Part Number Hot Search : 
40404 MM1226 NTE4070 B7670 EL2140C F565S 6SI10N12 A3P25
Product Description
Full Text Search
 

To Download RF2411 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 RF2411
8
Typical Applications
* UHF Digital and Analog Receivers * Digital Communication Systems * Commercial and Consumer Systems * Portable Battery-Powered Equipment
LOW NOISE AMPLIFIER/MIXER
* Spread-Spectrum Communication Systems * General Purpose Frequency Conversion
Product Description
The RF2411 is a monolithic integrated UHF receiver front-end. The IC contains all of the required components to implement the RF functions of the receiver except for the passive filtering and LO generation. It contains an LNA (low-noise amplifier), a second RF amplifier, and a balanced mixer which can drive a single-ended or balanced load. The output of the LNA is made available as a pin to permit the insertion of a bandpass filter between the LNA and the RF/Mixer section. The LNA output is buffered to permit a wide range of choices for the interstage filter without altering the VSWR or noise figure at the LNA input and to provide high isolation from the LO to the input port. The LNA section may be disabled to conserve power. Optimum Technology Matching(R) Applied
Si BJT Si Bi-CMOS
0.157 0.150
0.018 0.014
0.008 0.004
0.337 0.334 0.050
0.244 0.229
0.068 0.053
8 MAX 0 MIN
8
FRONT-ENDS
0.034 0.016
0.009 0.007
u
Package Style: SOIC-14
GaAs HBT SiGe HBT
GaAs MESFET Si CMOS
Features
* Single 3V to 6.5V Power Supply * 500MHz to 1900MHz Operation * 25dB Small Signal Gain * 2.5dB Cascaded Noise Figure
LNA LNA IN 1 GND 2 GND 3 GND 4 GND 5 IF OUT+ 6 IF OUT- 7 RF AMP 14 LNA OUT 13 NC 12 VCC1 11 VCC2 10 RF IN9 RF IN+ 8 LO IN
* 8.5mA DC Current Consumption * -8dBm Input IP3
MIXER
Ordering Information
RF2411 Low Noise Amplifier/Mixer RF2411 PCBA-L Fully Assembled Evaluation Board (850MHz) RF2411 PCBA-H Fully Assembled Evaluation Board (1800MHz)
RF Micro Devices, Inc. 7628 Thorndike Road Greensboro, NC 27409, USA Tel (336) 664 1233 Fax (336) 664 0454 http://www.rfmd.com
Functional Block Diagram
Rev A5 010717
8-23
RF2411
Absolute Maximum Ratings Parameter
Supply Voltage Input LO and RF Levels Ambient Operating Temperature Storage Temperature
Rating
-0.5 to 7.0 +6 -40 to +85 -40 to +150
Unit
VDC dBm C C
Caution! ESD sensitive device.
RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).
Parameter (850MHz)
Overall
RF Frequency Range IF Frequency Range Cascade Gain
Specification Min. Typ. Max.
Unit
Condition
T = 25C, VCC =5V, RF=850MHz, LO=0dBm, IF=50MHz, Application Schematic 2 configuration
21 Cascade IP3 Cascade Noise Figure
500 to 1900 DC to 150 27 25 20 -8 2.4 2.4 3.4 1.6 1.5:1 -3.5 14 30 2.0:1
MHz MHz dB 29 dBm dB
IF=10MHz IF=50MHz IF=150MHz Referenced to the input Single sideband, IF=10MHz Single sideband, IF=50MHz Single sideband, IF=150MHz
First Section (LNA)
8
FRONT-ENDS
Noise Figure Input VSWR Input IP3 Gain Reverse Isolation Output VSWR
dB dBm dB dB
Second Section (RF Amp, Mixer, IF1)
Noise Figure Input VSWR Input IP3 Conversion Gain Output Impedance 11.0 2.0:1 +6 11 4 -6 to +6 30 30 1.5:1 3 to 6.5 8 20 dB dBm dB k dBm dB dB Single Sideband
Open Collector
LO Input
LO Level LO to RF Rejection LO to IF Rejection LO Input VSWR
Power Supply
Voltage Current Consumption V mA mA VCC =3.0V VCC =5.0V
8-24
Rev A5 010717
RF2411
Parameter (1800MHz)
Overall
RF Frequency Range IF Frequency Range Cascade Gain 500 to 1900 DC to 100 22 21 17 -7 4.0 4.0 4.8 2.6 1.2:1 -3.5 10 25 1.5:1 MHz MHz dB
Specification Min. Typ. Max.
