Part Number Hot Search : 
7805LS DG401AZ A3126 UTC2206B CNS471B6 ECN3067 0R010 04TM1T
Product Description
Full Text Search
 

To Download VT6103 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Fast Ethernet 10 / 100 1-Port PHY / Transceiver
Revision 1.1 April 15, 2002
VIA TECHNOLOGIES, INC.
Copyright Notice:
Copyright (c) 2001, 2002 VIA Technologies Incorporated. Printed in the United States. ALL RIGHTS RESERVED. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. VT6103 may only be used to identify products of VIA Technologies, Inc.
is a registered trademark of VIA Technologies, Incorporated. PS/2TM is a registered trademark of International Business Machines Corp. PentiumTM, Pentium-ProTM, Pentium-IITM, Pentium-IIITM, CeleronTM,and GTL+TM are registered trademarks of Intel Corp. Windows 95TM, Windows 98TM, Windows NTTM, and Plug and PlayTM are registered trademarks of Microsoft Corp. PCITM is a registered trademark of the PCI Special Interest Group. All trademarks are the properties of their respective owners.
Disclaimer Notice:
No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.
Offices:
USA Office: 940 Mission Court Fremont, CA 94539 USA Tel: (510) 683-3300 Fax: (510) 683-3301 or (510) 687-4654 Web: http://www.viatech.com Taipei Office: 8th Floor, No. 533 Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC Tel: (886-2) 2218-5452 Fax: (886-2) 2218-5453 Web: http://www.via.com.tw
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
REVISION HISTORY
Document Release 1.0 Date 4/9/02 Revision Initials Initial Public Release - same as internal release 0.4 except for update of legal page, DH fix of miscellaneous document formatting errors, update of document title, addition of typical system block diagram, fix of RXER and TXER pin descriptions, update of application schematics, and addition of marking spec Revised document title and page headers DH Fixed Taiwan office fax number on legal page Cleaned up schematics and added as figures
1.1
4/15/02
Revision 1.1 April 15, 2002
-i-
Revision History
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
TABLE OF CONTENTS
REVISION HISTORY .......................................................................................................................................................................I TABLE OF CONTENTS ................................................................................................................................................................. II LIST OF FIGURES .........................................................................................................................................................................IV LIST OF TABLES ...........................................................................................................................................................................IV PRODUCT FEATURES ................................................................................................................................................................... 1 OVERVIEW....................................................................................................................................................................................... 2 PINOUTS............................................................................................................................................................................................ 3 PIN DIAGRAM ................................................................................................................................................................................ 3 PIN LIST ......................................................................................................................................................................................... 3 PIN DESCRIPTIONS......................................................................................................................................................................... 4 REGISTERS....................................................................................................................................................................................... 7 REGISTER OVERVIEW ................................................................................................................................................................... 7 REGISTER DESCRIPTIONS ............................................................................................................................................................. 9 FUNCTIONAL DESCRIPTION .................................................................................................................................................... 16 GENERAL ..................................................................................................................................................................................... 16 802.3U MII................................................................................................................................................................................... 18 Serial Management Register Access ................................................................................................................................... 18 Serial Management Access Protocol ................................................................................................................................... 18 Preamble Suppression.......................................................................................................................................................... 18 PHY Address Sensing........................................................................................................................................................... 18 Nibble-Wide MII Data Interface......................................................................................................................................... 19 Collision Detect ..................................................................................................................................................................... 19 Carrier Sense ........................................................................................................................................................................ 19 MII Isolate Mode .................................................................................................................................................................. 19 LINK INTEGRITY AND AUTONEGOTIATION ................................................................................................................................ 20 General .................................................................................................................................................................................. 20 10Base-T Link Integrity Algorithm - 10Mbps .................................................................................................................. 20 100Base-TX Link Integrity Algorithm -100Mbps ............................................................................................................. 20 AutoNegotiation Algorithm ................................................................................................................................................. 20 AutoNegotiation Outcome Indication................................................................................................................................. 20 AutoNegotiation Status ........................................................................................................................................................ 20 AutoNegotiation Enable....................................................................................................................................................... 20 Auto Negotiation Reset ........................................................................................................................................................ 20 Link Indication ..................................................................................................................................................................... 20 ENCODER ..................................................................................................................................................................................... 21 4B5B Encoder - 100 Mbps................................................................................................................................................... 21 Manchester Encoder - 10 Mbps.......................................................................................................................................... 21 DECODER ..................................................................................................................................................................................... 21 4B5B Encoder - 100 Mbps................................................................................................................................................... 21 Manchester Encoder - 10 Mbps.......................................................................................................................................... 21 CLOCK AND DATA RECOVERY .................................................................................................................................................... 22
Revision 1.1 April 15, 2002
-ii-
Table of Contents
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Clock Recovery - 100 Mbps ................................................................................................................................................ 22 Data Recovery - 100 Mbps .................................................................................................................................................. 22 Clock Recovery - 10 Mbps .................................................................................................................................................. 22 Data Recovery - 10 Mbps .................................................................................................................................................... 22 SCRAMBLER / DESCRAMBLER..................................................................................................................................................... 22 100 Mbps Scrambler ............................................................................................................................................................ 22 10 Mbps Scrambler .............................................................................................................................................................. 22 100 Mbps Descrambler ........................................................................................................................................................ 22 10 Mbps Descrambler .......................................................................................................................................................... 22 TWISTED PAIR TRANSMITTER .................................................................................................................................................... 23 Transmitter - 100 Mbps ....................................................................................................................................................... 23 Transmitter - 10 Mbps ......................................................................................................................................................... 23 TWISTED PAIR RECEIVER ........................................................................................................................................................... 24 Receiver - 100 Mbps ............................................................................................................................................................. 24 Receiver - 10 Mbps ............................................................................................................................................................... 24 MISCELLANEOUS FUNCTIONS ..................................................................................................................................................... 25 Smart Squelch....................................................................................................................................................................... 25 Collision Detection................................................................................................................................................................ 25 Carrier Sense ........................................................................................................................................................................ 25 Normal Link Pulse Detection / Generation ........................................................................................................................ 25 Jabber Function.................................................................................................................................................................... 26 Status Information ............................................................................................................................................................... 26 Automatic Link Polarity Detection ..................................................................................................................................... 26 Internal Loopback ................................................................................................................................................................ 26 100BASE-FX ................................................................................................................................................................................ 27 APPLICATION SCHEMATICS.................................................................................................................................................... 28 ELECTRICAL SPECIFICATIONS .............................................................................................................................................. 31 ABSOLUTE MAXIMUM RATINGS ................................................................................................................................................. 31 DC CHARACTERISTICS ............................................................................................................................................................... 31 AC CHARACTERISTICS ............................................................................................................................................................... 31 100BaseT Transmitter Characteristics............................................................................................................................... 32 10BaseT Transmitter Characteristics................................................................................................................................. 32 Crystal Oscillator Characteristics....................................................................................................................................... 33 PLL Frequency Multiplier Characteristics........................................................................................................................ 33 FX Characteristics................................................................................................................................................................ 33 PACKAGE MECHANICAL SPECIFICATIONS ....................................................................................................................... 40
Revision 1.1 April 15, 2002
-iii-
Table of Contents
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
LIST OF FIGURES
FIGURE 1. TYPICAL SYSTEM BLOCK DIAGRAM ................................................................................................................ 2 FIGURE 2. PIN DIAGRAM ............................................................................................................................................................ 3 FIGURE 3. INTERNAL BLOCK DIAGRAM............................................................................................................................. 17 FIGURE 4. APPLICATION SCHEMATIC EXAMPLE PAGE 1 ............................................................................................ 29 FIGURE 5. APPLICATION SCHEMATIC EXAMPLE PAGE 2 ............................................................................................ 30 FIGURE 6. MI INTERFACE MDIO TIMING ........................................................................................................................... 34 FIGURE 7. MI INTERFACE MDIO INTERRUPT PULSE TIMING ..................................................................................... 34 FIGURE 8. LED ON / OFF TIMING ........................................................................................................................................... 35 FIGURE 9. MII TRANSMIT DATA TIMING............................................................................................................................ 35 FIGURE 10. MII RECEIVE DATA TIMING ............................................................................................................................. 35 FIGURE 11. MII HEARTBEAT TIMING................................................................................................................................... 36 FIGURE 12. MII JABBER TIMING............................................................................................................................................ 36 FIGURE 13. MII NORMAL LINK PULSE TIMING ................................................................................................................ 37 FIGURE 14. MII AUTO-NEGOTIATION FAST LINK PULSE TIMING.............................................................................. 37 FIGURE 15. 100MB/S RECEIVE PACKET TIMING ............................................................................................................... 38 FIGURE 16. 100MB/S TRANSMIT PACKET TIMING............................................................................................................ 38 FIGURE 17. 10MB/S RECEIVE PACKET TIMING ................................................................................................................. 39 FIGURE 18. 10MB/S TRANSMIT PACKET TIMING.............................................................................................................. 39 FIGURE 19. MECHANICAL SPECIFICATIONS - 48 PIN SSOP PACKAGE ..................................................................... 40
LIST OF TABLES
TABLE 1. PIN LIST (ALPHABETICAL ORDER) ...................................................................................................................... 3 TABLE 2. PIN DESCRIPTIONS .................................................................................................................................................... 4 TABLE 3. REGISTER SUMMARY ............................................................................................................................................... 7 TABLE 4. REGISTER BIT SUMMARY - REGISTERS DEFINED BY 802.3U ...................................................................... 8 TABLE 5. REGISTER BIT SUMMARY - VENDOR DEFINED REGISTERS ........................................................................ 8 TABLE 6. LED FUNCTION DEFINITION ................................................................................................................................ 26 TABLE 7. MI INTERFACE MDIO OUTPUT TIMING............................................................................................................ 34 TABLE 8. MI INTERFACE MDIO INTERRUPT PULSE TIMING ....................................................................................... 34 TABLE 9. LED ON / OFF TIMING ............................................................................................................................................. 35 TABLE 10. MII TRANSMIT DATA TIMING............................................................................................................................ 35 TABLE 11. MII RECEIVE DATA TIMING ............................................................................................................................... 35 TABLE 12. MII HEARTBEAT TIMING..................................................................................................................................... 36 TABLE 13. MII JABBER TIMING.............................................................................................................................................. 36 TABLE 14. MII 10BASE-T NORMAL LINK PULSE TIMING ............................................................................................... 37 TABLE 15. MII AUTO-NEGOTIATION FAST LINK PULSE TIMING................................................................................ 37 TABLE 16. 100MB/S RECEIVE PACKET TIMING ................................................................................................................. 38 TABLE 17. 100MB/S TRANSMIT PACKET TIMING.............................................................................................................. 38 TABLE 18. 10MB/S RECEIVE PACKET TIMING ................................................................................................................... 39 TABLE 19. 10MB/S TRANSMIT PACKET TIMING................................................................................................................ 39
Revision 1.1 April 15, 2002
-iv-
Table of Contents
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
VT6103
FAST ETHERNET 10 / 100 1-PORT PHY / TRANSCEIVER
PRODUCT FEATURES
* * * * * * * * * * * *
Single Chip 100Base-TX / 10Base-T Physical Layer Solution Dual Speed - 100 / 10 Mbps Half and Full Duplex MII Interface to Ethernet Controller MII Interface to Configuration & Status Optional Repeater Interface Auto Negotiation: 10 / 100, Full / Half Duplex Meet All Applicable IEEE 802.3, 10Base-T and 100Base-Tx Standards On Chip Wave Shaping - No External Filters Required Adaptive Equalizer Baseline Wander Correction LED Outputs
- - - - Link Status Duplex status Speed Status Collision
*
48 Pin SSOP Package
Revision 1.1 April 15, 2002
-1-
Product Features
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
OVERVIEW
The VT6103 is a Physical Layer device for Ethernet 10Base-T and 100Base-TX using category 5 Unshielded, Type 1 Shielded, and Fiber Optic cables. This VLSI device is designed for easy implementation of 10 / 100 Mb/s Fast Etherent LANs. It interfaces to a MAC through an MII interface ensuring interoperability between products from different vendors.
