Part Number Hot Search : 
1N4728A1 55C6V JCS4N65B 200100 2SK40 01P481MR MG15N2Y CS010
Product Description
Full Text Search
 

To Download IRF7343PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 92547
IRF7343PBF
l l l l l l
Generation V Technology Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Fully Avalanche Rated Lead-Free
HEXFET(R) Power MOSFET
S1 G1 S2 G2
N-CHANNEL MOSFET 1 8 2 3 4 7
D1 D1 D2 D2
N-Ch VDSS 55V
P-Ch -55V
6 5
Description
Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques.
P-CHANNEL MOSFET
Top View
RDS(on) 0.050 0.105
SO-8
Absolute Maximum Ratings
Parameter
V DS ID @ TA = 25C I D @ TA = 70C IDM PD @TA = 25C PD @TA = 70C EAS IAR EAR VGS dv/dt TJ, TSTG Drain-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Maximum Power Dissipation Maximum Power Dissipation Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Gate-to-Source Voltage Peak Diode Recovery dv/dt Junction and Storage Temperature Range
Max.
N-Channel 55 4.7 3.8 38 2.0 1.3 72 4.7 0.20 20 5.0 -55 to + 150 -5.0 114 -3.4 P-Channel -55 -3.4 -2.7 -27
Units
V A W W mJ A mJ V V/ns C
Thermal Resistance
RJA
www.irf.com
Maximum Junction-to-Ambient
Parameter
Typ.
Max.
62.5
Units
C/W
1
10/7/04
IRF7343PBF
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter V (BR)DSS Drain-to-Source Breakdown Voltage N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-P N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch Min. 55 -55 1.0 -1.0 7.9 3.3 Typ. Max. 0.059 0.054 0.043 0.050 0.056 0.065 0.095 0.105 0.150 0.170 2.0 -2.0 25 -25 100 24 36 26 38 2.3 3.4 3.0 4.5 7.0 10 8.4 13 8.3 12 14 22 3.2 4.8 10 15 32 48 43 64 13 20 22 32 740 690 190 210 71 86 Units V V/C V S A nA Conditions VGS = 0V, ID = 250A VGS = 0V, ID = -250A Reference to 25C, ID = 1mA Reference to 25C, ID = -1mA VGS = 10V, ID = 4.7A VGS = 4.5V, ID = 3.8A VGS = -10V, ID = -3.4A VGS = -4.5V, ID = -2.7A VDS = VGS, I D = 250A VDS = VGS, I D = -250A VDS = 10V, I D = 4.5A VDS = -10V, I D = -3.1A VDS = 55V, V GS = 0V VDS = -55V, VGS = 0V VDS = 55V, VGS = 0V, T J = 55C VDS = -55V, V GS = 0V, TJ = 55C VGS = 20V N-Channel I D = 4.5A, VDS = 44V, VGS = 10V P-Channel I D = -3.1A, V DS = -44V, VGS = -10V N-Channel VDD = 28V, ID = 1.0A, RG = 6.0, RD = 16 P-Channel VDD = -28V, ID = -1.0A, RG = 6.0, RD = 16 N-Channel V GS = 0V, V DS = 25V, = 1.0MHz P-Channel V GS = 0V, V DS = -25V, = 1.0MHz
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(ON) V GS(th) gfs I DSS I GSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
nC
ns
pF
Source-Drain Ratings and Characteristics
Parameter IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch Min. Typ. 0.70 -0.80 60 54 120 85 Max. Units Conditions 2.0 -2.0 A 38 -27 1.2 TJ = 25C, IS = 2.0A, VGS = 0V V -1.2 TJ = 25C, IS = -2.0A, VGS = 0V 90 N-Channel ns 80 TJ = 25C, I F =2.0A, di/dt = 100A/s 170 nC P-Channel TJ = 25C, I F = -2.0A, di/dt = 100A/s 130
Repetitive rating; pulse width limited by
Notes:
Pulse width 300s; duty cycle 2%. max. junction temperature. ( See fig. 22 ) N-Channel ISD 4.7A, di/dt 220A/s, VDD V(BR)DSS, TJ 150C Surface mounted on FR-4 board, t 10sec. P-Channel ISD -3.4A, di/dt -150A/s, VDD V(BR)DSS, TJ 150C N-Channel Starting TJ = 25C, L = 6.5mH RG = 25, IAS = 4.7A. P-Channel Starting TJ = 25C, L = 20mH RG = 25, IAS = -3.4A.
