Part Number Hot Search : 
F150R 0B1TR MB252 TLVY4200 1045011 P3CLHM3 MACA126 Z1000
Product Description
Full Text Search
 

To Download HUF76445P3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HUF76445P3, HUF76445S3S
Data Sheet October 1999 File Number 4676.3
75A, 60V, 0.0075 Ohm, N-Channel, Logic Level UltraFET Power MOSFET Packaging
JEDEC TO-220AB
SOURCE DRAIN GATE
Features
JEDEC TO-263AB
DRAIN (FLANGE)
* Ultra Low On-Resistance - rDS(ON) = 0.0065, VGS = 10V - rDS(ON) = 0.0075, VGS = 5V * Simulation Models - Temperature Compensated PSPICE(R) and SABER(c) Electrical Models - Spice and SABER(c) Thermal Impedance Models - www.semi.Intersil.com * Peak Current vs Pulse Width Curve * UIS Rating Curve
GATE SOURCE DRAIN (FLANGE)
HUF76445P3
HUF76445S3S
Symbol
D
* Switching Time vs RGS Curves
Ordering Information
PART NUMBER PACKAGE TO-220AB TO-263AB BRAND 76445P 76445S HUF76445P3 HUF76445S3S
G
S
NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF76445S3ST.
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified HUF76445P3, HUF76445S3S UNITS V V V A A A A
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TC= 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg NOTES:
60 60 16 75 75 75 75 Figure 4 Figures 6, 17, 18 310 2.08 -55 to 175 300 260
W W/oC
oC oC oC
1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
1
CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures. UltraFETTM is a trademark of Harris Corporation. PSPICE(R) is a registered trademark of MicroSim Corporation. SABER(c) is a Copyright of Analogy Inc. 1-888-INTERSIL or 407-727-9207 | Copyright (c) Intersil Corporation 1999.
HUF76445P3, HUF76445S3S
Electrical Specifications
PARAMETER OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage BVDSS IDSS IGSS VGS(TH) rDS(ON) ID = 250A, VGS = 0V (Figure 12) ID = 250A, VGS = 0V , TC = -40oC (Figure 12) Zero Gate Voltage Drain Current VDS = 55V, VGS = 0V VDS = 50V, VGS = 0V, TC = 150oC Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250A (Figure 11) ID = 75A, VGS = 10V (Figures 9, 10) ID = 75A, VGS = 5V (Figure 9) ID = 75A, VGS = 4.5V (Figure 9) THERMAL SPECIFICATIONS Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient RJC RJA TO-220 and TO-263 0.48 62
oC/W oC/W
TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
60 55 -
-
1 250 100 3 0.0065 0.0075 0.008
V V A A nA
VGS = 16V
1 -
0.0054 0.0063 0.0066
V
SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time tON td(ON) tr td(OFF) tf tOFF tON td(ON) tr td(OFF) tf tOFF Qg(TOT) Qg(5) Qg(TH) Qgs Qgd CISS COSS CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDD = 30V, ID = 75A, Ig(REF) = 1.0mA (Figures 14, 19, 20) VDD = 30V, ID = 75A VGS = 10V, RGS = 2.4 (Figures 16, 21, 22) VDD = 30V, ID = 75A VGS = 4.5V, RGS = 2.2 (Figures 15, 21, 22) 18 325 39 135 515 260 ns ns ns ns ns ns
SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 5V Threshold Gate Charge Gate to Source Gate Charge Reverse Transfer Capacitance CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance 4965 1250 150 pF pF pF 124 68 5 14 30 150 81 6 nC nC nC nC nC 12 126 62 135 205 295 ns ns ns ns ns ns
Source to Drain Diode Specifications
PARAMETER Source to Drain Diode Voltage SYMBOL VSD trr QRR ISD = 75A ISD = 35A Reverse Recovery Time Reverse Recovered Charge ISD = 75A, dISD/dt = 100A/s ISD = 75A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.25 1.00 100 260 UNITS V V ns nC
2
HUF76445P3, HUF76445S3S Typical Performance Curves
1.2 POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC) 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (oC) 80 VGS = 10V 60 VGS = 4.5V 40
ID, DRAIN CURRENT (A)
20
175
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE
2 1 THERMAL IMPEDANCE ZJC, NORMALIZED DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 t, RECTANGULAR PULSE DURATION (s) 10-1 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 100 101
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
2000 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 VGS = 10V VGS = 5V 175 - TC 150
IDM, PEAK CURRENT (A)
