Driver IC) T Description IGBT/Diode Blocking Voltage Positive Bus Input Voltage RMS Phase Current (Note 1) RMS Phase Current (Note 1) Pulsed RMS Phase Current (Note 2) PWM Carrier Frequency Power dissipation per IGBT @ TC =25C Isolation Voltage (1min) Operating Junction temperature Range Operating Junction temperature Range Mounting torque Range (M3 screw) Value 600 450 16 8 30 20 31 2000 -40 to +150 -40 to +150 0.5 to 1.0 kHz W VRMS C Nm A Units V
Note 1: Sinusoidal Modulation at V+=400V, TJ=150C, FPWM=16kHz, Modulation Depth=0.8, PF=0.6, See Figure 3. Note 2: tP<100ms; TC=25C; FPWM=16kHz. Limited by IBUS-ITRIP, see Table "Inverter Section Electrical Characteristics"
www.irf.com
1
IRAMX16UP60B
Internal Electrical Schematic - IRAMX16UP60B
V (10) +
V- (12)
VB1 (7) U, VS1 (8) VB2 (4) V, VS2 (5) VB3 (1) W, VS3 (2)
23 VS1 24 HO1 25 VB1 1 VCC
22 21 20 19 18 17 VB2 HO2 VS2 VB3 HO3 VS3
LO1 16
HIN1 (15) HIN2 (16) HIN3 (17) LIN1 (18) LIN2 (19) LIN3 (20) FLT-EN(21) ITRIP (22) VTH (13) VCC (14) VSS (23) THERMISTOR
Driver IC
LO2 15
2 HIN1 3 HIN2 4 HIN3 5 LIN1 LIN2 LIN3 F ITRIP EN RCIN VSS COM 6 78 9 10 11 12 13 LO3 14
2
www.irf.com
IRAMX16UP60B
Absolute Maximum Ratings (Continued)
All voltages are absolute referenced to COM/ITRIP. Symbol IBDF PBR Peak VS1,2,3 VB1,2,3 VCC Parameter Bootstrap Diode Peak Forward Current Bootstrap Resistor Peak Power (Single Pulse) High side floating supply offset voltage High side floating supply voltage Low Side and logic fixed supply voltage Input voltage LIN, HIN, EN, ITrip Min ----VB1,2,3 - 25 -0.3 -0.3 Max 4.5 25.0 VB1,2,3 +0.3 600 20 Lower of (VSS+15V) or VCC+0.3V Units Conditions A W V V V tP= 10ms, TJ = 150C, TC=100C tP=100s, TC =100C ESR / ERJ series
VIN, VEN, VITRIP
-0.3
V
Inverter Section Electrical Characteristics @TJ= 25C
Symbol V(BR)CES V(BR)CES / T VCE(ON) Parameter Collector-to-Emitter Breakdown Voltage Temperature Coeff. Of Breakdown Voltage Collector-to-Emitter Saturation Voltage Zero Gate Voltage Collector Current Diode Forward Voltage Drop Bootstrap Diode Forward Voltage Drop Bootstrap Resistor Value Bootstrap Resistor Tolerance Current Protection Threshold (positive going) Min 600 ---------------------21 Typ --0.3 1.55 1.80 5 165 2.0 1.4 ---22 ----Max ----1.85 2.10 80 --2.4 1.9 1.25 1.10 --5 28 Units Conditions V V/C V VIN=5V, IC=250A VIN=5V, IC=1.0mA (25C - 150C) IC=8A, VCC=15V IC=8A, VCC=15V, TJ=150C VIN=5V, V+=600V VIN=5V, V+=600V, TJ=150C IC=8A IC=8A, TJ=150C IF=1A IF=1A, TJ=125C TJ=25C TJ=25C TJ=-40C to 125C See Fig. 2
ICES
A
VFM
V
VBDFM RBR RBR/RBR IBUS_TRIP
V % A
www.irf.com
3
IRAMX16UP60B
Inverter Section Switching Characteristics @ TJ= 25C
Symbol EON EOFF ETOT EREC tRR EON EOFF ETOT EREC tRR QG RBSOA Parameter Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Diode Reverse Recovery energy Diode Reverse Recovery time Turn-on Switching Loss Turn-off Switching Loss Total Switching Loss Diode Reverse Recovery energy Diode Reverse Recovery time Turn-On IGBT Gate Charge Reverse Bias Safe Operating Area Min ----------------------Typ 315 150 465 30 70 500 270 770 60 120 56 FULL SQUARE Max 435 180 615 60 90 700 335 1035 100 150 84 ns nC
+
Units Conditions IC=8A, V+=400V VCC=15V, L=2mH Energy losses include "tail" and diode reverse recovery See CT1 IC=8A, V+=400V VCC=15V, L=2mH, TJ=150C Energy losses include "tail" and diode reverse recovery See CT1 IC=15A, V =400V, VGE=15V TJ=150C, IC=8A, VP=600V V+= 450V VCC=+15V to 0V TJ=150C, VP=600V, See CT3