2
www.irf.com
N-Channel
100
IRF7343PBF
VGS 15V 12V 10V 8.0V 6.0V 4.5V 4.0V 3.5V BOTTOM 3.0V TOP
I D , Drain-to-Source Current (A)
10
I D , Drain-to-Source Current (A)
VGS 15V 12V 10V 8.0V 4.5V 6.0V 4.0V 3.5V BOTTOM 3.0V TOP
100
10
3.0V
3.0V
1 0.1
20s PULSE WIDTH TJ = 25 C
1 10 100
1 0.1
20s PULSE WIDTH TJ = 150 C
1 10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
100
I D , Drain-to-Source Current (A)
TJ = 25 C TJ = 150 C
10
ISD , Reverse Drain Current (A)
10
TJ = 150 C
TJ = 25 C
1
1
V DS = 25V 20s PULSE WIDTH 3 4 5 6
0.1 0.2
VGS = 0 V
0.5 0.8 1.1 1.4
VGS , Gate-to-Source Voltage (V)
VSD ,Source-to-Drain Voltage (V)
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Source-Drain Diode Forward Voltage
www.irf.com
3
IRF7343PBF
2.5
N-Channel
2.0
R DS (on), Drain-to-Source On Resistance ()
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID = 4.7A
0.120
0.100
1.5
0.080
1.0
VGS = 4.5V
0.5
0.060
VGS = 10V
0.040
0.0 -60 -40 -20
VGS = 10V
0 20 40 60 80 100 120 140 160
TJ , Junction Temperature ( C)
0
10
20
30
40
I D , Drain Current (A)
Fig 5. Normalized On-Resistance Vs. Temperature
Fig 6. Typical On-Resistance Vs. Drain Current
0.12
200
RDS(on) , Drain-to-Source On Resistance ( )
EAS , Single Pulse Avalanche Energy (mJ)
TOP
160
BOTTOM
ID 2.1A 3.8A 4.7A
0.10
120
0.08
80
0.06
I D = 4.7A
40
0.04 0 2 4 6 8 10
A
0
25
V GS , Gate-to-Source Voltage (V)
Starting TJ , Junction Temperature ( C)
50
75
100
125
150
Fig 7. Typical On-Resistance Vs. Gate Voltage
Fig 8. Maximum Avalanche Energy Vs. Drain Current
4
www.irf.com
N-Channel
1200
20
IRF7343PBF
ID = 4.5A VDS = 48V VDS = 30V VDS = 12V
1000
VGS , Gate-to-Source Voltage (V)
VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd
16
C, Capacitance (pF)
800
Ciss
12
600
8
400
Coss
200
4
Crss
0 1 10 100
0 0 10 20 30 40
VDS , Drain-to-Source Voltage (V)
QG , Total Gate Charge (nC)
Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage
100
Thermal Response (Z thJA )
D = 0.50 0.20 10 0.10 0.05 0.02 1 0.01 SINGLE PULSE (THERMAL RESPONSE) PDM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA 0.001 0.01 0.1 1 10 100
0.1 0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF7343PBF
100
VGS -15V -12V -10V -8.0V -4.5V -6.0V -4.0V -3.5V BOTTOM -3.0V TOP
P-Channel
100
-I D , Drain-to-Source Current (A)
-I D , Drain-to-Source Current (A)
10
10
VGS -15V -12V -10V -8.0V -4.5V -6.0V -4.0V -3.5V BOTTOM -3.0V TOP
1
-3.0V
-3.0V
1
0.1 0.1
20s PULSE WIDTH TJ = 25 C
1 10 100
0.1 0.1
20s PULSE WIDTH TJ = 150 C
1 10 100
-VDS , Drain-to-Source Voltage (V)
-VDS , Drain-to-Source Voltage (V)
Fig 12. Typical Output Characteristics
Fig 13. Typical Output Characteristics
100
100
-I D , Drain-to-Source Current (A)
-ISD , Reverse Drain Current (A)
TJ = 25 C TJ = 150 C
10
10
TJ = 150 C TJ = 25 C
1
1
V DS = -25V 20s PULSE WIDTH 3 4 5 6 7
0.1 0.2
V GS = 0 V
0.4 0.6 0.8 1.0 1.2 1.4
-VGS , Gate-to-Source Voltage (V)
-VSD ,Source-to-Drain Voltage (V)
Fig 14. Typical Transfer Characteristics