Unit
Condition
T = 25C, VCC =5V, RF=1800MHz, LO=0dBm, IF=50MHz, Application Schematic 2 configuration
Cascade IP3 Cascade Noise Figure
dBm dB
IF=10MHz IF=50MHz IF=150MHz Referenced to the input Single sideband, IF=10MHz Single sideband, IF=50MHz Single sideband, IF=150MHz
First Section (LNA)
Noise Figure Input VSWR Input IP3 Gain Reverse Isolation Output VSWR dB dBm dB dB
Second Section (RF Amp, Mixer, IF1)
Noise Figure Input VSWR Input IP3 Conversion Gain Output Impedance 10.0 2.0:1 +3 11 4 -6 to +6 30 30 1.2:1 dB dBm dB k dBm dB dB Single Sideband
8
FRONT-ENDS Open Collector
LO Input
LO Level LO to RF Rejection LO to IF Rejection LO Input VSWR
Rev A5 010717
8-25
RF2411
Pin 1 Function LNA IN Description
This pin is NOT internally DC-blocked. An external blocking capacitor must be provided if the pin is connected to a device with a DC path. A value of 100pF is recommended for 900MHz and 22pF for 1800MHz.
LNA IN
Interface Schematic
2 3 4 5 6
GND GND GND GND IF OUT+
Ground connection. For best performance, keep traces physically short and connect immediately to ground plane. Same as pin 2. Same as pin 2. Same as pin 2. Balanced open collector output of the mixer. External bias needs to be supplied to this pin. This can be done with a resistor to VCC (see application schematic, "1800MHz, Balanced Resistor Output Matching"), with a balun (see application schematic, "1800MHz, Output Matching with Balun") or when used in a single-ended configuration (see application schematic, "1800MHz, Single-Ended Resistive Output Matching"). When using a resistor to VCC the resistor value will set the output impedance. Typical values for this resistor are 200 to 1k. A shunt inductor/capacitor resonator to VCC is needed to maintain proper DC voltage at the mixer. At low resistor values the resonator may be omitted at the expense of gain, output power and IP3. To obtain maximum gain and output power a balun as shown in application schematics "1800MHz, Output Matching with Balun" and "850MHz, Output Matching with Balun" is recommended. Using both outputs and matching them correctly to a single ended load will result in a 6dB gain improvement over the plain single ended configuration. Same as pin 6 except complementary output. See pin 6. 50 mixer LO input. This pin has an internal pull-up resistor to VCC and is not DC-blocked. An external blocking capacitor must be provided if the pin is connected to a device with a DC path. A value of 100pF is recommended for 900MHz and 22pF for 1800MHz.
IF OUT+ IF OUT-
8
FRONT-ENDS
7 8
IF OUTLO IN
LO IN
9
RF IN+
Balanced mixer RF Input port. This pin is NOT internally DC-blocked. An external blocking capacitor must be provided if the pin is connected to a device with a DC path. A value of 100pF is recommended for 900MHz and 22pF for 1800MHz. Matching is required; see the applications schematics. To minimize the noise figure it is recommended to have a bandpass filter before this input. This will prevent noise at the image frequency from being converted to the IF.
