Part Number Hot Search : 
XFATM FN3414 MTP5P06V AH30E C1005NP0 IR6320G 3EZ28D5 2SD211
Product Description
Full Text Search
 

To Download PC915 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PC915
PC915
s Features
1. Wide band linear output type ( Frequency band width : TYP. 10Hz to 8MHz ) 2. Fluctuation free stable output ( Output fluctuation : TYP. 5% at within operating temperature 50 000hr ) 3. High isolation voltage ( Viso : 5 000V rms ) 4. Standard dual-in-line package 5. Recognized by UL, file No, E64380
Wide Band Linear Output Type OPIC Photocoupler
s Outline Dimensions
Internal connection diagram 8 1.2 0.3 8 6.5 0.5 7 PC915 AGC 6 0.85 0.2 5 AMP 7 6 5
1
2
3
4
1
Anode mark
2 3 4 AGC : Automatic Gain Control 7.62 0.3
s Applications
1. Video signal insulation in TV 2. Insulation amplifier in measuring instrument and FA equipment
0.5TYP. 3.5 0.5
9.66 0.5
3.3 0.5
3.0 0.5
0.26 0.1 = 0 to 13
0.5 0.1
2.54 0.25
1 2 3 4
NC Anode Cathode NC
5 6 7 8
VO V CC GND C
* " OPIC " ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
s Absolute Maximum Ratings
Parameter Forward current Reverse voltage Power dissipation Supply voltage Output power dissipation Output current *1 Isolation voltage Operating temperature Storage temperature *2 Soldering temperature Symbol IF VR P V CC PO IO V iso T opr T stg T sol
( Ta = 25C )
Rating 25 6 45 - 0.5 to + 13 250 - 1.0 to + 0.5 5 000 - 25 to + 85 - 55 to + 125 260 Unit mA V mW V mW mA V rms C C C
Input
Output
*1 40 to 60% RH, AC for 1 minute *2 For 10 seconds
" In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device."
PC915 s Electro-optical Characteristics
Parameter Forward voltage Reverse voltage Terminal capacitance Supply current DC output voltage Output noise voltage AC output voltage AC output *1 Temperature characteristics voltage fluctuation *2 Forward current characteristics High frequency Transfer *3 ff Cut-o charac- frequency Low frequency teristics Differential gain Differential phase Isolation resistance Floating capacitance Symbol VF IR Ct ICC V ODC V ONO V OAC V OAC-1 V OAC-2 f CH fCL DG DP RISO Cf Conditions IF = 10mA VR = 5V V = 0, f = 1MHz IF = 10mA IF = 10mA IF = 10mA, Band width = 100Hz to 4.2MHz RE = 230 RE = 230 , Ta = 10 to 70C RE = 230 to 460 RE = 230 RE = 230
( Unless otherwise spcified, Ta = 25C )
MIN. 4 0.8 6 TYP. 1.6 60 9 6 4 1.0 3 3 8 10 +3 -3 MAX. 1.8 10 250 16 8 1.2 20 5 Unit V A pF mA V mV rms V P-P % % MHz Hz % pF Fig. 1 1 1 1 2 2 2 2 2 3 3 -
Input
Output
DC500V, 40 to 60% RH V = 0, f = 1MHz
5 x 1010 1 x 1011 0.6
*1 Fluctuation ratio of VOAC at Ta = - 10 to 70C on the basis of VOAC at Ta = 25C *2 Fluctuation ratio of VOAC at RE = 230 to 460 on the basis of VOAC at R E = 230 *3 Frequency of VIN when V OAC falls by 3dB on the basis of VOAC when frequency of VIN in Fig. 2 is 100kHz.