Fig 15. Typical Source-Drain Diode Forward Voltage
6
www.irf.com
P-Channel
IRF7343PBF
2.0
1.5
R DS (on) , Drain-to-Source On Resistance()
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID = -3.4 A
0.240
0.200
VGS = -4.5V
0.160
1.0
0.5
0.120
VGS = -10V
0.0 -60 -40 -20
VGS = -10V
0 20 40 60 80 100 120 140 160
0.080
0
2
4
6
8
10
12
TJ , Junction Temperature ( C)
-ID , Drain Current (A)
Fig 16. Normalized On-Resistance Vs. Temperature
Fig 17. Typical On-Resistance Vs. Drain Current
0.45
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on) , Drain-to-Source On Resistance ( )
300
250
0.35
ID -1.5A -2.7A BOTTOM -3.4A TOP
200
0.25
150
I D = -3.4 A
0.15
100
50
0.05 2 5 8 11 14
A
0
25
-V GS , Gate-to-Source Voltage (V)
Starting TJ , Junction Temperature ( C)
50
75
100
125
150
Fig 18. Typical On-Resistance Vs. Gate Voltage
Fig 19. Maximum Avalanche Energy Vs. Drain Current
www.irf.com
7
IRF7343PBF
1200
P-Channel
20
960
-VGS , Gate-to-Source Voltage (V)
VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd
ID = -3.1A
16
VDS =-48V VDS =-30V VDS =-12V
C, Capacitance (pF)
720
Ciss
12
480
8
Coss
240
4
Crss
0 1 10 100
0
0
10
20
30
40
--VDS , Drain-to-Source Voltage (V)
QG , Total Gate Charge (nC)
Fig 20. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 21. Typical Gate Charge Vs. Gate-to-Source Voltage
100
Thermal Response (Z thJA )
D = 0.50 0.20 10 0.10 0.05 0.02 1 0.01 SINGLE PULSE (THERMAL RESPONSE) PDM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA 0.001 0.01 0.1 1 10 100
0.1 0.0001
t1, Rectangular Pulse Duration (sec)
Fig 22. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
8
www.irf.com
IRF7343PBF
SO-8 Package Outline
Dimensions are shown in milimeters (inches)
D A 5 B
DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMET ERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
c D E e e1 H
1
2
3
4
.050 BASIC .025 BASIC .2284 .0099 .016 0 .2440 .0196 .050 8
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0 6.20 0.50 1.27 8
6X
e
K L y
e1
A
K x 45 C 0.10 [.004] y 8X c
8X b 0.25 [.010]
A1 CAB
8X L 7
NOT ES : 1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010]. 7 DIMENS ION IS T HE LENGT H OF LEAD FOR S OLDERING T O A SUBS T RAT E. 3X 1.27 [.050] 6.46 [.255]
FOOT PRINT 8X 0.72 [.028]
8X 1.78 [.070]
SO-8 Part Marking Information (Lead-Free)
EXAMPLE: T HIS IS AN IRF7101 (MOSFET ) DAT E CODE (YWW) P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) Y = LAST DIGIT OF T HE YEAR WW = WEEK A = AS SEMBLY S IT E CODE LOT CODE PART NUMBER
INT ERNAT IONAL RECT IFIER LOGO
XXXX F 7101
www.irf.com
9
IRF7343PBF
SO-8 Tape and Reel
Dimensions are shown in milimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 ) 11.7 ( .461 )
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00 (12.992) MAX.
14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/04
10
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRF7343PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X