RF IN+
RF IN-
BIAS
10 11 12
RF INVCC2 VCC1
Same as pin 9 except complementary input. Supply voltage for the mixer bias circuits. Supply Voltage for the LNA only. A 47pF external bypass capacitor is required and an optional 0.01F will be required if no other low frequency bypass capacitors are nearby. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.
See pin 9.
8-26
Rev A5 010717
RF2411
Pin 13 14 Function NC LNA OUT Description
No connection. 50 output. An external DC blocking capacitor is required when this pin is connected to a DC path.
LNA OUT
Interface Schematic
8
FRONT-ENDS
Rev A5 010717
8-27
RF2411
Application Schematic 850MHz, Output Matching with Balun
100 pF RF IN 1 2 3 4 5 6 7
LNA 14 13 12 11 10 9 100 pF RF AMP 100 nF 8 100 pF LO IN 100 pF 2 pF 50 Image Filter Vcc
300 pF
100 nF
IF OUT
T1 8:1
VCC
MIXER
8.2 nH
8
FRONT-ENDS
Application Schematic 1800MHz, Output Matching with Balun
22 pF RF IN 1 2 3 4 5 6 7
LNA 14 13 12 11 10 22 pF 9 RF AMP 8 22 pF LO IN 22 pF 2.7 nH 50 Image Filter Vcc
300 pF
100 nF
IF OUT
T1 8:1
VCC
MIXER
100 nF
8-28
Rev A5 010717
RF2411
Application Schematic 1800MHz, Balanced Resistive Output Matching
22 pF RF IN 1 2 3 VDD 4 470 5 6 7 RF AMP LNA 14 13 12 11 10 22 pF 9 8 22 pF LO IN 22 pF 2.7 nH 0.1 F 50 Image Filter
300 pF
L2 IF OUT1 IF OUT2
470
L1
MIXER
Application Schematic 1800MHz, Single-Ended Resistive Output Matching
8
FRONT-ENDS
22 pF RF IN 1 2 3 4 VDD 5 6 7
LNA 14 13 12 11 10 22 pF 9 RF AMP 8 22 pF LO IN 22 pF 2.7 nH 50 Image Filter
300 pF
100 nF
MIXER
L1 IF OUT
470
Rev A5 010717
8-29
RF2411
Evaluation Board Schematic Mixer Tuned for 850MHz
(Download Bill of Materials from www.rfmd.com.)
J1 LNA IN
LNA 1 C1 1 nF 2 3 4 5 14 13 12 11 10 MIXER 6 7 RF AMP 9 8 C5 1 nF C6 100 pF C8 100 nF
2411400 Rev B
C2 1 nF
J5 LNA OUT
VCC C3 300 pF C4 100 nF
J2 IF OUT
T1 8:1
C9 2 pF
J4 MIXER IN
L1 8.2 nH J3 LO IN
P1
C7 1 nF NC GND VCC
8
FRONT-ENDS
P1-3
1 2 3
8-30
Rev A5 010717
RF2411
Evaluation Board Schematic Mixer Tuned for 1800MHz
J1 LNA IN C1 1 nF 1 2 3 4 5 J2 IF OUT T1 8:1 6 7 RF AMP LNA 14 13 12 11 10 9 8 C6 100 pF C8 100 nF
2411401 Rev B
C2 1 nF
J5 LNA OUT
VCC C3 300 pF C4 100 nF J4 MIXER IN L1 2.7 nH