PCI Bus
Serial EEPROM MI Interface
LEDs TX+,-
VT6102 MAC
Boot ROM
MII Interface
VT6103 PHY
Straps
RX+,-
Physical Ethernet Connection
Figure 1. Typical System Block Diagram
Revision 1.1 April 15, 2002
-2-
Overview
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
PINOUTS
Pin Diagram
MDIO MDC PHYAD1 / RXD3 PHYAD2 / RXD2 PHYAD3 / RXD1 PHYAD4 / RXD0 VDD GND BYPOSC / RXDV RXC ISO / RXER GND VCC TXER TXC TXEN TXD0 TXD1 TXD2 TXD3 SYMB / COL RPTR / CRS GND VDD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 RESET# VCCOSC XI XO GNDOSC GNDTX VCCTX TX+ TXGNDTXC VCCPLL REXT GNDPLL GNDRX SD / FXEN RX+ RXVCCRX PD# LED3 / NWAYEN LED2 / DUPLEX LED1 / SPD100 LED0 / LINK INT# / PHYAD0
VT6103 Fast Ethernet Media Interface Chip
Figure 2. Pin Diagram
Pin List
Table 1. Pin List (Alphabetical Order)
Pin # 21 O/I 22 O/I 8 P 12 P 23 P 44 P 36 P 35 P 43 P 39 P 25 O/I 26 O/I 27 O/I 28 O/I 29 O/I 2 I 1 IO 30 I 48 I 37 A 32 I 33 I 10 O 6 IO / I Pin Name COL / SYMB CRS / RPTR GND GND GND GNDOSC GNDPLL GNDRX GNDTX GNDTXC INT# / PHYAD0 LED0 / LINK LED1 / SPD100 LED2 / DUPLEX LED3 / NWAYEN MDC MDIO PD# RESET# REXT RX- RX+ RXC RXD0 / PHYAD4 Pin # 5 4 3 9 11 34 40 41 15 17 18 19 20 16 14 13 47 38 31 42 7 24 46 45 IO / I IO / I IO / I IO / I O/I I/I O O O I I I I I I P P P P P P P I O Pin Name RXD1 / PHYAD3 RXD2 / PHYAD2 RXD3 / PHYAD1 RXDV / BYPOSC RXER / ISO SD / FXEN TX- TX+ TXC TXD0 TXD1 TXD2 TXD3 TXEN TXER VCC VCCOSC VCCPLL VCCRX VCCTX VDD VDD XI XO
Revision 1.1, April 15, 2002
-3-
Pinouts
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Pin Descriptions
Table 2. Pin Descriptions
Management Interface (MI)
Signal Name MDIO MDC INT# / PHYAD0 Pin # 1 2 25 I/O Signal Description IO I O Management Interface (MI) Data I/O. Received from the external MAC. Management Interface (MI) Clock. Received from the external MAC as a timing reference for MDIO Management Interface (MI) Interrupt Out. Active low.
Media Independent Interface (MII)
Signal Name RXC RXD3 / PHYAD1, RXD2 / PHYAD2, RXD1 / PHYAD3, RXD0 / PHYAD4 RXDV / BYPOSC Pin # 10 3 4 5 6 9 I/O Signal Description O O Receive Clock. Timing reference for transfer of RXD and RXDV. 25 MHz when operating at 100 Mbps and 2.5 MHz when operating at 10 Mbps (always active). Receive Data. These bits transition with RXC. RXD[3:0] should accepted by the external MAC for each RXC period in which RXDV is asserted. RXD0 is the least significant bit. While RXDV is de-asserted, RXD[3:0] have no effect upon the switch's MAC and the value of RXD[3:0] is unspecified. Receive Data Valid. RXDV is driven to indicate that nibbles are being presented on the MII for receiving. RXDV transitions synchronous to RXC. It is asserted synchronously with the first nibble of the preamble and remains asserted while all nibbles to be received are presented to the MII. Receive Error. The VT6103 asserts this output when it receives invalid symbols from the network Transmit Clock. Timing reference for transfer of TXD and TXEN. 25MHz when operating at 100 Mbps and 2.5 MHz when operating at 10 Mbps (always active). Transmit Data. These bits transition relative to TXC. TXD[3:0] are accepted from the external MAC for each TXC period in which TXEN is asserted. TXD0 is the least significant bit. While TXEN is de-asserted, TXD[3:0] have no effect and the value of TXD[3:0] is unspecified. Transmit Enable. Indicates transmit active from the MII port. TXEN transitions synchronous to TXC. TXEN indicates that the nibbles presented on TXD[3-0] are valid for transmission. TXEN is asserted synchronously with the first nibble of the preamble and remains asserted while all nibbles to be transmitted are presented to the MII interface. Transmit Error. The MAC asserts this input when an error has occurred in the input stream. Collision Detect. Asserted asynchronously upon detection of a collision on the medium and remains asserted while the collision condition persists. Carrier Sense. Asserted asynchronously upon detection of a non-idle medium or while TXEN is asserted. Deasserted asynchronously upon detection of idle conditions on both transmit and receive media. Remains asserted throughout the duration of a collision condition.
O
RXER / ISO TXC TXD[3-0]
11 15 20, 19, 18, 17
O O I
TXEN
16
I
TXER COL / SYMB CRS / RPTR
14 21 22
I O O
Physical Cable Connection
Signal Name TX+ TX- RX+ RX- Pin # 41 40 33 32 I/O Signal Description O O I I Transmit Plus. Differential outputs for FX, 100BaseTx, or 10BaseT transmission. Transmit Minus. Differential outputs for FX, 100BaseTx, or 10BaseT transmission. Receive Plus. Differential inputs for FX, 100BaseTx, or 10BaseT reception. Receive Minus. Differential inputs for FX, 100BaseTx, or 10BaseT reception.
Revision 1.1, April 15, 2002
-4-
Pin Descriptions
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Strap Options
Signal Name SYMB / COL Pin # 21 I/O Signal Description I Symbol Mode. Latched into register 16 (register 10h) bit-2 at power-up / reset. Internally pulled low for default disabled. 22 I Repeater Mode. Latched into register 16 (register 10h) bit-4 at power-up / RPTR / CRS reset. Internally pulled low for default disabled. 11 I Isolate. Latched into register 0 bit-10 at power-up / reset. Internally pulled ISO / RXER low for default disabled. PHYAD[4:0] / RXD[0:3], INT# 6, 5, 4, I PHY Address. Latched into register 16 (register 10h) bits 15-11 at power-up 3, 25 / reset. Internally pulled low, low, low, low, and high for default 00001b. 26 I Test Mode Enable. 0=Enable, 1=Disable. Do not leave floating. Pull high LINK / LED0 with 10K ohms if not used. 27 I Speed Select. Latched into register 0 bit-13 at power-up / reset (0=Speed 10, SPD100 / LED1 1=Speed100). If NWAYEN is not pulled down at power-up / reset, this pin is also latched as Speed support in register 4 (Auto-Negotiation Advertisement Base Page). Do not leave floating. Pull high or low with 10K ohms. 28 I Duplex Mode Select. Latched into register 0 bit-8 at power-up / reset DUPLEX / LED2 (0=Half, 1=Full). If NWAYEN is not pulled down at power-up / reset, this pin is also latched as Duplex support in register 4 (Auto-Negotiation Advertisement Base Page). Do not leave floating. Pull high or low with 10K ohms. 29 I N-Way Enable. Latched into register 0 bit-12 (Auto-Negotiation Enable) at NWAYEN / LED3 power-up / reset (0=Disable, 1=Enable). Do not leave floating. Pull low with 10K ohms if not used. 34 I Fiber Mode Enable. Latched into register 16 (register 10h) bit-10 at powerFXEN / SD up / reset (0=Disable, 1=Enable). Do not leave floating. Pull low with 10K ohms if not used. Note: For the pins listed above, pullup / pulldown status is latched during powerup / reset. External strap option values may be set by connecting the indicated pin to a 10K ohm pull down for 0 (L) or to a 10K pull up for 1 (H).
LED Outputs
Signal Name LED0 / LINK LED1 / SPD100 LED2 / DUPLEX LED3 / NWAYEN Pin # 26 27 28 29 I/O Signal Description IO IO IO IO LED Output 0. LED Output 1. LED Output 2. LED Output 3. See Register 16 (10h) bits 5-6 & Table 6 for LED function. See Register 16 (10h) bits 5-6 & Table 6 for LED function. See Register 16 (10h) bits 5-6 & Table 6 for LED function. See Register 16 (10h) bits 5-6 & Table 6 for LED function.
Revision 1.1, April 15, 2002
-5-
Pin Descriptions
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Resets, Clocks, Control and Status
Signal Name XI XO BYPOSC / RXDV REXT SD / FXEN PD# RESET# Pin # I/O Signal Description 46 45 9 37 34 30 48 I O I A I I I Crystal In. Connect to 25 MHz crystal and to 22pF 5% to GNDOSC. Can alternately be driven by an external clock source (3.3V voltage swing) with XO unconnected. Crystal Feedback. Connect to other side of 25 MHz crystal and to 22pF 5% to GNDOSC Bypass Oscillator. Connect to pullup to use an external oscillator instead of a crystal. External Resistor. Connect 6.49K 1% resistor to GNDOSC. Signal Detect. Used in fiber mode. Power Down. Active low. Reset. Active low. Schmitt input for improved noise immunity..
Power and Ground
Signal Name VDD GND VCC GND VCCOSC GNDOSC VCCRX GNDRX VCCTX GNDTX GNDTXC VCCPLL GNDPLL Pin # I/O Signal Description 7, 24 8, 23 13 12 47 44 31 35 42 43 39 38 36 P P P P P P P P P P P P P Digital I/O Power. 3.3V nominal (3.15V to 3.45V). For digital I/O Ground. Connect to primary motherboard ground plane. Core Power. 3.3V nominal (3.15V to 3.45V). For internal digital logic. Core Ground. Connect to primary motherboard ground plane. Oscillator Power. 3.3V. Isolate from digital supply voltage with a ferrite bead Oscillator Ground. Connect to primary motherboard ground plane. Receiver Power. 3.3V. Isolate from digital supply voltage with a ferrite bead Receiver Ground. Connect to primary motherboard ground plane. Transmitter Power. 3.3V. Isolate from digital supply voltage with a ferrite bead Transmitter Ground. Connect to primary motherboard ground plane. Transmit Clock Ground. Connect to primary motherboard ground plane. PLL Power. 3.3V. Isolate from digital supply voltage with a ferrite bead PLL Ground. Connect to primary motherboard ground plane.
Revision 1.1, April 15, 2002
-6-
Pin Descriptions
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
REGISTERS
Register Overview
The VT6103 internal register set consists of thirty-two 16-bit MI (Management Interface) registers (of which 9 registers are currently undefined / reserved). The bits of PHY registers 0-8 are defined by the IEEE 802.3u standard. The remaining PHY registers have vendor specific bit definitions. All register bits implemented by the VT6103 are described in this data sheet (see register summary table below, bit summary table on the next page, and detailed register descriptions on following pages). PHY registers are addressed by the MAC by sending register address pointer information via the MI interface (serially over the MDIO pin clocked by MDC) with register read / write data transfer via the same pins. For more information on this mechanism, refer to IEEE 802.3 section 22.2.4. In the register descriptions that follow, the following abbreviations are used: RW = Read / Write RO = Read Only SC = Self Clearing LH = Latch High LL = Latch Low "Self Clearing" bits are normally 0. If set to 1 they will perform the indicated function then automatically be cleared back to 0 by the chip. "Latch High" and "Latch Low" bits are used to record that an event (level) occurred. For Latch High bits, if the bit ever goes high, it will latch at that high level until read (the read will clear the bit). For "Latch Low" bits, if the bit goes low, it will stay at a low level until read (the read will set the bit high).