s Recommended Operating Conditions
Input Parameter Forward bias current Supply voltage AC output voltage Output current C terminal capacitance Symbol I FB V CC V OAC IO CC MIN. 8 8 - 0.6 10 MAX. 15 13 4 + 0.2 Unit mA V V P-P mA F
Output
PC915 s Test Circuit
Fig.1
PC915 1 NC VCC 6 Anode 2 IF V 3 Cathode AGC C 8 + 7 NC GND 10 F AMP VO 5 + 10 F V A 9V
4
Fig. 2
9V 470 100 F Tr1 RE 1 + 100 F Tr2 Anode 2 AMP VO 5 + 3 AGC 8 + 7 NC GND 10 F 10 F CRT NC PC915 VCC 6 9V
VIN
50
1.2k
Cathode
C
4
Tr1 , T r2 : 2SA1029 or other same rank products
VIN Waveform
Sine wave 1VP - P ( Frequency ) 15kHz at measuring V OAC, VOAC - 1 and VOAC - 2 and shall be swept at measuring f CH and f CL.
PC915
Fig. 3
9V 470 100 pF Tr1 Tr2 Anode 2 AMP VO 5 + 3 AGC 8 + 7 NC GND 10 F 10 F DG, DP Tester 230 1 + 100 F NC PC915 VCC 6 9V
ViN
75
1.2k
Cathode
C
4
Tr1 , T r2 : 2SA1029 or other same rank products
VIN Waveform
1VP-D
40IRE
Superposition 40IRE APL50% wave 3.58MHz
0.067ms(1/15ms) g APL (Average Picture Level ) g IRE (International Radio Engineers ) 1IRE = 7.14mV (NTSC System )
Fig. 4 Forward Current vs. Ambient Temperature
30
25 ( mA )
20
Forward current I
F
15
10
5
0 - 25
0
25
50
75 85
100
Ambient temperature T a ( C)
100IRE
PC915
Fig. 5 Power Dissipation vs. Ambient Temperature
300
Fig. 6 Forward Current vs. Forward Voltage
100
250 Power dissipation P ( mW ) Forward current I F ( mA ) 10
200
150
1
T a = 0C 25C 50C 70C
100
0.1
50 0 -25 0.01 1.0
0
25
50
a
75 85 ( C )
100
1.2
1.4
1.6
1.8
2.0
2.2
Ambient temperature T
Forward voltage V F ( V )
Fig. 7 Supply Current vs. Ambient Temperature
14 12 10 8 6 4 2 0 - 25 150 230
Fig. 8-a Relative AC Output Voltage 1 vs. Ambient Temperature
1.1
R E = 460 R E = 460 Relative AC output voltage
Supply current I CC ( mA )
230 150 1.0 230 150
460 0 25 50 75 100 0.9 - 25 0
AC output voltage = 1 at T a = 25C, R E = 230
25
50
75
100
Ambient temperature T a ( C )
Ambient temperature T a ( C )
Test Circuit of Supply Current
Test Circuit of Relative AC Output Voltage1 vs. Ambient Temperatue
9V
100pF
47pF
9V 470 2SA1029
RE
PC915 6 Anode
AMP
VCC A 5 VO
9V
470 2SA1029 +
RE
PC915 6 VCC VO C + 10 F
9V
1.2k
2SA 2 1029 3
+ Cathode
AGC
8
C +
10 F
100 F Vin 50
7
10 F
Anode 2SA 2 1029 3 Cathode 1.2 k
AMP
5 8
AGC
+ 10 F CRT
7
Vin Input Waveform 1VP - P, f = 15kHz Sine wave
PC915
Fig. 8-b Relative AC Output Voltage 2 vs. Freguency ( 1 )
T a = 25C Relative AC output voltage ( dB ) 0 R E = 460 , C E = 47P F R E = 230 , C E = 100 P F -5 R E = 150 , C E = 150 P F Vin
Test Circuit of Relative AC Output Voltage 2 vs. Freguency ( 1 )
9V CE 470 2SA1029 + 2SA 100 F 1029 1.2 75 k RE PC915 Anode 2 3 Cathode
AMP AGC
9V 6 5 8 VCC VO C + 10 F 10 F 9V 6
AMP AGC
+
CRT
7
Relative value of AC output voltage that is based on the voltage at f = 100kHz of Vin - 10 10 4