J
ns
J
SCSOA
Short Circuit Safe Operating Area
10
---
---
s
V+= 360V, VCC=+15V to 0V V+= 360V, VGE=15V VCC=+15V to 0V
See CT2
TJ=150C, VP=600V, tSC<10s ICSC Short Circuit Collector Current --140 --A See CT2
Recommended Operating Conditions Driver Function
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommende conditions. All voltages are absolute referenced to COM/ITRIP. The VS offset is tested with all supplies biased at 15V differential (Note 3) Symbol VB1,2,3 VS1,2,3 VCC VITRIP VIN VEN Definition High side floating supply voltage High side floating supply offset voltage Low side and logic fixed supply voltage ITRIP input voltage Logic input voltage LIN, HIN Logic input voltage EN Min VS+12 Note 4 12 VSS VSS VSS Max VS+20 450 20 VSS+5 VSS+4 VSS+5 Units V
V V V
Note 3: For more details, see IR21363 data sheet Note 4: Logic operational for Vs from COM-5V to COM+600V. Logic state held for Vs from COM-5V to COM-VBS. (please refer to DT97-3 for more details)
4
www.irf.com
IRAMX16UP60B
Static Electrical Characteristics Driver Function
VBIAS (VCC, VBS1,2,3)=15V, unless otherwise specified. The VIN and IIN parameters are referenced to COM/ITRIP and are applicable to all six channels. (Note 3) Symbol VINH , VENH VINL , VENL VCCUV+, VBSUV+ VCCUV-, VBSUVVCCUVH, VBSUVH VIN,Clamp IQBS IQCC ILK IIN+, IEN+ IIN-, IENITRIP+ ITRIPV(ITRIP) V(ITRIP, HYS) RON,FLT Definition Logic "0" input voltage Logic "1" input voltage VCC and VBS supply undervoltage Positive going threshold VCC and VBS supply undervoltage Negative going threshold VCC and VBS supply undervoltage lock-out hysteresis Input Clamp Voltage (HIN, LIN, ITRIP) IIN=10A Quiescent VBS supply current VIN=0V Quiescent VCC supply current VIN=0V Offset Supply Leakage Current Input bias current VIN=5V Input bias current VIN=0V ITRIP bias current VITRIP=5V ITRIP bias current VITRIP=0V ITRIP threshold Voltage ITRIP Input Hysteresis Fault Output ON Resistance Min 3.0 --10.6 10.4 --4.9 --------------440 ----Typ ----11.1 10.9 0.2 5.2 ------200 100 30 0 490 70 50 Max --0.8 11.6 11.4 --5.5 165 3.35 60 300 220 100 1 540 --100 Units V V V V V V A mA A A A A A mV mV ohm
Dynamic Electrical Characteristics
Driver only timing unless otherwise specified. Symbol TON TOFF TFLIN TBLT-Trip DT MT TITrip TFLT-CLR Parameter Input to Output propagation turnon delay time (see fig.11) Input to Output propagation turnoff delay time (see fig. 11) Input Filter time (HIN, LIN) ITRIP Blancking Time Dead Time (VBS=VDD=15V) Matching Propagation Delay Time (On & Off) ITrip to six switch to turn-off propagation delay (see fig. 2) Post ITrip to six switch to turn-off clear time (see fig. 2) Min ----100 100 220 --------Typ 590 660 200 150 290 40 --7.7 6.7 360 75 1.75 ----Max ------Units Conditions ns ns ns ns ns ns s ms VCC=VBS= 15V, IC=8A, V+=400V VIN=0 & VIN=5V VIN=0 & VIN=5V VBS=VCC=15V VCC= VBS= 15V, external dead time> 400ns VCC=VBS= 15V, IC=8A, V+=400V TC = 25C TC = 100C
www.irf.com
5
IRAMX16UP60B
Thermal and Mechanical Characteristics
Symbol Rth(J-C) Rth(J-C) Rth(C-S) CD Parameter Thermal resistance, per IGBT Thermal resistance, per Diode Thermal resistance, C-S Creepage Distance Min ------3.2 Typ 3.5 5.0 0.1 --Max 4.0 5.5 ----Units Conditions Flat, greased surface. Heatsink C/W compound thermal conductivity 1W/mK mm See outline Drawings
Internal Current Sensing Resistor - Shunt Characteristics