Table 3. Register Summary
Offset Offset Management Interface Registers 00 00h Management Interface Control 01 00h Management Interface Status 02 01h PHY Identifier 0 03 02h PHY Identifier 1 04 03h Auto-Negotiation Advertisement Base 05 04h Link Partner Advertisement Base 06 05h Auto-Negotiation Expansion 07 06h Auto-Negotiation Advertisement Next 08 07h Link Partner Advertisement Next 9-15 09-0Fh -reserved16 10h PHY Configuration 1 17 11h PHY Configuration 2 18 12h PHY Configuration 3 19 13h PHY Configuration 4 20 14h PHY Status 21 15h Link Fail Counter 22 16h Invalid Symbol / Jabber Error Counter 23 17h False Carrier / SQE Counter 24-25 18-19h -reserved26 1Ah PHY Test Configuration 1 27 1Bh PHY Test Configuration 2 28 1Ch PHY Test Configuration 3 29 1Dh PHY Test Configuration 4 30 1Eh PHY Test Configuration 5 31 1Fh PHY Test Configuration 6 Bits 16 16 16 16 16 16 16 16 16 -- 16 16 16 16 16 16 16 16 -- 16 16 16 16 16 16 Default 3100h 7849h 0101h 8F20h 05E1h 0000h 0004h 2001h 0000h -- 0800h F7FFh 0800h FFFCh 0000h 0000h 0000h 0000h -- 0012h C500h 0208h 0030h 001Bh 0000h Acc Page RW 9 RO 9 RO 9 RO 9 RW 10 RO 10 RO 10 RW 10 RO 10 -- RW 11 RW 11 RW 11 RW 12 RO 12 RO 13 RO 13 RO 13 -- RW 14 RW 14 RW 15 RW 15 RW 15 RW 15
Revision 1.1 April 15, 2002
-7-
Register Descriptions
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Table 4. Register Bit Summary - Registers Defined by 802.3u
Bit Register 0 Register 1 Register 2 15 Reset Cap 100T4 14 Loop Back Cap Tx100F 13 Speed Cap Tx100H 12 Aneg Ena Cap Tx10F 11 Power Down Cap Tx10H 10 Isolate Cap 100T2F 9 Aneg Restart Cap 100T2H 8 Duplex Extd Status OUI (msb) 7 COL Test - 6 Cap Supr 5 Aneg Complete 4 Remote Fault 3 - Cap Aneg 2 Link Status 1 Jabber Detect 0 Extd Reg Register3 Register4 Next Pg Ack Rem Flt OUI (lsb) - - Pause 100T4 Tx100F Part Tx100H Number Tx10F Tx10H Register 5 LP Next Pg LP Ack LP Rem Flt - - LP Pause LP 100T4 LP Tx100F LP Tx100H LP Tx10F LP Tx10H Link Partner Selector Field Register 6 Register 7 Next Page Ack1 Msg Page Ack2 Toggle Register 8 LP NxtPg LP Ack1 LP MP LP Ack2 LP Toggle
- Link Message Partner Code Field Message or Code Field Parallel Fault Det Unformatted or LP Cap Next Pg Code Field Unformatted Cap Next Page Code Field Aneg Page Rcvd LP Cap Aneg
Revision Number
Selector Field
Table 5. Register Bit Summary - Vendor Defined Registers
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register 16 Register 17 Jabber Det PHY SQE Detect Address Pol Correct FarEndFault ChangeSeed Fiber Mode Cable Type Force Link 10LoSquSel Repeater LED Seed Select Int Select Symbol - - Register 18 Register 19 Byp Scram Mask Interrupt Byp 4B5B Mask Link Up Int Byp Align Mask Link Fail Int Byp NRZI Mask Link Change Int LostSyncEna Mask Aneg Compete Int LostSyncSel Mask Page Rcvd Int Mask Jabber Int Mask Rcvd Code Err Int Mask Bad SSD Int Mask Bad ESD Int - Mask SQE Err Int Mask LnkFail MaxCnt Int Mask Rx Err MaxCnt Int Mask FalCarr MaxCnt Int - - Register 20 Rx21 Rx22 Rx23 26-31 Polarity Invert Link Up Status Link Fail Status Link Status Aneg Comp Status Page Rcvd Status Jabber Status Link Receive False Used Rcvd Code Err Status Fail Error Carrier For Bad SSD Status Count Count Count Test Bad ESD Status SQE Err Status LnkFail MaxCnt Status Rx Err MaxCnt Status FalseCarr MaxCnt Stat Speed Duplex
Revision 1.1 April 15, 2002
-8-
Register Descriptions
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Register Descriptions
Offset 0 (00h) - MI Control (3100h)................................RW 15 PHY Reset ........................................default = 0, SC 14 Loopback Mode 0 Disable ...................................................default 1 Enable 13 Speed Select LSB 0 10 1 100 ....................................................default 12 Auto-Negotiation Process 0 Disable 1 Enable ...................................................default 11 Power Down 0 Disable ...................................................default 1 Enable 10 Electrically Isolate PHY from MII 0 Disable ...................................................default 1 Enable 9 Auto-Negotiation Restart ..................default = 0, SC 8 Duplex Mode Select 0 Half 1 Full ....................................................default 7 COL Test 0 Disable ...................................................default 1 Enable 6 Speed Select MSB ...............reserved, always reads 0 5-0 Reserved ........................................ always reads 0 Offset 1 (01h) - MI Status (7849h)................................... RO 15 Capable of 100 Base-T4 Operation................. def=0 14 Capable of 100 Base-TX Full Duplex ............. def=1 13 Capable of 100 Base-TX Half Duplex ............ def=1 12 Capable of 10 Base-TX Full Duplex ............. def=1 11 Capable of 10 Base-TX Half Duplex ............ def=1 10 Capable of 100 Base-T2 Full Duplex .............. def=0 9 Capable of 100 Base-T2 Half Duplex ............. def=0 8 Extended Status Information in Rx15............ def=0 7 Reserved ........................................always reads 0 6 Capable of Accepting MI Frames with MI Preamble Suppressed........................ def=1 5 Auto-Negotiation Process Completed............. def=0 4 Remote Fault Condition Detected ...........LH, def=0 3 Capable of Auto-Negotiation Operation ........ def=1 2 Link Status ............................................... LL, def=0 1 Jabber Condition Detected.......................LH, def=0 0 Capable of Extended Register......................... def=1
Offset 2 (02h) - PHY Identifier 0 (0101h) ....................... RO 15-0 Company ID MSBs ....................always reads 0101h Offset 3 (03h) - PHY Identifier 1 (8F20h)....................... RO 15-10 Company ID LSBs .........................always reads 23h 9-4 Manufacturer's Part number .......always reads 32h 3-0 Manufacturer's Revision Number....always reads 0
Revision 1.1 April 15, 2002
-9-
Register Descriptions
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Offset 7 (07h) - AutoNegotiation Advertisement Next Page (2001h)............................................................................... RW 15 Next Page .............................................. default = 0 14 Received Code Word Recognized ... RO, default = 0 13 Message Page............................................ default = 1 12 Capable of Complying with Message ..... default = 0 11 Toggle Bit ...................................... RO, default = 0 10-0 Message Code Field or Unformatted Code Field ........................................ default = 001h
Offset 4 (04h) - AutoNegotiation Advertisement Base Page (05E1h)...............................................................................RW 15 Next Page .............................................. default = 0 14 Received Code Word Recognized....RO, default = 0 13 Remote Fault ............................................ default = 0 12-11 Reserved ........................................ always reads 0 10 Pause Operation for Full Duplex Link .. default = 1 9 100 Base-T4 Capable ............................... default = 0 8 100 Base-TX Full DuplexCapable .......... default = 1 7 100 Base-TX Half Duplex Capable ........ default = 1 6 10 Base-TX Full Duplex Capable ......... default = 1 5 10 Base-TX Half Duplex Capable ........ default = 1 4-0 Selector Field.................................. default = 00001b Offset 5 (05h) - Link Partner Advertisement Base Page (0000h) ................................................................................RO 15 Next Page .............................................. default = 0 14 Received Code Word Recognized........... default = 0 13 Remote Fault ............................................ default = 0 12-11 Reserved ........................................ always reads 0 10 Pause Operation for Full Duplex Link .. default = 0 9 100 Base-T4 Capable ............................... default = 0 8 100 Base-TX Full DuplexCapable .......... default = 0 7 100 Base-TX Half Duplex Capable ........ default = 0 6 10 Base-TX Full Duplex Capable ......... default = 0 5 10 Base-TX Half Duplex Capable ........ default = 0 4-0 Selector Field............................................ default = 0
Offset 8 (08h) - Link Partner Advertisement Next Page (0000h)................................................................................ RO 15 Next Page .............................................. default = 0 14 Received Code Word Recognized ........... default = 0 13 Message Page............................................ default = 0 12 Capable of Complying with Message ..... default = 0 11 Toggle Bit .............................................. default = 0 10-0 Message Code Field or Unformatted Code Field .............................................. default = 0
Offset 6 (06h) - Auto-Negotiation Expansion (0004h)....RO 15-5 Reserved ........................................ always reads 0 4 Parallel Fault Detect in Auto-Negotiation Process ....................................... LH, default = 0 3 Link Partner Capable of Next Page Process .............................................. default = 0 2 Capable of Next Page Process................. default = 0 1 Page Received in Auto-Negotiation Process ....................................... LH, default = 0 0 Link Partner Capable of Auto-Negotiation Process .............................................. default = 0
Revision 1.1 April 15, 2002
-10-
Register Descriptions
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Offset 17 (11h) - PHY Configuration 2 (F7FFh)........... RW 15 Jabber Detect 0 Disable 1 Enable................................................... default 14 Signal Quality Error Detect 0 Disable 1 Enable................................................... default 13 Auto-Polarity Correction 0 Disable 1 Enable................................................... default 12 Far End Fault Detect 0 Disable 1 Enable................................................... default 11 Change Seed ........................................ Self Clearing 0 Disable................................................... default 1 Enable 10-0 Seed ........................................default = 7FFh
Offset 16 (10h) - PHY Configuration 1 (0800h).............RW 15-11 PHY Address........................................ default = 01h 10 Fiber Mode 0 Disable ...................................................default 1 Enable 9 Cable Type 0 UTP5 and STP (100 ohm) cable ............default 1 STP 150 ohm cable 8 Force PHY in Link Good Status 0 Disable ...................................................default 1 Enable 7 Base10Tx Low Squelch Level Select 0 Regular Cable Length ............................default 1 Long Cable (> 100 meters) 6-5 Programmable LED Output Select LED1 LED2 LED3 LED0 00 Link/Act Speed Duplex COL ....def 01 Pwr/TxAct Link/RxAct Speed Duplex 10 Speed100 Speed10 Act Duplex 11 Pwr/TxAct Link/RxAct Speed COL 4 Repeater Mode 0 Disable ...................................................default 1 Enable 3 Interrupt Select 0 Assert interrupt on INT#........................default 1 Assert interrupt on MDIO 2 Symbol Mode .......................................................RO 0 Disable ...................................................default 1 Enable
Offset 18 (12h) - PHY Configuration 3 (0800h) ............ RW 15 Bypass Scrambler and Descrambler Functions 0 Disable................................................... default 1 Enable 14 Bypass 4B5B Encoding and Decoding Functions 0 Disable................................................... default 1 Enable 13 Bypass Symbol Alignment Function 0 Disable................................................... default 1 Enable 12 Bypass NRZI Encoding and Decoding Functions 0 Disable................................................... default 1 Enable 11 Loss Sync Function ............................. Self Clearing 0 Disable 1 Enable................................................... default 10 Lost Sync Timer Select 0 722 usec................................................. default 1 2 msec 9-0 Reserved ........................................always reads 0
Revision 1.1 April 15, 2002
-11-
Register Descriptions
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Offset 20 (14h) - PHY Status (0000h).............................. RO 15 Polarity Inversion Base10-Tx 0 Disable................................................... default 1 Enable 14 Link Up Status...................................LH, default = 0