MIXER
C5 1 nF
P1 1 2 P1-3 3 NC GND VCC
C7 1 nF
J3 LO IN
8
FRONT-ENDS
Rev A5 010717
8-31
RF2411
Evaluation Board Layout 850MHz Board Size 2.0" x 2.0"
8
FRONT-ENDS
8-32
Rev A5 010717
RF2411
Evaluation Board Layout 1800MHz Board Size 2.0" x 2.0"
8
FRONT-ENDS
Rev A5 010717
8-33
RF2411
LNA S21
22 20 18 16 14
Vcc=2.7V Vcc=3.0V Vcc=3.3V Vcc=3.6V Vcc=4.5V Vcc=5.0V Vcc=6.0V
LNA S12
-8
Vcc=2.7V
-12
Vcc=3.6V Vcc=5.0V Vcc=6.0V
S21 (dB)
12 10 8 6 4 2 0 0 1 2
S12 (dB)
3
-16
-20
-24
-28 0 1 2 3
Frequency (GHz)
Frequency (GHz)
LNA VSWR
5
Input VSWR Vcc=2.7V Output VSWR Vcc=2.7V Output VSWR Vcc=3.6V Output VSWR Vcc=5.0V Output VSWR Vcc=6.0V
4
Input VSWR Vcc=3.6V Input VSWR Vcc=5.0V
VSWR
3
Input VSWR Vcc=6.0V
8
FRONT-ENDS
2
1 0 1 2 3
Frequency (GHz)
0.6
2. 0
Vcc=3.6V Vcc=5.0V Vcc=6.0V
10MHz
10.0 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0 5.0 0
10.0
0.5 0.6 0.7 0.8 0.9 1.0
1.2
1.4
1.6
1.8
-0.1
-0.2
-0.3
10MHZ
.0
-0. 6
-2
-0.8
-1.0
8-34
-0 .9
-3
.4 -0
Swp Min 0.01GHz
-4. 0 -5.0
-0.2
-0.4
5 -0 .
6 -0.
.7 -0
.8 -0
Swp Min 0.01GHz
Rev A5 010717
2.0
0.3
4.0 5.0
0.4
Vcc=6.0V
0.5
3GHz
3.0
Vcc=5.0V
0 .6
Vcc=2.7V
Vcc=3.6V
3GHZ
0. 7
Vcc=2.7V
0. 8
Swp Max 3.01GHz
1.0
9 0.
LNA S22
1.0
LNA S11
0.8
1
Swp Max 3.01GHz
0.2
0.1
-10.0
.0
0. 4
0.2
10MHZ
RF2411
LO Input
0.6
0.8
Swp Max 3.01GHz
RF Input (single ended)
2. 0
0.6
Swp Max 3.01GHz
2. 0
0 3.
1.0
Vcc=2.7V Vcc=3.6V Vcc=5.0V Vcc=6.0V
0 3.
10MHZ
10.0
10.0
10MHZ 3GHZ 3GHZ
.4 -0
.4 -0
3GHZ
.0 -2
-0. 6
-0. 6
.0 -2
Swp Min 0.01GHz
Swp Min 0.01GHz
-0.8
-1.0
-0.8
IF Output
0.6
-1.0
Swp Max 3.01GHz
2. 0
0 3.
0.8
Vcc=3.6V Vcc=5.0V
Vcc=6.0V
4.0 5 .0
10.0
3GHZ
10MHZ
.4 -0
-0. 6
.0 -2
Swp Min 0.01GHz
-0.8
Rev A5 010717
-1.0
-4. 0 -5.0
-0.2
-10.0
10.0
0.2
0.4
0.6
0.8
1.0
2.0
3.0 4.0 5.0
0
8-35
FRONT-ENDS
Vcc=2.7V
1.0
-4. 0 -5.0
-3 .0
-4. 0 -5.0
-0.2
3GHZ
-0.2
-10.0
10.0
0.2
0.4
0.6
0.8
1.0
2.0
3.0 4.0 5.0
0.2
0.4
0.6
0.8
1.0
2.0
3.0 4.0 5.0
0
0
0 .2
4.0 5 .0
0.8
Vcc=2.7V
Vcc=3.6V Vcc=5.0V Vcc=6.0V
1.0
0. 4
-10.0
-3 .0
-3 .0
0. 4
0. 4
4.0 5 .0
10.0
0 .2
0 .2
8
RF2411
8
FRONT-ENDS
8-36
Rev A5 010717


▲Up To Search▲   

 
Price & Availability of RF2411

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X