Symbol RShunt TCoeff PShunt TRange Parameter Resistance Temperature Coefficient Power Dissipation Temperature Range Min 17.9 0 ---40 Typ 18.1 ------Max 18.3 200 3.0 125 Units Conditions m ppm/C TC = 25C
W
C
-40C< TC <100C
Internal NTC - Thermistor Characteristics
Parameter R25 R125 B Definition Resistance Resistance B-constant (25-50C) Min 97 2.25 4165 -40 1 Typ 100 2.52 4250 Max 103 2.80 4335 125 Units Conditions k k k C mW/C TC = 25C TC = 25C TC = 125C R2 = R1e [B(1/T2 - 1/T1)]
Temperature Range Typ. Dissipation constant
Input-Output Logic Level Table
V+
Hin1,2,3 (15,16,17)
IC Driver
Ho U,V,W (8,5,2) Lo
FLT- EN 1 1 1 1 0
ITRIP 0 0 0 1 X
HIN1,2,3 LIN1,2,3 0 1 1 X X 1 0 1 X X
U,V,W V+ 0 Off Off Off
Lin1,2,3 (18,19,20)
6
www.irf.com
IRAMX16UP60B
HIN1,2,3
LIN1,2,3
1
2
3
4
5
6
IBUS
IBUS_trip
6s
1s
50% U,V,W tfltclr Sequence of events: 1-2) Current begins to rise 2) Current reaches IBUS_Trip level 2-3) Current is higher than IBUS_Trip for at least 6s. This value is the worst-case condition with very low over-current. In case of high current (short circuit), the actual delay will be smaller. 3-4) Delay between driver identification of over-current condition and disabling of all outputs 4) Current starts decreasing, eventually reaching 0 5) Current goes below IBUS_trip, the driver starts its auto-reset sequence 6) Driver is automatically reset and normal operation can resume (over-current condition must be removed by the time the drivers automatically resets itself)
Figure 2. ITrip Timing Waveform Note 5: The shaded area indicates that both high-side and low-side switches are off and therefore the half-bridge output voltage would be determined by the direction of current flow in the load.
www.irf.com
7
IRAMX16UP60B
Module Pin-Out Description
Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Name VB3 W,VS3 NA VB2 V,VS2 NA VB1 U, VS1 NA V
+
Description High Side Floating Supply Voltage 3 Output 3 - High Side Floating Supply Offset Voltage none High Side Floating Supply voltage 2 Output 2 - High Side Floating Supply Offset Voltage none High Side Floating Supply voltage 1 Output 1 - High Side Floating Supply Offset Voltage none Positive Bus Input Voltage none Negative Bus Input Voltage Temperature Feedback +15V Main Supply Logic Input High Side Gate Driver - Phase 1 Logic Input High Side Gate Driver - Phase 2 Logic Input High Side Gate Driver - Phase 3 Logic Input Low Side Gate Driver - Phase 1 Logic Input Low Side Gate Driver - Phase 2 Logic Input Low Side Gate Driver - Phase 3 Fault Indicator Current Sense and Itrip Pin Negative Main Supply
NA V
-
VTH VCC HIN1 HIN2 HIN3 LIN1 LIN2 LIN3 FAULT ITRIP VSS
1
23
8
www.irf.com
IRAMX16UP60B
Typical Application Connection IRAMX16UP60B
1
BOOT-STRAP CAPACITORS
W 3-Phase AC MOTOR
2.2F
VB3 VS3 VB2
VS2 V VB1 VS1 U V
+
IRAMX16UP60B
DC BUS CAPACITORS
VVTH
035-Z2L03
+5V +15V +5V
12kohm Temp Monitor CONTROLLER 0.1mF 10mF
Vcc (15 V) HIN1 HIN2 HIN3 LIN1 LIN2 LIN3 Fault/Enable ITRIP VSS
23
Enable
+5V
1K
1. Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible to reduce ringing and EMI problems. Additional high frequency ceramic capacitor mounted close to the module pins will further improve performance. 2. In order to provide good decoupling between VCC-VSS and VB1,2,3-VS1,2,3 terminals, the capacitors shown connected between these terminals should be located very close to the module pins. Additional high frequency capacitors, typically 0.1F, are strongly recommended. 3. Value of the boot-strap capacitors depends upon the switching frequency. Their selection should be made based on IR design tip DN 98-2a, application note AN-1044 or Figure 9. Bootstrap capacitor value must be selected to limit the power dissipation of the internal resistor in series with the VCC. (see maximum ratings Table on page 3). 4. Current sense signal can be obtained from pin 20 and pin 23. Care should be taken to avoid having inverter current flowing through pin 22 to mantain required current measurement accuracy 5. After approx. 8ms the FAULT is reset. (see Dynamic Characteristics Table on page 5). 6. PWM generator must be disabled within Fault duration to garantee shutdown of the system, overcurrent condition must be cleared before resuming operation. 7. Fault/Enable pin must be pulled-up to +5V.
www.irf.com
9
IRAMX16UP60B
Maximum Output Phase RMS Current - A
14 12 10 8 6
TC = 100C
4 2 0
TC = 110C TC = 120C TJ = 150C Sinusoidal Modulation
0 2 4 6 8 10 12 14 16 18 20
PWM Frequency - kHz
Figure 3. Maximum Sinusoidal Phase Current vs. PWM Switching Frequency V+=400V , TJ=150C, Modulation Depth=0.8, PF=0.6
Maximum Output Phase RMS Current - A
10
TJ = 150C
8
Sinusoidal Modulation
6
4
FPWM = 20kHz FPWM = 16kHz FPWM = 12kHz
2
0
1
10
100
Modulation Frequency - Hz
Figure 4. Maximum Sinusoidal Phase Current vs. Modulation Frequency V+=400V, TJ=150C, TC=100C, Modulation Depth=0.8, PF=0.6
10
www.irf.com
IRAMX16UP60B
150 125 100 75 50 25 0
Total Power Losses - W
TJ = 150C Sinusoidal Modulation
FPWM = 12 kHz FPWM = 16 kHz FPWM = 20 kHz
0
1
2
3
4
5
6
7
8
9
10
11
12
Output Phase Current - ARMS
Figure 5. Total Power Losses vs. PWM Switching Frequency, Sinusoidal modulation V+=400V , TJ=150C, Modulation Depth=0.8, PF=0.6
150 125 100 75 50 25 0
Total Power Losses - W
TJ = 150C Sinusoidal Modulation
FPWM = 12 kHz FPWM = 16 kHz FPWM = 20 kHz
0
1
2
3
4
5
6
7
8
9
10
11
12
Output Phase Current - ARMS
Figure 6. Total Power Losses vs. Output Phase Current, Sinusoidal modulation VBUS=400V , TJ=150C, Modulation Depth=0.8, PF=0.6
www.irf.com
11
IRAMX16UP60B
Maximum Allowable Case Temperature -C
160 140 120 100 80 60 40 20 0
FPWM = 12 kHz FPWM = 16 kHz TJ = 150C Sinusoidal Modulation FPWM = 20 kHz
0
2
4
6
8
10
12
14
Output Phase Current - ARMS
Figure 7. Maximum Allowable Case temperature vs. Output RMS Current per Phase
160
IGBT Junction Temperature - C
150 140 130 120 110 100
TJ avg. = 1.2447 x TTherm+ 30.77
65
70
75
80
85
90
95
100
Internal Thermistor Temperature Equivalent Read Out - C
Figure 8. Estimated Maximum IGBT Junction Temperature vs. Thermistor Temperature
12
www.irf.com
IRAMX16UP60B
5.0
Thermistor Pin Read-Out Voltage - V
4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
TTHERM RTHERM TTHERM C C -40 4397119 25 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 3088599 2197225 1581881 1151037 846579 628988 471632 357012 272500 209710 162651 127080 30 35 40 45 50 55 60 65 70 75 80 85 RTHERM 100000 79222 63167 50677 40904 33195 27091 22224 18322 15184 12635 10566 8873 TTHERM C 90 95 100 105 110 115 120 125 130 135 140 145 150 RTHERM 7481 6337 5384 4594 3934 3380 2916 2522 2190 1907 1665 1459 1282
+5V REXT R Therm
VTherm
Min Avg. Max
0.5 -40 -30 -20
-10
0
10
20
30
40
50
60
70
80
90
100 110 120 130
Thermistor Temperature - C
Figure 9. Thermistor Readout vs. Temperature (12kohm pull-up resistor, 5V) and Nominal Thermistor Resistance values vs. Temperature Table.