Offset 19 (13h) - PHY Configuration 4 (FFFCh) ..........RW 15 Mask Interrupt Function 0 Disable 1 Enable ...................................................default 14 Mask Interrupt on Link-Up Status 0 Disable 1 Enable ...................................................default 13 Mask Interrupt on Link-Fail Status 0 Disable 1 Enable ...................................................default 12 Mask Interrupt on Link Status Change 0 Disable 1 Enable ...................................................default 11 Mask Interrupt on Auto-Negotiation Process Complete 0 Disable 1 Enable ...................................................default 10 Mask Interrupt on Page Received in AutoNegotiation Process 0 Disable 1 Enable ...................................................default 9 Mask Interrupt on Jabber Condition Detect 0 Disable 1 Enable ...................................................default 8 Mask Interrupt on Invalid Symbol Received 0 Disable 1 Enable ...................................................default 7 Mask Interrupt on SSD Delimiter Error Detected 0 Disable 1 Enable ...................................................default 6 Mask Interrupt on ESD Delimiter Error Detected 0 Disable 1 Enable ...................................................default 5 Mask Interrupt on Signal Quality Error Detected 0 Disable 1 Enable ...................................................default 4 Mask Interrupt on Link Fail Counter in Rx15 Count to Max 0 Disable 1 Enable ...................................................default 3 Mask Interrupt on Invalid Symbol Received Counter in Rx16 Count to Max 0 Disable 1 Enable ...................................................default 2 Mask Interrupt on False Carrier Counter in Rx17 Count to Max 0 Disable 1 Enable ...................................................default 1-0 Reserved ........................................ always reads 0
13
Link Fail Status ................................. LL, default = 0
12
Link Status .............................................. default = 0
11
Auto-Negotiation Process Complete....... default = 0
10
Page Received in Auto-Negotiation Process .......................................LH, default = 0
9
Jabber Condition Detect...................LH, default = 0
8
Error Code Symbol Received...........LH, default = 0
7
Start of Stream Delimiter Error ......LH, default = 0
6
End of Stream Delimiter Error........LH, default = 0
5
Signal Quality Error Detected .........LH, default = 0
4
Link Fail Counter in Rx15 Count to Max .......................................LH, default = 0
3
Invalid Symbol Received Counter in Rx16 Count to Max .......................................LH, default = 0
2
False Carrier Counter in Rx17 Count to Max .......................................LH, default = 0
1 0
PHY Speed Status .................................... default = 0 PHY Duplex Status .................................. default = 0
Revision 1.1 April 15, 2002
-12-
Register Descriptions
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Offset 23 (17h) - False Carrier / SQE Counter (0000h). RO Speed 100 15-0 False Carrier Count ................................. default = 0
Offset 21 (15h) - Link Fail Counter (0000h) ...................RO 15-0 Link Fail Count........................................ default = 0
Offset 22 (16h) - Invalid Symbol / Jabber Error Counter (0000h) ................................................................................RO Speed 100 15-0 Count of Invalid Symbols Received ....... default = 0 Speed 10 15-0 Jabber Detect Count................................ default = 0
Speed 10 15-0 SQE Detect Count .................................... default = 0
Revision 1.1 April 15, 2002
-13-
Register Descriptions
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Offset 27 (1Bh) - PHY Test Configuration 2 (C500h) .. RW 15 10 Squelch Signals Debounce 0 Disable 1 Enable................................................... default 14 10 Squelch Signals Go Idle State Debounce 0 Disable 1 Enable................................................... default 13 10 Squelch Signals Idle Condition Select ..... def = 0 12 NLP Pulse Length 0 100 ns .................................................... default 1 150 ns 11 Force Transmit Data 0 Disable................................................... default 1 Enable 10 NLP Watchdog 0 Disable 1 Enable (10 will go Link Fail if too many NLP's received in NLPMinTime at Link Up Status)................................................... default 9 Set Rx21-23 MIB Counters to FFFEh 0 Disable................................................... default 1 Enable.......................................... Self Clearing 8 10 Stop Receive Data if Squelch Signals Go Idle State 0 Disable 1 Enable................................................... default 7 Drive Overshoot Pattern for 100 Characterization 0 Disable................................................... default 1 Enable 6 Fast Drive NLP Pattern for 10 Characterization 0 Disable................................................... default 1 Enable 5 F Direct Drive (See Bits 0-4) 0 Disable................................................... default 1 Enable 4 Replacement Value for TXER if FDirectDrive (bit-5) is Set 3-0 Replacement Value for TXD if FDirectDrive (bit5) is Set
Offset 26 (1Ah) - PHY Test Configuration 1 (0012h) ...RW 15 PHY Capability to Set Baseline Wander Correction Circuit Correction Amount 0 Disable ...................................................default 1 Enable 14-9 Baseline Wander Correction Circuit Value 8 PHY Capability to Read Baseline Wander Correction Circuit Correction Amount 0 Disable ...................................................default 1 Enable 7 Baseline Wander Upper Limit Overflow Indication .......................................................... LH 0 Disable ...................................................default 1 Enable Baseline Wander Lower Limit Overflow Indication .......................................................... LH 0 Disable ...................................................default 1 Enable FTxD10, FTxData10En Clock Phase Selection ......................................... default = 01b Drive Kill Pattern Mode 0 Disable ...................................................default 1 Enable Asynchronous Baseline Wander Correction 0 Disable ...................................................default 1 Enable Asynchronous Baseline Wander Correction Peak Detection Threshold ........................... default = 10h
6
5-4
3
2
1-0
Revision 1.1 April 15, 2002
-14-
Register Descriptions
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Offset 29 (1Dh) - PHY Test Configuration 4 (0030h)... RW 15 Hold Adeq Operation, Keep Current Equalizer Gain Setting 0 Disable................................................... default 1 Enable 14-9 Adeq Gain Amount Setting ..................... default = 0 8 Adeq Can Output Gain Setting 0 Disable................................................... default 1 Enable 7 PHY Can Set Adeq Gain Amount 0 Disable................................................... default 1 Enable 6-5 Adeq Low Pass Filter Bandwidth ....... default = 01b 4 Adeq Test Buffers AOP1/AON1, AOP2/AON2 0 Disable 1 Enable................................................... default 3-2 Adeq Clock Setting for 100BaseT Adaptive Equalizer .............................................. default = 0 1 Bypass 10BaseT Receiver Filter 0 Disable................................................... default 1 Enable 0 Mask Sqh10m and Sq110m in Test Mode 0 Disable................................................... default 1 Enable
Offset 28 (1Ch) - PHY Test Configuration 3 (0208h) ...RW 15 Hold DPLL Phase Setting 0 Disable ...................................................default 1 Enable 14-10 DPLL Clock Phase Setting...................... default = 0 9-8 DPLL Low Pass Filter Bandwidth ..... default = 10b 7 Output DPLL Recovered Clock Phase to PHY 0 Disable ...................................................default 1 Enable 6 PHY Set DPLL Phase Capability 0 Disable ...................................................default 1 Enable 5 DPLL Loopback Mode 0 Disable ...................................................default 1 Enable 4 Rd100, Rd10 Output to PHY 0 Disable ...................................................default 1 Enable 3 Slew Rate Control for 100 Transmitter 0 Disable 1 Enable ...................................................default 2 Baseline Wander Correction 0 Disable ...................................................default 1 Enable 1 Equalizer Peak Detector Scheme Control Using Value in Bit-0 0 Disable ...................................................default 1 Enable 0 Control Equalizer Peak Detector Scheme ... def = 0
Offset 30 (1Eh) - PHY Test Configuration 5 (001Bh) .. RW 15-14 Fx Mode Transmitter Current Source Control, 10BaseT Transmitter Output Slew Rate Control .......................................... default = 00b 13-12 10BaseT Pre-Emphasis Control.......... default = 00b 11-10 Control Attenuator Attenuation Factor, 100 Transmitter Output Amplitude ... default = 00b 9-8 100BaseT Programmable Select Clock Phase to Latch Transmit Data ........................... default = 00b 7-6 10BaseT Transmitter Output Signal Amplitude .......................................... default = 00b 5-3 ADEQ Peak Detector Reference Peak Select ........................................ default = 011b 2-0 ADEQ Slicer Threshold Level Select ........................................ default = 011b
Offset 31 (1Fh) - PHY Test Configuration 6 (0000h) ... RW 15-10 Select Signal Output to LED Pins........... default = 0 9-5 Select Signal Output to MII Pins ............ default = 0 4 Speedup Flags in NwayTxSm.................. default = 0 3 Speedup Tx10Flag in TxAct10................ default = 0 2 Speedup NLPMaxFlag in Timer............. default = 0 1 Speedup NLPMinFlag in Timer ............. default = 0 0 Speedup StabFlag in MLTStatus............ default = 0
Revision 1.1 April 15, 2002
-15-
Register Descriptions
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
FUNCTIONAL DESCRIPTION
General
The VT6103 is a complete 10 / 100 Mbps Ethernet Media Interface IC. The VT6103 has the following main sections: controller interface, encoder, decoder, scrambler, descrambler, clock and data recovery, twisted pair transmitter, twisted pair receiver, and MI serial port. A block diagram is shown in Figure 3. The VT6103 can operate as a 100Base-TX device (hereafter referred to as 100 Mbps mode) or as a 10Base-T device (hereafter referred to as 10 Mbps mode). The differences between 100 Mbps mode and 10 Mbps mode are data rate, signalling protocol, and allowed wiring. 100 Mbps TX mode uses two pairs of category 5 or better UTP or STP twisted pair cable with 4B5B encoded, scrambled, and MLT-3 coded 62.5 MHz ternary data to achieve a throughput of 100 Mbps. 10 Mbps mode uses two pairs of category 3 or better UTP or STP twisted pair cable with Manchester encoded, 10 MHz binary data to achieve a 10 Mbps thruput. The data symbol format on the twisted pair cable for the 100 and 10 Mbps modes is defined in the IEEE 802.3 specification. On the transmit side for 100 Mbps TX operation, data is received on the controller interface from an external Ethernet controller. The data is then sent to the 4B5B encoder for formatting. The encoded data is then sent to the scrambler. The scrambled and encoded data is then sent to the TP transmitter. The TP transmitter converts the encoded and scrambled data into MLT-3 ternary format, preshapes the output, and drives the twisted pair cable. On the receive side for 100 Mbps TX operation, the twisted pair receiver receives incoming encoded and scrambled MLT3 data from the twisted pair cable, removes any high frequency noise, equalizes the input signal to compensate for the effects of the cable, qualifies the data with a squelch algorithm, and converts the data from MLT-3 coded twisted pair levels to internal digital levels. The output of the twisted pair receiver then goes to a clock and data recovery block which recovers a clock from the incoming data, uses the clock to latch in valid data into the device, and converts the data back to NRZ format. The NRZ data is then unscrambled and decoded by the 4B5B decoder and descrambler, respectively, and outputted to an external Ethernet controller by the controller interface. 10 Mbps operation is similar to 100 Mbps TX operation except (1) there is no scrambler/descrambler, (2) the encoder/decoder is Manchester instead of 4B5B, (3) the data rate is 10 Mbps instead of 100 Mbps, and (4) the twisted pair symbol data is two level Manchester instead of ternary MLT-3. The Management Interface, (hereafter referred to as the MI serial port), is a two-pin bidirectional link through which configuration inputs can be set and status outputs can be read. Each block plus the operating modes is described in more detail in the following sections. Since the VT6103 can operate as either a 100Base-TX or a 10Base-T device, each of the following sections describes the performance of the respective section in both 100 and 10 Mbps modes.