1000
100 50
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101
10-5
FIGURE 4. PEAK CURRENT CAPABILITY
3
HUF76445P3, HUF76445S3S Typical Performance Curves
1000
(Continued)
1000 IAS, AVALANCHE CURRENT (A) If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
ID, DRAIN CURRENT (A)
100
100s
100
STARTING TJ = 25oC
1ms 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) SINGLE PULSE TJ = MAX RATED TC = 25oC 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 100
10ms
STARTING TJ = 150oC
1
10 0.01 0.1 1 10 tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
150
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
120
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V
150
VGS = 10V VGS = 5V VGS = 4V VGS = 3.5V
120
90
90
60 TJ = 175oC 30 TJ = 25oC TJ = -55oC 1.5 3 2 2.5 3.5 VGS, GATE TO SOURCE VOLTAGE (V) 4
60
VGS = 3V PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC 0 1 2 3 VDS, DRAIN TO SOURCE VOLTAGE (V) 4
30
0
0
FIGURE 7. TRANSFER CHARACTERISTICS
FIGURE 8. SATURATION CHARACTERISTICS
25 NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID = 75A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (m) 20 ID = 35A 15 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC
2.5 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 2.0
VGS = 10V, ID = 75A
1.5
10 ID = 20A 5 2 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 10
1.0
0.5 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 160 200
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
4
HUF76445P3, HUF76445S3S Typical Performance Curves
1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250A NORMALIZED GATE THRESHOLD VOLTAGE
(Continued)
1.2 ID = 250A
1.0
1.1
0.8
1.0
0.6
0.4 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
0.9 -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
10
10000
CISS = CGS + CGD
VGS , GATE TO SOURCE VOLTAGE (V)
VDD = 30V
8
C, CAPACITANCE (pF)
CRSS = CGD 1000 COSS CDS + CGD
6
4 WAVEFORMS IN DESCENDING ORDER: ID = 75A ID = 35A 0 30 60 90 120 150
2
VGS = 0V, f = 1MHz 100 0.1 1.0 10 60 VDS , DRAIN TO SOURCE VOLTAGE (V)
0 Qg, GATE CHARGE (nC)
NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
1200 VGS = 4.5V, VDD = 30V, ID = 75A 1000 SWITCHING TIME (ns) SWITCHING TIME (ns) tr 800
800 VGS = 10V, VDD = 30V, ID = 75A td(OFF) 600 tf 400 tr 200 td(ON) 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE () 50 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE () 50
600 tf 400 td(OFF) 200 td(ON) 0
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
5
HUF76445P3, HUF76445S3S Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD
+
0V
IAS 0.01
0 tAV
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
VDS RL VDD VDS VGS = 10V VGS
+
Qg(TOT)
Qg(5) VDD VGS VGS = 1V 0 Qg(TH) Qgs Ig(REF) 0 Qgd VGS = 5V
DUT Ig(REF)
FIGURE 19. GATE CHARGE TEST CIRCUIT
FIGURE 20. GATE CHARGE WAVEFORMS
VDS
tON td(ON) RL VDS
+
tOFF td(OFF) tr tf 90%
90%
VGS
VDD DUT 0
10% 90%
10%
RGS VGS VGS 0 10% 50% PULSE WIDTH 50%
FIGURE 21. SWITCHING TIME TEST CIRCUIT
FIGURE 22. SWITCHING TIME WAVEFORM
6
HUF76445P3, HUF76445S3S PSPICE Electrical Model
.SUBCKT HUF76445 2 1 3 ;
CA 12 8 6.50e-9 CB 15 14 6.50e-9 CIN 6 8 4.71e-9
LDRAIN
rev 23 April1999
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD EBREAK 11 7 17 18 66.30 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 5.05e-9 LSOURCE 3 7 2.64e-9 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1.90e-3 RGATE 9 20 0.87 RLDRAIN 2 5 10 RLGATE 1 9 50.5 RLSOURCE 3 7 26.4 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 3.0e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD
S1A 12 S1B CA 13 8 GATE 1 RLGATE
DPLCAP 10
5 RLDRAIN DBREAK 11 + 17 EBREAK 18
DRAIN 2 RSLC1 51 ESLC 50
RSLC2
5 51
ESG + LGATE EVTEMP RGATE + 18 22 9 20 6 8 EVTHRES + 19 8 6
MSTRO CIN LSOURCE 8 RSOURCE RLSOURCE S2A 14 13 S2B 15 17 RBREAK 18 RVTEMP CB + 6 8 EDS 5 8 14 IT 19 7 SOURCE 3
13 + EGS
-
-
VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*453),3))} .MODEL DBODYMOD D (IS = 4.45e-12 RS = 2.08e-3 TRS1 = 1.75e-3 TRS2 = 1.03e-6 CJO = 7.22e-9 TT = 7.21e-8 M = 0.60) .MODEL DBREAKMOD D (RS = 1.23e-1 TRS1 = 0 TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 4.13e-9 IS = 1e-30 Vj = 1.0 M = 0.85) .MODEL MMEDMOD NMOS (VTO = 1.90 KP = 5.0 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.87) .MODEL MSTROMOD NMOS (VTO = 2.31 KP = 275 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.65 KP = 0.12 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 8.7 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.16e-3 TC2 = 1.17e-7) .MODEL RDRAINMOD RES (TC1 = 1.48e-2 TC2 = 2.93e-5) .MODEL RSLCMOD RES (TC1 = 1.53e-3 TC2 = 0) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -2.87e-3 TC2 = -1.02e-5) .MODEL RVTEMPMOD RES (TC1 = -1.42e-3 TC2 = 9.21e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -5.7 VOFF= -2.7) VON = -2.7 VOFF= -5.7) VON = -1.0 VOFF= 0.5) VON = 0.5 VOFF= -1.0)
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
7
+
-
RDRAIN 21 16
DBODY
MWEAK MMED
VBAT +
8 22 RVTHRES
HUF76445P3, HUF76445S3S SABER Electrical Model
REV 23 April 1999 template ta76445 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 4.45e-12, cjo = 7.22e-9, tt = 7.21e-8, xti = 4.5, m = 0.60) d..model dbreakmod = () d..model dplcapmod = (cjo = 4.13e-9, is = 1e-30, vj=1.0, m = 0.85 ) m..model mmedmod = (type=_n, vto = 1.90, kp = 5, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.31, kp = 275, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.65, kp = 0.12, is = 1e-30, tox = 1) DPLCAP sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.7, voff = -2.7) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.7, voff = -5.7) 10 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.0, voff = 0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.0) c.ca n12 n8 = 6.50e-9 c.cb n15 n14 = 6.50e-9 c.cin n6 n8 = 4.71e-9 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 5.05e-9 l.lsource n3 n7 = 2.64e-9
GATE 1 RLGATE CIN LGATE RSLC2 ISCL
LDRAIN 5 RLDRAIN RDBREAK 72 DBREAK 11 MWEAK MMED MSTRO 8 EBREAK + 17 18 71 RDBODY DRAIN 2 RSLC1 51
ESG + EVTEMP RGATE + 18 22 9 20 6 6 8 EVTHRES + 19 8
50 RDRAIN 21 16
DBODY
-
LSOURCE 7 RLSOURCE
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
S1A S2A 14 13 S2B 13 + EGS 6 8 EDS CB + 5 8 14 15
SOURCE 3
RSOURCE 12 RBREAK 17 18 RVTEMP 19 IT
res.rbreak n17 n18 = 1, tc1 = 1.16e-3, tc2 = 1.17e-7 res.rdbody n71 n5 = 2.08e-3, tc1 = 1.75e-3, tc2 = 1.03e-6 res.rdbreak n72 n5 = 1.23e-1, tc1 = 0, tc2 = 0 res.rdrain n50 n16 = 1.9e-3, tc1 = 1.48e-2, tc2 = 2.93e-5 res.rgate n9 n20 = 0.87 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 50.5 res.rlsource n3 n7 = 26.4 res.rslc1 n5 n51 = 1e-6, tc1 = 1.53e-3, tc2 = 0 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 3.0e-3, tc1 = 0, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -1.42e-3, tc2 = 9.21e-7 res.rvthres n22 n8 = 1, tc1 = -2.87e-3, tc2 = -1.02e-5 spe.ebreak n11 n7 n17 n18 = 66.3 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1
13 8 S1B
CA
VBAT +
-
-
8 RVTHRES
22
equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/453))** 3)) } }
8
HUF76445P3, HUF76445S3S SPICE Thermal Model
REV 8 April 1999 HUF76445T CTHERM1 th 6 6.45e-3 CTHERM2 6 5 3.00e-2 CTHERM3 5 4 1.40e-2 CTHERM4 4 3 1.65e-2 CTHERM5 3 2 4.85e-2 CTHERM6 2 tl 12.55 RTHERM1 th 6 3.24e-3 RTHERM2 6 5 8.08e-3 RTHERM3 5 4 2.28e-2 RTHERM4 4 3 1.28e-1 RTHERM5 3 2 1.93e-1 RTHERM6 2 tl 2.56e-2
RTHERM1 CTHERM1 th JUNCTION
6
RTHERM2
CTHERM2
5
RTHERM3
CTHERM3
SABER Thermal Model
SABER thermal model HUF76445T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 6.45e-3 ctherm.ctherm2 6 5 = 3.00e-2 ctherm.ctherm3 5 4 = 1.40e-2 ctherm.ctherm4 4 3 = 1.65e-2 ctherm.ctherm5 3 2 = 4.85e-2 ctherm.ctherm6 2 tl = 12.55 rtherm.rtherm1 th 6 = 3.24e-3 rtherm.rtherm2 6 5 = 8.08e-3 rtherm.rtherm3 5 4 = 2.28e-2 rtherm.rtherm4 4 3 = 1.28e-1 rtherm.rtherm5 3 2 = 1.93e-1 rtherm.rtherm6 2 tl = 2.56e-2 }
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
9


▲Up To Search▲   

 
Price & Availability of HUF76445P3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X