Vin Iuput Waveform 1VP - P , f = 15MHz Sine wave
10 5
10 6
10 7
Freguency f ( Hz)
Fig. 8-c Relative AC Output Voltage 2 vs. Freguency ( 2 )
Relative value of AC output voltage that is based on the voltage at f = 100kHz of Vin 0 Relative AC output voltage ( dB ) T a = 25C
Test Circuit of Relative AC Output Voltage 2 vs. Freguency ( 2 )
100pF 9V 470 2SA1029 + Vin RE 230
PC915 VCC VO
-5
Anode 2SA 2 100 F 1029 3 1.2 50 Cathode k
8
10 F
5
+ + CC
CRT
7
CC = 10 F 1 F
0.1 F
Vin Input Waveform 1VP - P, f= 15MHz Sine wave
- 10 10 0
10 1
10 2 Freguency f ( Hz)
10 3
10 4
Fig. 9 Differential Gain vs. R E
6 T a = 25C 4 Differential gain DG ( % ) APL10% 2 APL50% 0 APL90% -2
Fig.10 Differential Phase vs. R E
2 T a = 25C Differential phase DP ( deg. ) 0 APL90% APL50% APL10%
-2
-4
-6
-4 0
-8 100 200 300 400 500 0 100 200 RE ( ) 300 RE ( ) 400 500
PC915
Test Circuit of Differential Gain vs. R E and Differential Phase vs. R E Vin Waveform
9V 47pF 470 2SA1029 + RE PC915 6
AMP
9V 100IRE 40IRE Superposition wave 3.58MHz 0.067ms(1/15ms) APL: Average Picture Level VCC 1.0VP-P VO 40IRE is Vin = 2.3 IB VCC- VE
Vin
Anode 2SA 2 100 F 1029 3 Cathode 50 1.2 k
5
AGC
10 F + C DG, DP 8 Tester + 10 F
7
s Application Example
R1 470 C1 + Tr1 Tr2 2 3 100pF VCC 9V RE 230 PC915 6 Anode
AMP
VCC 9V VCC VO VOUT + CO 10 F
VOUT = 2.3
Vin
100 F 1.2k Ri R2 75
5
Cathode
AGC
7
C 8 CC +
10 F Tr1 , T r2 : 2SA1029 or other same rank products
IB : DC flowed to infrared LED is : AC flowed to infrared LED VE : Emitter voltage of T r2 ( Between emitter and GND )
< Example of Circuit Setting >
( 1 ) Set for Gain Gain is represented by the following formula ; G = 2.3/ ( VCC -VE ) When using on condition that Gain = 1, set VCC -VE on 2.3V. So that R 1 and R 2 is determined. ( 2 ) Set for Input Resistance Set Ri on output impedance ( usually 75 ) of a mounting equipment. ( 3 ) Set for R E When there is no signal ( input signal : 0 ) , set I LED flowed into infrared LED on 10 mA. ( 4 ) Set for Low Cut-off Frequency Low cut-off frequency with C terminal capacitance, C C , is represented by the following formula ; f C = 100/C C ( Hz ) ( C C : F value ) Then set Ci with input impedance of by-pass diode on as much value as possible on condition that f C >1/ ( 2 CiR ) [R = R 1 R2 / ( R1 + R 2 ) ]
s Precautions for Use
( 1 ) It is recommended that a by-pass capacitor of more than 0.01 F is added between V CC and GND near the device in order to stabilize power supply line. ( 2 ) Handle this product the same as with other integrated circuits against static electricity. ( 3 ) As for other general cautions, refer to the chapter " Precautions for Use "


▲Up To Search▲   

 
Price & Availability of PC915

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X