Revision 1.1 April 15, 2002
-16-
Functional Description
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
MII INTERFACE
MDIO/NDC
PhyMap
MII PIN
S100
Watchmux Block
S100
5B/4B
S10 S100
ByPass 4B/5B
4B/5B
S10
S100
S_TO_P (Rx10 Rx100)
S100 S10
ByPass SERIAL / PARALLEL
P_TO_S (Tx10 Tx100)
S100
S10
DESCRAM
ByPass DESCRAM / SCRAM
SCRAM
S100
DEMACH DENRZI
S10 S100
ENMACH ByPass Encode / Decode
S100
ENNRZI
NWayArb Mux (From Analog or MII pad for tdm or Inter Loop)
S10 S100
NWayRx
NWayTx
NLP Rx Signal detect
LinkStatus
Mux (Select DrvCmd or standard output)
TRANSCEIVER INTERFACE DPLL SLICER MLT3 to NRZI
Adaptive EQ BaseLine Wander
NRZI to MLT3 APLL FXTX 10RX FXRX OSC PAD TXTP/TXFX 10TX 100TX
RXTP/RXFX
Figure 3. Internal Block Diagram
Revision 1.1 April 15, 2002
-17-
Functional Description
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
802.3u MII
The VT6103 incorporates the Media Independent Inter-face (MII) as specified in clause 22 of the IEEE 802.3u standard. This interface may be used to connect PHY devices to MAC or repeater devices in 10/100 Mb/s systems. This section describes both the serial MII management interface as well as the nibble wide MII data interface. The management interface of the MII allows the configuration and control of multiple PHY devices, the gathering of status and error information, and the determination of the type and abilities of the attached PHY(s). The nibble wide MII data interface consists of a receive bus and a transmit bus each with control signals to facilitate data transfer between the PHY and the upper layer (MAC or repeater.) The VT6103 supports the MII interrupt function. Serial Management Register Access The serial MII specification defines a set of thirty-two 16-bit status and control registers that are accessible through the serial management data interface pins MDC and MDIO. The VT6103 implements all the required MII registers as well as several optional registers. These registers are fully described in the registers section of this document. A description of the serial management access protocol follows. Serial Management Access Protocol The serial control interface consists of two pins, Management Data Clock (MDC) and Management Data Input/Output (MDIO). MDC has a maximum clock rate of 10 MHz and no minimum rate. The MDIO line is bidirectional and may be shared by up to 32 devices. The MDIO frame format is shown in IEEE802.3, section 22.2.4.4. The MDIO pin has an internal pull-up resistor (1.5Kohm) which will pull MDIO high during IDLE and turnaround. In order to initialize the MDIO interface, the station management entity sends a sequence of 32 contiguous logic ones on MDIO to provide the VT6103 with a sequence that can be used to establish synchronization. This preamble may be generated either by driving MDIO high for 32 consecutive MDC clock cycles, or by simply allowing the MDIO pull-up resistor to pull the MDIO pin high during which time 32 MDC clock cycles are provided. In addition, 32 MDC clock cycles should be used if an invalid start, pop code, or turn-around bit is detected. The VT6103 waits until it has received this preamble sequence before responding to any other transaction. Once the VT6103 serial management port has initialized, no further preamble sequencing is required until after a power-on / reset has occurred. The Start code is indicated by a <01> pattern. This assures the MDIO line transitions from the default idle line state. Turnaround is an idle bit time inserted between the Register Address field and the Data field. To avoid contention, no device actively drives the MDIO signal during the first bit of Turnaround during a read transaction. The addressed VT6103 drives MDIO with a zero for the second bit of Turn-around and follows this with the required data. IEEE 802.3 section 22.3.4.1 shows the timing relationship between MDC and MDIO as driven / received by the Station Management Entity (SME) and the VT6103 (PHY) for a typical register read access. For write transactions, the station management entity writes data to an addressed VT6103 eliminating the requirement for MDIO Turnaround. The Turnaround time is filled by the management entity inserting <10> for these two bits. Preamble Suppression The VT6103 supports a Preamble Suppression mode. If the station management entity (i.e. MAC or other management controller) determines that all PHYs in the system support Preamble Suppression by returning a one in this bit, then the station management entity need not generate preamble for each management transaction. The VT6103 requires a single initialization sequence of 32 bits of preamble following power-up/hardware reset. This requirement is generally met by the mandatory pull-up resistor on MDIO in conjunction with a continuous MDC, or the management access made to determine whether Preamble Suppression is supported. While the VT6103 requires an initial preamble sequence of 32 bits for management initialization, it does not require a full 32 bit sequence between each subsequent transaction. A minimum of one idle bit between management transactions is required as specified in IEEE 802.3u. PHY Address Sensing The VT6103 can be set to respond to any of the possible 32 PHY addresses. Each VT6103 connected to a common serial MII must have a unique address. It should be noted that while an address selection of all zeros <00000> will result in PHY Isolate mode, this will not effect serial management access. The VT6103 provides five PHY address pins, the state of which are latched into the PHYCTRL register (address 10h) at system power-up / reset. These pins are described in the pin descriptions section of this document.
Revision 1.1 April 15, 2002
-18-
Functional Description
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Carrier Sense Carrier Sense (CRS) may be asserted due to receive activity, once valid data is detected via the Smart Squelch function during 10 Mb/s operation. For 10 Mb/s Half Duplex operation, CRS is asserted during either packet transmission or reception. For 10 Mb/s Full Duplex operation, CRS is asserted only due to receive activity. CRS is deasserted following an end of packet. In Repeater mode (pin 63 / bit 9, register address 19h), CRS is only asserted due to receive activity. MII Isolate Mode A 100Base-X PHY connected to the mechanical MII interface specified in IEEE 802.3u is required to have a default value of one in bit 10 of the Basic Control Register (BCR, address 00h.). The VT6103 will set this bit to one if the PHY Address is set to 00000 upon power-up / hardware Reset. Otherwise, the VT6103 will set this bit to zero upon power-up / hardware reset. With bit 10 in the BMCR set to one, the VT6103 does not respond to packet data present at TXD[3:0], TXEN, and TXER inputs and presents a high impedance on the TXCK, RXCK, RXDV, RXER, RXD[3:0], COL, and CRS outputs. The VT6103 will continue to respond to all serial management transactions over the MII. While in Isolate mode, the TX+ / X- outputs are dependent on the current state of Auto-Negotiation. The VT6103 can Auto-Negotiate or parallel detect to a specific technology depending on the receive signal at the RX+ / RX- inputs. It is recommended that the user have a basic understanding of clause 22 of the 802.3u standard.
Nibble-Wide MII Data Interface Clause 22 of the IEEE 802.3u specification defines the Media Independent Interface. This interface includes a dedicated receive bus and a dedicated transmit bus. These two data buses, along with various control and indicate signals, allow for the simultaneous exchange of data between the VT6103 and the upper layer agent (MAC or repeater). The receive interface consists of a nibble wide data bus RXD[3:0], a receive error signal RXER, a receive data valid flag RXDV, and a receive clock RXC for synchronous transfer of the data. The receive clock can operate at either 2.5 MHz to support 10 Mb/s operation modes or at 25 MHz to support 100 Mb/s operational modes. The transmit interface consists of a nibble wide data bus TXD[3:0], a transmit error flag TXER, a transmit enable control signal TXEN, and a transmit clock TXC which runs at either 2.5 MHz or 25 MHz. Additionally, the MII includes the carrier sense signal CRS, as well as a collision detect signal COL. The CRS signal asserts to indicate the reception of data from the network or as a function of transmit data in Half Duplex mode. The COL signal asserts as an indication of a collision which can occur during half-duplex operation when both a transmit and a receive operation occur simultaneously. Collision Detect For Half Duplex, a 10Base-T or 100Base-X collision is detected when the receive and transmit channels are active simultaneously. Collisions are reported by the COL signal on the MII. If the VT6103 is transmitting in 10 Mb/s mode when a collision is detected, the collision is not reported until seven bits have been received while in the collision state. This prevents a collision from being reported incorrectly due to noise on the network. The COL signal remains set for the duration of the collision. If a collision occurs during a receive operation, it is immediately reported by the COL signal. When heartbeat is enabled (only applicable to 10 Mb/s operation), approximately 1 ms after the transmission of each packet, a Signal Quality Error (SQE) signal of approximately 10 bit times is generated (internally) to indicate successful transmission. SQE is reported as a pulse on the COL signal of the MII.
Revision 1.1 April 15, 2002
-19-
Functional Description
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
FLP's from the remote device, then the remote device is determined to have Auto Negotiation capability and the device then uses the contents of the MI serial port Auto Negotiation Advertisement register and FLP's to advertise its capabilities to a remote device. The remote device does the same, and the capabilities read back from the remote device are stored in the MI serial port Auto Negotiation Remote End Capability register. The VT6103 negotiation algorithm then matches its capabilities to the remote device's capabilities and determines what mode the device should be configured to according to the priority resolution algorithm defined in IEEE 802.3 Clause 28. Once the negotiation process is completed, the V6103 then configures itself for either 10 or 100 Mbps mode and either Full or Half Duplex modes (depending on the outcome of the negotiation process), and it switches to either the 100Base-TX or 10Base-T link integrity algorithms (depending on which mode was enabled by AutoNegotiation). Refer to IEEE 802.3 Clause 28 for more details. AutoNegotiation Outcome Indication The outcome or result of the Auto Negotiation process is stored in the speed detect and duplex detect bits in the MI serial port Status Output register. AutoNegotiation Status
Link Integrity and AutoNegotiation
General The VT6103 can be configured to implement either the standard link integrity algorithms or the Auto Negotiation algorithm. The standard link integrity algorithms are used solely to establish an active link to and from a remote device. There are different standard link integrity algorithms for 10 and 100 Mbps modes. The Auto Negotiation algorithm is used for two purposes: (1) To automatically configure the device for either 10/100 Mbps and Half/Full Duplex modes, and (2) to establish an active link to and from a remote device. The standard link integrity and Auto Negotiation algorithms are described below. 10Base-T Link Integrity Algorithm - 10Mbps The VT6103 uses the same 10Base-T link intergrity algorithm that is defined in IEEE 802.3 Clause 14. This algorithm uses normal link pulses, referred to as NLP's and transmitted during idle periods, to determine if a device has successfully established a link with a remote device (called Link Pass state). The transmit link pulse meets the template defined in IEEE 802.3 Clause 14. Refer to IEEE 802.3 Clause 14 for more details if needed. 100Base-TX Link Integrity Algorithm -100Mbps Since 100Base-TX is defined to have an active idle signal, there is no need to have separate link pulses like those defined for 10Base-T. The VT6103 uses the squelch criteria and descrambler synchronization algorithm on the input data to determine if the device has successfully established a link with a remote device (called Link Pass state). Refer to IEEE 802.3 for both of these algorithms for more details. AutoNegotiation Algorithm As stated previously, the Auto Negotiation algorithm is used for two purposes: (1) To automatically configure the device for either 10/100 Mbps and Half/Full Duplex modes, and (2) to establish an active link to and from a remote device. The Auto Negotiation algorithm is the same algorithm that is defined in IEEE 802.3 Clause 28. Auto Negotiation uses a burst of link pulses, called fast link pulses and referred to as FLP's, to pass up to 16 bits of signaling data back and forth between the VT6103 and a remote device. The transmit FLP pulses meet the templated specified in IEEE 802.3. A timing diagram contrasting NLP's and FLP's is shown in IEEE802.3. The Auto Negotiation algorithm is initiated by any of the following events: (1) Power up, (2) device reset, (3) Auto Negotiation reset, (4) Auto Negotiation enabled, or (5) a device entering the Link Fail State. Once a negotiation has been initiated, the VT6103 first determines if the remote device has Auto Negotiation capability. If the remote device is not Auto Negotiation capable and is just transmitting either a 10Base-T or 100Base-TX signal, the VT6103 will sense that and place itself in the correct mode. If the VT6103 detects Revision 1.1 April 15, 2002
The status of the Auto Negotiation process can be monitored by reading the Auto Negotiation acknowledgement bit in the MI serial port Status register. The MI serial port Status register contains a single Auto Negotiation acknowledgement bit which indicates when an AutoNegotia-tion has been initiated and successfully completed. AutoNegotiation Enable The Auto Negotiation algorithm can be enabled (or re-started) by setting the Auto Negotiation enable bit in the MI serial port Control register or by strapping the LED3 pin (NWAYEN strap). When the Auto Negotiation algorithm is enabled, the device halts all transmissions including link pulses for 12501600 mS, enters the Link Fail State, and restarts the negotiation process. When the Auto Negotiation algorithm is disabled, the selection of 100 Mbps or 10 Mbps modes is determined by the speed select bit in the MI serial port Control register, and the selection of Half or Full Duplex is determined by the duplex select bit in the MI serial port Control register. Auto Negotiation Reset The AutoNegotiation algorithm can be initiated at any time by setting the Auto Negotiation reset bit in the MI serial port Control register. Link Indication Link activity is also indicated on the LED0 pin whenever a link is detected. LED0 starts blinking on activity.
-20-
Functional Description
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver Decoder
4B5B Encoder - 100 Mbps Since the TP input data is 4B5B encoded on the transmit side, it must also be decoded by the 4B5B decoder on the receive side. The mapping of 5B nibbles to 4B code words is specified in IEEE 802.3. The 4B5B decoder takes the 5B code words from the descrambler, converts them into 4B nibbles. The 4B5B decoder also strips off the SSD delimiter (/J/K symbols) and replaces them with two 4B Data 5 nibbles (/5 symbol), and strips off the ESD delimiter (/T/R symbols) and replaces it with two 4B Data 0 nibbles (/I symbol), per IEEE 802.3 specifications. The 4B5B decoder detects SSD, ESD and, codeword errors in the incoming data stream as specified in IEEE 802.3. These errors are indicated by asserting RXER output while the errors are being transmitted across RXD[3:0], and they are also indicated in the MI Register by setting SSD, ESD, and codeword error bits in the MI Status Output register. Manchester Encoder - 10 Mbps In Manchester coded data, the first half of the data bit contains the complement of the data and the second half of the data bit contains the true data. The Manchester decoder converts the Manchester encoded data stream from the TP receiver into NRZ data for the controller interface by decoding the data and stripping off the SOI pulse. Since the clock and data recovery block has already separated the clock and data from the TP receiver, the Manchester decoding process to NRZ data is inherently performed by that block.