16.0 15.0 14.0 13.0 12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 0 5 10 15 20
6.8F 10F
+15V HIN LIN RBS
Recommended Bootstrap Capacitor - F
15F
V+ DBS vB VCC HIN LIN VSS COM VSS HO VS RG2 LO U,V,W CBS RG1
GND
4.7F 3.3F
PWM Frequency - kHz
Figure 10. Recommended Bootstrap Capacitor Value vs. Switching Frequency
www.irf.com
13
IRAMX16UP60B
Figure 11. Switching Parameter Definitions
VCE
50% HIN /LIN
IC
IC
90% IC
VCE
90% IC
50% VCE
50% HIN /LIN
HIN /LIN
HIN /LIN
50% VCE 10% IC
10% IC
tr TON
Figure 11a. Input to Output Propagation turn-on Delay Time
tf TOFF
Figure 11b. Input to Output Propagation turn-off Delay Time
IF VCE HIN/LIN
Irr trr
Figure 11c. Diode Reverse Recovery
14
www.irf.com
IRAMX16UP60B
V+ 5V
Ho
IN
Hin1,2,3
IC Driver Lo
U,V,W
IO
Lin1,2,3
Figure CT1. Switching Loss Circuit
V+
Hin1,2,3 1k VCC 5VZD IN 10k Lin1,2,3
IC Driver
Ho
IN
U,V,W
Lo
IO
Io
Figure CT2. S.C.SOA Circuit
V+
Hin1,2,3 1k VCC 5VZD Lin1,2,3 IN 10k
IC Driver
Ho
IN
U,V,W
Lo
IO
Io
Figure CT3. R.B.SOA Circuit
www.irf.com
15
IRAMX16UP60B
Package Outline IRAMX16UP60B
note 2
62 3 56
A note 3 B
O3.4 TYP.
25.3
1
note 1
2 TYP.
23
0.80 0.55 9 O0.20 M
AB
TYP. 0.70 0.45 TYP. 11.4 REF INT. 4.7 R0.6 TYP. 5.0 2 TYP. 3.2 MIN. CONVEX ONLY
22 PITCHES = 44
11.4
IRAMX16UP60B
25.8
035-Z2L03
5.5
C
50
0.10
C
Notes: Dimensions in mm 1- Marking for pin 1 identification 2- Product Part Number 3- Lot and Date code marking 4- Convex only 0.15mm typical 5- Tollerances 0.5mm, unless otherwise stated
For mounting instruction see AN-1049
16
www.irf.com
9.0 REF.
46.2
INT.
2.5
IRAMX16UP60B
Package Outline IRAMX16UP60B-2
62 3 O3.4 TYP. 56
note 2 A note 3 B
25.3
11.4
IRAMX16UP60B 1 23
0.80 0.55
25.8
035-Z2L03
0.70 0.45
2 TYP.
O0.20 M
AB
TYP.
TYP.
note 1
5
13.9
46.2 5.5
C
5 REF.
2.5
50 2 TYP.
R0.6 TYP.
10 R
EF.
3.2 MIN.
CONVEX ONLY
0.10 C
Notes: Dimensions in mm 1- Marking for pin 1 identification 2- Product Part Number 3- Lot and Date code marking 4- Convex only 0.15mm typical 5- Tollerances 0.5mm, unless otherwise stated
For mounting instruction see AN-1049
Data and Specifications are subject to change without notice IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information 07/05
www.irf.com
11.4 REF
22 PITCHES = 44
4.7
11.4 REF.
17


▲Up To Search▲   

 
Price & Availability of IRAMX16UP60B

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X