Encoder
4B5B Encoder - 100 Mbps 100Base-TX requires that the data be 4B5B encoded. 4B5B coding converts the 4-Bit data nibbles into 5-Bit data code words. The mapping of the 4B nibbles to the 5B code words is specified in IEEE 802.3. The 4B5B encoder takes 4B nibbles and converts to 5B words according to IEE802.3, and sends the 5B words to the scrambler. The 4B5B encoder also substitutes the first 8 bits of the preamble with the SSD delimiters (/J/K symbols) and adds an ESD delimiter (/T/R symbols) to the end of every packet, as defined in IEEE 802.3. The 4B5B encoder also fills the period between packets, called the idle period, with a continuous stream of idle symbols, as shown in IEE802.3. Manchester Encoder - 10 Mbps The Manchester encoding process combines clock and NRZ data such that the first half of the data bit contains the complement of the data, and the second half of the data bit contains the true data, as specified in IEEE 802.3. This guarantees that a transition always occurs in the middle of the bit cell. The Manchester encoder in the VT6103 converts the 10 Mbps NRZ data from the controller interface into a Manchester Encoded data stream for the TP transmitter and adds a start of idle pulse (SOI) at the end of the packet as specified in IEEE 802.3. Manchester encoding of the NRZ data occurs only when TXEN is asserted.
Revision 1.1 April 15, 2002
-21-
Functional Description
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver Scrambler / Descrambler
100 Mbps Scrambler 100Base-TX requires scrambling to reduce the radiated emissions on the twisted pair. The VT6103 scrambler takes the encoded data from the 4B5B encoder, scrambles it per the IEEE 802.3TP-PMD specifications, and sends it to the TP transmitter. 10 Mbps Scrambler A scrambler is not used in 10 Mbps mode. 100 Mbps Descrambler The VT6103 descrambler takes the scrambled data from the data recovery block, descrambles it per the IEEE 802.3 TPPMD specifications, aligns the data on the correct 5B word boundaries, and sends it to the 4B5B decoder. The algorithm for synchronization of the descrambler is the same as the algorithm outlined in the IEEE802.3 TP-PMD specification. Once the descrambler is synchronized, it will maintain synchronization as long as enough descrambled idle pattern 1's are detected within a given interval. To stay in synchronization, the descrambler needs to detect at least 25 consecutive descrambled idle pattern 1's in a 1 ms interval. If 25 consecutive descrambled idle pattern 1's are not detected within the 1 ms interval, the descrambler goes out of synchronization and restarts the synchronization process. If the descrambler is in the unsynchronized state, the descrambler loss of synchronization detect bit is set in the MI Status Output register to indicate this condition. Once this bit is set, it will stay set until the descrambler achieves synchronization. The output of the descrambler is also aligned according to the 4B/5B code groups. This alignment procedure is done by looking for the /J/K/ symbols at the beginning of the packet and then aligning all subsequent 4B/5B words relative to the beginning of the /J/K/ symbols. 10 Mbps Descrambler A descrambler is not used in 10 Mbps mode.
Clock and Data Recovery
Clock Recovery - 100 Mbps Clock recovery is done with a PLL. If there is no valid data present on the TP inputs, the PLL is locked to the 25 MHz TXC Transmit Clock. When valid data is detected on the TP inputs with the squelch circuit and when the adaptive equalizer has settled, the PLL input is switched to the incoming data on the TP input. The PLL then recovers a clock by locking onto the transitions of the incoming signal from the twisted pair wire. The recovered data clock frequency is 125 MHz and is divided down to produce a 25 MHz clock that is sent to the controller interface signal RXC Receive Clock. The PLL can reliably perform the clock and data recovery process with up to +/-3 ns or jitter on the TP input. The VT6103 has an internal PLL watchdog timer that monitors the receiver PLL output frequency. If the receive PLL output frequency deviates from the TXC frequency by more that 3% over a 8 us interval, the device assumes that the receive PLL has not locked onto the TP input data properly and the PLL is reset. The PLL is reset by switching its input from the TP input data to the TXC for a period of 200 us to retrain it to the 25 MHz frequency from the oscillator. Data Recovery - 100 Mbps Data recovery is performed by latching in valid data from the TP receiver with the recovered clock extracted by the PLL. When invalid data is detected on the TP input, the receive data is held low. When valid data is detected on the TP inputs, the clock recovery block extracts a 125 MHz clock from the data stream from the TP receiver. This 125 MHz recovered clock is then used to latch in valid data from the TP receiver. Clock Recovery - 10 Mbps The clock recovery process for 10 Mbps mode is identical to the 100 Mbps mode except, (1) the recovered clock frequency is a 2.5 MHz nibble clock, (2) the PLL is switched from TXC to the TP input when the squelch indicates valid data, and (3) the PLL takes up to 12 transitions (bit times) to lock onto the preamble, so some of the preamble data symbols are lost, but the clock recovery block recovers enough preamble symbols to pass at least 6 nibbles of preamble to the receive controller interface. Data Recovery - 10 Mbps The data the 100 Decoder performs inputs. recovery process for 10 Mbps mode is identical to Mbps mode. As mentioned in the Manchester section, the data recovery process inherently decoding of Manchester encoded data from the TP
Revision 1.1 April 15, 2002
-22-
Functional Description
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Twisted Pair Transmitter
Transmitter - 100 Mbps The transmitter consists of an MLT-3 encoder, waveform generator and line driver. The MLT-3 encoder converts the NRZ data from the scrambler into a three level MLT-3 code. MLT-3 coding uses three levels, converts 1's to transitions between the three levels, and converts 0's to no transitions or changes in level. The purpose of the waveform generator is to shape the transmitter output pulse. The waveform generator takes the MLT-3 three level encoded waveform and uses an array of switched current sources to control the rise / fall time and level of the signal at the output. The output of the switched current sources then goes through a lowpass filter in order to "smooth" the current output and remove any high frequency components. In this way, the waveform generator preshapes the output waveform transmitted onto the twisted pair cable to meet the pulse template requirements outlined in IEEE 802.3. The waveform generator eliminates the need for any external filters on the TP transmit output. The line driver converts the shaped and smoothed waveform to a current output that can drive 100 meters of category 5 unshielded twisted pair cable or 150 ohm shielded twisted pair cable. Transmitter - 10 Mbps The operation of the 10 Mbps transmitter is much different from the operation of the 100 Mbps transmitter. Even so, the transmitter still consists of a waveform generator and line driver. The purpose of the waveform generator is to shape the output transmit pulse.
Revision 1.1 April 15, 2002
-23-
Functional Description
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
the three level MLT-3 encoded output data from the comparators and converts it to normal NRZ data to be used for clock and data recovery. Receiver - 10 Mbps The 10 Mbps receiver is able to detect input signals from the twisted pair cable that are within the template shown in IEEE802.3. The inputs are biased by internal resistors. The TP inputs pass through a low pass filter designed to eliminate any high frequency noise on the input. The output of the receive filter goes to two different types of comparators: squelch and zero crossing. The squelch comparator determines whether the signal is valid and the zero crossing comparator is used to sense the actual data transitions once the signal is determined to be valid. The output of the squelch comparator goes to the squelch circuit and is also used for link pulse detection, SOI detection, and reverse polarity detection. The output of the zero crossing comparator is used for clock and data recovery in the Manchester decoder.
Twisted Pair Receiver
Receiver - 100 Mbps The TP receiver detects input signals from the twisted pair input and converts them to a digital data bit stream ready for clock and data recovery. The receiver can reliably detect data from a 100Base-TX compliant transmitter that has been passed through 0-100 meters of 100 Ohm category 5 UTP or 150 Ohm STP. The 100 Mbps receiver consists of a level shifter, low pass filter, adaptive equalizer, peak detector, comparator, baseline wander correction circuit, and MLT-3 decoder. A block diagram of the receiver is shown in Figure 3. The TP receiver inputs are assumed to be transformer coupled and terminated by external resistors. The TP inputs are then level shifted and pass through a 2nd order low pass filter designed to eliminate any high frequency noise on the input. The signal then goes to an adaptive equalizer. The adaptive equalizer consists of a programmable bandpass filter and peak detector. The adaptive equalizer uses the bandpass filter characteristic to compensate for the low pass characteristics of the cable, and it uses the peak detector to capture the peak value of the input waveform. It then uses the peak value as a measure of cable length to adjust the pole and zero placement of the bandpass filter. The bandpass filter is digitally programmable and has a 5 bit digital input, called the equalizer setting, that adjusts the frequency response to one of 32 settings. The peak detector captures the peak voltage of the TP inputs, qualifies the input, and digitizes the qualified value to a 5 bit digital result. This digital result, called the equalizer setting, is used to adjust the programmable bandpass filter characteristic. The peak detector qualifies the incoming data stream by only allowing single and double baud wide pulses to update the equalizer setting. If the digitized peak value of any single or double baud wide pulse deviates from the current equalizer setting in the same direction for more than 16 consecutive pulses, the equalizer setting is incremented by one digital step only, independent of how much the new setting and current setting differ. The equalizer updating is only enabled when the receiver is in the unsquelch state (valid data detected by the TP squelch circuit). The baseline wander correction circuit restores the DC component of the input waveform that was removed by external transformers by subtracting the filtered output of the data comparator from the filtered output of the equalizer and adding this difference back into the input of VT6103. The baseline wander correction circuit is only enabled when the descrambler is in the synchronized state. The comparators are used to qualify and slice the data. There are two types of receive comparators: squelch and data. The squelch comparator compares the signal and the output of the LPF before the equalizer against a fixed threshold. The output of the squelch comparator is used by the squelch circuit and link integrity blocks to qualify the data. The data comparators compare the signal at the output of the equalizer against fixed positive and negative thresholds. The MLT-3 decoder takes
Revision 1.1 April 15, 2002
-24-
Functional Description
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Miscellaneous Functions
Smart Squelch Smart squelch is responsible for determining when valid data is present on the differential receive inputs (TPRD+/-). The VT6103 implements an intelligent receive squelch algorithm to ensure that impulse noise on the receive inputs will not be mistaken for a valid signal. Smart squelch operation is independent of the 10Base-T operational mode. The squelch circuitry employs a combination of amplitude and timing measurements (as specified in the IEEE 802.3 10Base-T standard) to determine the validity of data on the twisted pair inputs (refer to IEEE802.3). The signal at the Start of Packet is checked by the smart squelch circuit and any pulses not exceeding the squelch level (either positive or negative, depending upon polarity) will be rejected. Once this first squelch level is overcome correctly, the opposite squelch level must then be exceeded within 150 ns. Finally the signal must exceed the original squelch level within a further 150 ns to ensure that the input waveform will not be rejected. The checking procedure results in the loss of typically three preamble bits at the beginning of each packet. Only after all these conditions have been satisfied will a control signal be generated to indicate to the remainder of the circuitry that valid data is present. At this time, the smart squelch circuitry is reset. Valid data is considered to be present until squelch level has not been generated for a time longer than 150ns, indicating End of Packet. Once good data has been detected the squelch levels are reduced to minimize the effect of noise causing premature End of Packet detection. The receive squelch threshold level can be lowered for use in longer cable or STP applications. This is achieved by setting the F10LSS bit in the PHYCONFIG register (bit 7, register 10h). Collision Detection For Half Duplex, a 10Base-T collision is detected when the receive and transmit channels are active simultaneously. Collisions are reported by the COL signal on the MII. If the ENDEC is transmitting when a collision is detected, the collision is not reported until seven bits have been received while in the collision state. This prevents a collision from being reported incorrectly due to noise on the network. The COL signal remains set for the duration of the collision. If the ENDEC is receiving when a collision is detected, it is reported immediately (through the COL signal). When heartbeat is enabled, approximately 1 ms after the transmission of each packet, a Signal Quality Error (SQE) signal of approximately 10 bit times is generated (internally) to indicate successful transmission. SQE is reported as a pulse on the COL signal of the MII. Carrier Sense Carrier Sense (CRS) may be asserted due to receive activity once valid data is detected via the smart squelch function. For 10 Mb/s Half Duplex operation, CRS is asserted during either packet transmission or reception. For 10 Mb/s Full Duplex operation, CRS is asserted only due to receive activity. CRS is deasserted following an end of packet. In Repeater mode, CRS is only asserted due to receive activity. Normal Link Pulse Detection / Generation The link pulse generator produces pulses as defined in the IEEE 802.3 10Base-T standard. Each link pulse is nominally 100 ns in duration and is transmitted every 16 ms 8 ms, in the absence of transmit data. Link pulse is used to check the integrity of the connection with the remote end. If valid link pulses are not received, the link detector disables the 10BaseT twisted pair trans-mitter, receiver and collision detection functions. When the link integrity function is disabled, the 10Base-T transceiver will operate regardless of the presence of link pulses.
Revision 1.1 April 15, 2002
-25-
Functional Description
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Automatic Link Polarity Detection The VT6103's 10Base-T transceiver module incorporates an automatic link polarity detection circuit. When seven consecutive link pulses or three consecutive receive packets with inverted End-of-Packet pulses are received, bad polarity is reported. The VT6103's 10Base-T transceiver module corrects for this error internally and will continue to decode received data correctly. This eliminates the need to correct the wiring error immediately. Internal Loopback When the FLB_DPLL bit (bit-5) of the PHY Configuration Register (register address 1Ch) is set, transmit data is looped back in the ENDEC to the receive channel. The transmit drivers and receive input circuitry are enabled in transceiver loopback mode. Loopback is used for diagnostic testing of the data path through the transceiver without transmitting on the network or being interrupted by receive traffic. This loopback function causes the data to loop back via the output driver buffers such that the entire transceiver path is tested.
Jabber Function The jabber function monitors the VT6103's output and disables the transmitter if it attempts to transmit a packet of longer than legal size. A jabber timer monitors the transmitter and disables the transmission if the transmitter is active for approximately 20-30 ms. Once disabled by the Jabber function, the transmitter stays disabled for the entire time that the ENDEC module's internal transmit enable is asserted. This signal has to be deasserted for approximately 400-600 ms (the "unjabber" time) before the Jabber function re-enables the transmit outputs. The Jabber function is only meaningful in 10Base-T mode. Status Information VT6103 Status Information is available on the LED output pins. Transmit activity, receive activity, link status, link polarity and collision activity information is output to the four LED output pins, selectable via LEDSEL at Rx16 (Rx10h) bit[6:5] as follows:
Table 6. LED Function Definition
LEDSE LED0 LED1 L 00 Link / Act Speed 01 Pwr / TxAct Link / RxAct 10 Speed 100 Speed 10 11 Pwr / TxAct Link / RxAct LED2 Duplex Speed Act Speed LED3 COL Duplex Duplex COL
Revision 1.1 April 15, 2002
-26-
Functional Description
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
100Base-FX
The VT6103 is fully capable of supporting 100Base-FX applications. 100Base-FX is similar to 100Base-TX with the exceptions being the PMD sublayer, lack of data scrambling, and signaling medium and connectors. Chapter 26 of the IEEE 802.3u specification defines the interface to this PMD sublayer. The VT6103 can be configured for 100Base-FX operation through either hardware or software. Configuration through hardware is accomplished by forcing the FXEN pin (pin 34) to a logic low level prior to power-up / reset
Revision 1.1 April 15, 2002
-27-
Functional Description
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
APPLICATION SCHEMATICS
Revision 1.1 April 15, 2002
-28-
Application Schematics
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
VT6103 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 GF1 TRST# -12V +12V TCK TMS GND0 TDI TDO +5V_1 +5V_0 INTA# +5V_2 INTC# INTB# +5V_3 INTD# RESERVED0 PRSNT#1 I/O_0 RESERVED1 RESERVED2 PRSNT#2 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 AD31 AD30 AD29 AD28 AD27 AD26 AD25 AD24 AD23 AD22 AD21 AD20 AD19 AD18 AD17 AD16 AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 -CBE3 -CBE2 -CBE1 -CBE0 IDSEL -FRAME -IRDY -TRDY -DEVSEL -STOP PAR PCICLK -INTA -PCIRST -GNT -REQ -PERR D3V3 8 20 32 45 56 65 74 83 116 123 119 120 121 122 125 126 127 128 3 5 6 7 9 10 11 12 25 26 27 28 29 30 33 34 36 37 38 40 41 42 43 44 1 14 24 35 2 15 16 17 18 19 23 114 112 113 117 118 21 AD31 AD30 AD29 AD28 AD27 AD26 AD25 AD24 AD23 AD22 AD21 AD20 AD19 AD18 AD17 AD16 AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 CBE3# CBE2# CBE1# CBE0# IDSEL FRAME# IRDY# TRDY# DEVSEL# STOP# PAR PCICLK INTA# PCIRST# GNT# REQ# PERR#
U1 MCRS MCOL MTXD3 MTXD2 MTXD1 MTXD0 MTXE MTXC MERR MRXC MRXDV MRXD0 MRXD1 MRXD2 MRXD3 MDC MDIO VTEST PYHRST AUXRST# WOL PME# SVDD1 SVDD2 SVDD3 84 85 88 89 90 91 92 93 94 97 98 99 100 101 102 105 106 107 109 108 110 111 86 95 104 MA15 MA14 MA13 MA12 MA11 MA10 MA9 MA8 MA7 MA6 MA5 MA4 MA3 MA2 MA1 MA0 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0 EECS -BPCS -BPRD -BPWR 2 C2 0.1u RAMVSS 73 R8 MCRS MCOL
Optional
1 3 5 7 22 2 4 6 8 TXD3 TXD2 TXD1 TXD0
-INTA
R1 for EMI test
-PRSNT1 -PRSNT2
Optional
PCICLK 0 R1
-REQ AD31 AD29 AD27 AD25 -CBE3 AD23 AD21 AD19 AD17 -CBE2 -IRDY -DEVSEL
-CBE1 AD14 AD12 AD10
PAR AD15 AD13 AD11 AD9
AD8 AD7 AD5 AD3 AD1 PCIVCC2
B52 B53 B54 B55 B56 B57 B58 B59 B60 B61 B62
AD8 AD7 +3.3V_11 AD5 AD3 GND11 AD1 I/O_3 ACK64# +5V_4 +5V_6
C/BE0# +3.3V_10 AD6 AD4 GND21 AD2 AD0 I/O_4 REQ64# +5V_5 +5V_7
A52 A53 A54 A55 A56 A57 A58 A59 A60 A61 A62
-CBE0 AD6 AD4 AD2 AD0 PCIVCC2
PCI32_62X2-UNIVERSAL
D3V3 VDD DECOUPLING FOR VT6103
C3 0.1u
C4 0.1u
C5 0.1u
C6 0.1u
C7 0.1u
C8 0.1u
C9 0.1u
C10 0.1u
C11 0.1u
C12 0.1u
C13 0.1u
C14 0.1u
C15 0.1u
C16 0.1u
C17 0.1u
Figure 4. Application Schematic Example Page 1
Revision 1.1 April 15, 2002
-29-
124 115 103 96 87 75 66 57 46 39 31 22 13 4
VSS11 VSS10 SVSS3 SVSS2 SVSS1 VSS9 VSS8 VSS7 VSS6 VSS5 VSS4 VSS3 VSS2 VSS1
VDD1 VDD2 VDD3 VDD4 VDD5 VDD6 VDD7 VDD8 VDD9 VDD10
MD7 MD6 MD5 MD4 MD3 MD2/EECK MD1/EEDI MD0/EEDO EECS BPCS# BPRD# BPWR# RAMVDD
60 59 58 55 54 53 52 51 47 50 49 48 72
10K-0603 5% R7
MA7 MA6 MA5 MA4 MA3 MA2 MA1 MA0 MD0
A12 A15 A16 A18 VCC WE# A17
-PERR
B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49
RESERVED3 GND3 CLK GND4 REQ# I/O_2 AD31 AD29 GND5 AD27 AD25 +3.3V_1 C/BE3# AD23 GND6 AD21 AD19 +3.3V_3 AD17 C/BE2# GND7 IRDY# +3.3V_5 DEVSEL# GND8 LOCK# PERR# +3.3V_7 SERR# +3.3V_8 C/BE1# AD14 GND9 AD12 AD10 M66EN
3.3VAVX RST# I/O_1 GNT# GND14 PME# AD30 +3.3V_0 AD28 AD26 GND15 AD24 IDSEL +3.3V_2 AD22 AD20 GND16 AD18 AD16 +3.3V_4 FRAME# GND17 TRDY# GND18 STOP# +3.3V_6 RESERVED4 RESERVED5 GND19 PAR AD15 +3.3V_9 AD13 AD11 GND20 AD9
A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48 A49
-PCIRST -GNT -PME AD30 AD28 AD26 AD24 IDSEL AD22 AD20 AD18 AD16 -FRAME -TRDY -STOP
3V3AUX
TXEN TXCK RXER RXCK RXDV RXD0 RXD1 RXD2 RXD3 MDC MDIO
RN1
EEPROM
U2 EECS MD2 MD1 MD0 1 2 3 4 CS SK DI DO VCC NC2 NC1 GND 8 7 6 5 D3V3 C1 0.1u
RN1 for EMI test
93C46-3P R2 -PHYRST1 10K-0603 5% R3 10K-0603 5% D3V3
D3V3
-PM E
WOL D3V3
Optional
D3V3
-BPWR MA12 MA15
MA15 MA14 MA13 MA12 MA11 MA10 MA9 MA8 MA7 MA6 MA5 MA4 MA3 MA2 MA1 MA0
82 81 80 79 78 77 76 71 70 69 68 67 64 63 62 61
10K-0603 5% 10K-0603 5%
R4 R5 R6 10K-0603 5%
4 3 2 1 32 31 30
U3
5 6 7 8 9 10 11 12 13
A7 A6 A5 A4 A3 A2 A1 A0 DQ0
DQ1 DQ2 VSS DQ3 DQ4 DQ5 DQ6
A14 A13 A8 A9 A11 OE# A10 CE# DQ7
29 28 27 26 25 24 23 22 21
MA14 MA13 MA8 MA9 MA11 -BPRD MA10 -BPCS MD7
29020 / 39020
BOOT ROM
D3V3
MD1 MD2
Remove when not using BootROM
MD3 MD4 MD5 MD6
14 15 16 17 18 19 20
Application Schematics
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
D3V3 A3V3 RX+ RXC18 0.1u C19 0.1u R9
8 7 6 5 4 3 2 1
U4 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 INT#/PHYAD0 LED0/LINK LED1/SPD100 LED2/DUPLEX LED3/NWAYEN PD# VDDRX RXRX+ SD/FXEN GNDRX GNDPLL REXT VDDPLL GNDTXC TXTX+ VDDTX GNDTX GNDOSC XO XI VDDOSC RST# VT610 3 SSOP48 VDD2 GND2 CRS/RPTR COL/SYMB TXD3 TXD2 TXD1 TXD0 TXEN TXC TXER VDDC GNDC RXER/ISO RXC RXDV/BYPOSC GND1 VDD1 RXD0/PHYAD4 RXD1/PHYAD3 RXD2/PHYAD2 RXD3/PHYAD1 MDC MDIO 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
R10 49.9 1%
49.9 1%
LINK SPEED DUPLEX NWAY
RJ-45 1 2 3 4 5 6 7 8
LEG2 LEG1 LEG4 LEG3
10
11
12
13
14
15
R13 75
R14 75
R15 75 TX-
16
9
TX+
C20 0.01u/2KV
R16 75 1% R17 49.9 1%
GTS FC-518LS PULSE PE-68515 YCL 20PMT04/20PMT04B
D3V3 R20 5VSB PCIVCC2 D3V3 3V3AUX 1 2 3 4 C28 0.1u C29 0.1u C30 0.1u U6 5VSB 5VCC 3V3OUT 3V3AUX AAT1201 GND2 GND1 EN2V5 2V5OUT 8 7 6 5 PCIVCC2 3 C24 0.1u U7 AMS1117-3.3 VIN
GND
1
C27 0.1u
Optional
For WOL function For no WOL function
Optional
5VSB J1 WOL 1 2 3 PIN.3
D3V3
WOL
For WOL function
Remove when not using WOL function To use External reset signal Mount R24 and C31
Figure 5. Application Schematic Example Page 2
Revision 1.1 April 15, 2002
R D +
U5 GTS FC-518LS R11 10K 1% R12 6.49K 1%
T D +
R D T D -
C T C T
C T C T
R X T X -
R X + T X +
CN1
RDRD+ SD
MCRS MCOL TXD3 TXD2 TXD1 TXD0 TXEN TXC K TXER
TDTD+
RXER RXCK RXDV
RN2 for EMI test Optional
RN2 1 3 5 7 22 2 4 6 8 RXD0 RXD1 RXD2 RXD3 D3V3
R18 49.9 1%
A3V3 X1 25MHz 1 2 C21 0.1u C22 22p
-PHYRST2
MDC MDIO 1.50K 1% R19
C23 22p
10K-0603 5%
NWAY
D3V3 VOUT1 VOUT2 2 PAD1
+
C25 10uF/16V
C26 0.1u
AMS1117 AME1117 AIC1117 PJ1117 LM1117 LD1117 RC1117
R21
10K-0603 5%
DUPLEX
TOP
R22 R23 330-0603 5% 330-0603 5% 3 1 LED1 4 2 SPEED LINK
Optional
Optional
D3V3
To use MAC Phyreset signal Mount R25
C32 R25 0-0603 -PHYRST1 .1U
D3V3 DECOUPLING FOR VT6103
C33 .1U C34 .1U
D3V3 L1
A3V3
A3V3 DECOUPLING FOR VT6103
C36 .1U C37 .1U C38 .1U
FB-0805 100MHz@100ohm
C35 .1U
R24 10K-0603 5% -PHYRST2 C31 1u
L2
FB-1206 100MHz@52ohm
L3
FB-1206 100MHz@52ohm
-30-
Application Schematics
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings Parameter
Storage Temperature Operating Temperature - Case Electrostatic Discharge Power Supply Voltages (All) Input voltage Output Voltage At Any Output
Min
-55 0 -0.5 -0.5 -0.5
Max
125 100 3 4.0 VDD+0.5 VDD-0.5
Unit
oC oC KV Volts Volts Volts
Comment
TS TC Human Body Model VDD, VCC, VCCOSC, VCCPLL, VCCRX, VCCTX
Note: Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.
DC Characteristics
TC -0-100oC, VDD =3.3V 0.3V, GND = 0V
Symbol
VIL VIH VOL VOH IIL IOZ CIN COUT IDD IDD TPU TSETUP THOLD TDELAY
Parameter
Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage Input Leakage Current Tristate Leakage Current Input Capacitance Output Capacitance Power Supply Current Power Supply Current Power-Up Reset Time Setup Time Hold Time Delay Time
Min
-0.5 2.4 0.9 VDD 2 6 0
Max
0.9 VDD+0.5 0.1 VDD 50 50 7.5 7.5 130 80 -
Unit
V V V V uA uA pF pF mA mA ms ns ns
Comment
LED0-3 LED0-3
Fc=1MHz, TXD, TXEN, TXER Fc=1MHz, RXD, RXDV, RXER, RXCK, TXCK 10Base-T 100Base-Tx
50% to 50%, 10pF load 50% to 50%, 10pF load 50% to 50%, 10pF load
6
ns
AC Characteristics
AC timing specifications provided assume an REXT of 6.19K 1%, clock rate of 25MHz 0.005%, power supply voltage of 3.3 to 3.6V, and case temperature between 0 and 100 oC.
Revision 1.1 April 15, 2002
-31-
Electrical Specifications
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
100BaseT Transmitter Characteristics
Symbol Parameter
Output Differential Amplitude Output Differential Amplitude Output Differential Amplitude Output Symmetry TR / TF Output Rise / Fall Output Rise / Fall Skew Output Overshoot Output Timing Jitter (Peak to Peak) Return Loss Return Loss Return Loss DCD Duty Cycle Distortion Transmitter On-Chip Power Consumption
Min
Typ
2 2 2.45
Max
Unit Comment
Vpp UTP (100 ohm) Vpp STP (100 ohm) Vpp STP (150 ohm)
0.98 3 4
1.02 5 0.5 5 0.4 1.4
V/V Differential Pos/Neg ns ns % ns dB dB dB Scrambled 2 ~ 30 MHz 30 ~ 60 MHz 60 ~ 80 MHz
16 16 20log(f/30M)10 -0.25 0.25 45
ns mA 100 ohm
10BaseT Transmitter Characteristics
Symbol Parameter
Output Differential Amplitude THD Total Harmonic Distortion Idle Pulse Width Link Pulse Width Output Jitter without Cable Output Jitter with Cable
Min
4.4
Typ
5
Max
5.6 5
Unit Comment
Vpp UTP (100 ohm) % ns All 1 and all 0
250 100 8 3.5
ns ns ns
Revision 1.1 April 15, 2002
-32-
Electrical Specifications
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Crystal Oscillator Characteristics
Symbol Parameter
Output Frequency Output Frequency Jitter - Short Term Output Frequency Jitter - Long Term PLL Frequency Multiplier Characteristics
Min
24.9975
Typ
25
Max
25.0025 50 500
Unit Comment
MHz ps ps
Symbol Parameter
PLL Loop Bandwidth PLL Acquisition Time VCO Operating Frequency - 100Base Mode VCO Operating Frequency - 10Base Mode PLL Output Clock Jitter - Short Term PLL Output Clock Jitter - Long Term FX Characteristics
Min
Typ
2.5
Max
5 50
Unit Comment
MHz us MHz MHz 25% Frequency Change
250 200 200 1000
ps ps
Symbol Parameter
VOH VOL VIH VIL PECL Output Voltage High PECL Output Voltage Low PECL Input Voltage High PECL Input Voltage Low FX Mode Enable Voltage (SD) Input Common Mode Range Input Differential Amplitude Output Jitter
Min
2.28 1.49 2.135 1.49 1.49 1.3 0.15
Typ
2.35 1.58
Max
2.42 1.68 2.42 1.825 1.825 2.8
Unit Comment
Volts Volts Volts Volts Volts Volts Volts
1.4
ns
Revision 1.1 April 15, 2002
-33-
Electrical Specifications
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Table 7. MI Interface MDIO Output Timing
Symbol Parameter
T4 / TMC MDCK Frequency T2 / TMIOS MDIO Input Setup Time T3 / TMIOH MDIO Input Hold Time T1 / TMOD MDIO Output Delay
Min
10 10 0
Typ
Max Unit Comment
10 MHz ns ns 300 ns To MDCK rising edge To MDCK rising edge To MDCK rising edge
MDC T4 MDIO (OUTPUT) T1
MDC T2 MDIO (INPUT) T3 Valid Data
Figure 6. MI Interface MDIO Timing
Table 8. MI Interface MDIO Interrupt Pulse Timing
Symbol Parameter
T1 T2 MDCK to MDIO Interrupt Pulse Asertion Delay MDCK to MDIO Interrupt Pulse Deassertion Delay
Min
10 10
Typ
Max Unit Comment
ns ns
Interrupt Event
MDC T1 MDIO (OUTPUT) T2
Figure 7. MI Interface MDIO Interrupt Pulse Timing
Revision 1.1 April 15, 2002
-34-
Electrical Specifications
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Table 9. LED On / Off Timing
Symbol Parameter
T1 T2 LED[3:0] On Time LED[3:0] Off Time
Min
Typ
68 68
Max Unit Comment
ms ms
T1 LED[3:0]
T2
Figure 8. LED On / Off Timing
Table 10. MII Transmit Data Timing
Symbol Parameter
T1 T2 TXD[3:0], TXEN, TXER Setup to TXC TXD[3:0], TXEN, TXER Hold from TXC
Min
10 0
Typ
Max Unit Comment
ns ns
TX_CLK T1 TXD[3:0] TX_EN TX_ER(INPUT) T2 Valid Data
Figure 9. MII Transmit Data Timing
Table 11. MII Receive Data Timing
Symbol Parameter
T1 T2 RXD[3:0], RXDV, RXER to RXC Output Delay RXC Clock Period
Min
Typ
40
Max Unit Comment
25 ns ns
T2
RX_CLK T1 RXD[3:0] RX_DV RX_ER(OUTPUT) Valid Data
Figure 10. MII Receive Data Timing
Revision 1.1 April 15, 2002
-35-
Electrical Specifications
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Table 12. MII Heartbeat Timing
Symbol Parameter
T1 T2 COL Heartbeat Delay COL Heartbeat Duration
Min
Typ
900 1000
Max Unit Comment
ns ns
TX_EN
TX_CLK T1 COL T2
Figure 11. MII Heartbeat Timing
Table 13. MII Jabber Timing
Symbol Parameter
T1 T2 Jabber Activation Time Jabber Deactivation Time
Min
Typ
20 490
Max Unit Comment
150 ms ms
TX_EN T1 TXD[3:0] T2
COL
Figure 12. MII Jabber Timing
Revision 1.1 April 15, 2002
-36-
Electrical Specifications
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Table 14. MII 10Base-T Normal Link Pulse Timing
Symbol Parameter
T1 T2 Clock, Data Pulse Width Link Pulse to Link Pulse Period
Min
Typ
100 8
Max Unit Comment
ns ms
T2 T1 NLP
Figure 13. MII Normal Link Pulse Timing
Table 15. MII Auto-Negotiation Fast Link Pulse Timing
Symbol Parameter
T1 T2 T3 T4 T5 Clock, Data Pulse Width Clock Pulse to Clock Pulse Period Clock Pulse to Data Pulse Period Burst Width FLP Burst to FLP Burst Period
Min
Typ
100 125 62.5 2 8
Max Unit Comment
ns us us ms ms
T2 T3 T1 Fast Link Pulse(s) clock pulse T5 T4 data pulse clock pulse data pulse T1
FLP Burst
FLP Burst
Figure 14. MII Auto-Negotiation Fast Link Pulse Timing
Revision 1.1 April 15, 2002
-37-
Electrical Specifications
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Table 16. 100Mb/s Receive Packet Timing
Symbol Parameter
T1 T2 Carrier Sense On Delay Receive Data Latency
Min
Typ
100 160
Max Unit Comment
ns ns
RD+/-
IDLE T1
(J/K)
Data
CRS T2 RXD[3:0] RX_DV RX_ER/RXD[4]
Figure 15. 100Mb/s Receive Packet Timing
Table 17. 100Mb/s Transmit Packet Timing
Symbol Parameter
T1 T2 TXC to TX+/- Latency TXC to TX+/- Deassertion
Min
Typ
Max Unit Comment
120 120 ns ns
TX_CLK
T2 TX_EN T1
TD+/-
IDLE
(J/K)
DATA
TR
IDLE
Figure 16. 100Mb/s Transmit Packet Timing
Revision 1.1 April 15, 2002
-38-
Electrical Specifications
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
Table 18. 10Mb/s Receive Packet Timing
Symbol Parameter
T1 T2 T3 Carrier Sense On Delay Receive Data Valid Delay Receive Data Latency
Min
Typ
550 2200 750
Max Unit Comment
ns ns ns
RD+/-
IDLE T1
Preamble
Data
CRS
T2 RX_DV
T3 RXD[3:0] RX_ER/RXD[4]
Figure 17. 10Mb/s Receive Packet Timing
Table 19. 10Mb/s Transmit Packet Timing
Symbol Parameter
T1 T2 TXC to TX+/- Latency TXC to TX+/- Deassertion
Min
Typ
470 700
Max Unit Comment
ns ns
TX_CLK
T2 TX_EN T1
TD+/-
IDLE
Preamble
DATA
SOP
IDLE
Figure 18. 10Mb/s Transmit Packet Timing
Revision 1.1 April 15, 2002
-39-
Electrical Specifications
Technologies, Inc.
We Connect
VT6103 - Fast Ethernet 10 / 100 PHY / Transceiver
PACKAGE MECHANICAL SPECIFICATIONS
Product Part Number
VT6103
YYWWRR LLLLLLLLL TAIWAN CM
Date Code, Chip Revision, and Country of Assembly Lot Code
SEATING PLANE
See Detail F
CONTROLLING DIMENSION : INCH Millimeter Inch Symbol Min Nom Max Min Nom Max A 2.41 2.59 2.79 0.095 0.102 0.110 A1 0.20 0.30 0.40 0.008 0.012 0.016 A2 2.26 2.39 2.52 0.089 0.094 0.099 b 0.20 0.25 0.34 0.008 0.010 0.0135 c 0.13 0.20 0.25 0.005 0.008 0.010 D 15.75 15.88 16.00 0.620 0.625 0.630 E1 7.39 7.49 7.59 0.291 0.295 0.299 e 0.64 BASIC 0.025 BASIC E 10.03 10.31 10.67 0.395 0.406 0.420 L 0.51 0.76 1.02 0.020 0.030 0.040 L1 1.42 0.056 0 0 0 8 8
GAUGE PLANE
Detail F
Figure 19. Mechanical Specifications - 48 Pin SSOP Package
Revision 1.1 April 15, 2002
-40-
Package Mechanical Specifications


▲Up To Search▲   

 
Price & Availability of VT6103

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X