Part Number Hot Search : 
MIC600 PSWT9014 BD3464FV 00134 BTA312 C74HC40 ZMC10 TP60N
Product Description
Full Text Search
 

To Download TS419 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TS419 TS421
360mW MONO AMPLIFIER WITH STANDBY MODE
s OPERATING FROM Vcc=2V to 5.5V s STANDBY MODE ACTIVE HIGH (TS419) or s OUTPUT POWER into 16: 367mW @ 5V
with 10% THD+N max or 295mW @5V and 110mW @3.3V with 1% THD+N max. s LOW CURRENT CONSUMPTION: 2.5mA max s High Signal-to-Noise ratio: 95dB(A) at 5V s PSRR: 56dB typ. at 1kHz, 46dB at 217Hz s SHORT CIRCUIT LIMITATION s ON/OFF click reduction circuitry s Available in SO8, MiniSO8 & DFN 3x3 DESCRIPTION The TS419/TS421 is a monaural audio power amplifier driving in BTL mode a 16 or 32 earpiece or receiver speaker. The main advantage of this configuration is to get rid of bulky ouput capacitors. Capable of descending to low voltages, it delivers up to 220mW per channel (into 16 loads) of continuous average power with 0.2% THD+N in the audio bandwidth from a 5V power supply. An externally controlled standby mode reduces the supply current to 10nA (typ.). The TS419/ TS421 can be configured by external gain-setting resistors or used in a fixed gain version. APPLICATIONS s 16/32 ohms earpiece or receiver speaker driver s Mobile and cordless phones (analog / digital) s PDAs & computers s Portable appliances ORDER CODE
Part Number Temp. Range: I TS419IQT, TS419-xIQT: DFN8
PIN CONNECTIONS (top view)
TS419IDT: SO8 TS419IST, TS419-xIST: MiniSO8
LOW (TS421)
Standby Bypass VIN+ VIN-
1 2 3 4
8 7 6 5
VOUT2 GND VCC VOUT1
GND VOUT 2 STANDBY BYPASS
1 2 3 4
8 7 6 5
Vcc VOUT 1 VINVIN+
TS421IDT: SO8 TS421IST, TS421-xIST: MiniSO8
Package
Gain D * * * tba tba tba * tba tba tba * tba tba tba * tba tba tba S Q external external external x2/6dB x4/12dB x8/18dB external x2/6dB x4/12dB x8/18dB TS419I TS421I K19A K19B K19C K19D K21A K21B K21C K21D Marking TS421IQT, TS421-xIQT: DFN8
TS419 TS421 TS419 TS419-2 TS419-4 -40, +85C TS419-8 TS421 TS421-2 TS421-4 TS421-8
GND VOUT 2 STANDBY BYPASS
1 2 3 4
8 7 6 5
Vcc VOUT 1 VINVIN+
MiniSO & DFN only available in Tape & Reel with T suffix. SO is available in Tube (D) and in Tape & Reel (DT)
June 2003
1/32
TS419-TS421
ABSOLUTE MAXIMUM RATINGS
Symbol VCC Vi Tstg Tj Rthja Supply voltage Input Voltage Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 Power Dissipation 2) SO8 MiniSO8 DFN8
1)
Parameter
Value 6 -0.3V to VCC +0.3V -65 to +150 150 175 215 70 0.71 0.58 1.79 1.5 100 200 250 continous 4)
Unit V V C C C/W
Pd
W
Human Body Model (pin to pin): TS4193), TS421 ESD Machine Model - 220pF - 240pF (pin to pin) Latch-up Latch-up Immunity (All pins) Lead Temperature (soldering, 10sec) ESD Output Short-Circuit to Vcc or GND
1. All voltage values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25C, Tjunction = 150C.
kV V mA C
3. TS419 stands 1.5KV on all pins except standby pin which stands 1KV. 4. Attention must be paid to continous power dissipation (VDD x 300mA). Exposure of the IC to a short circuit for an extended time period is dramatically reducing product life expectancy.
OPERATING CONDITIONS
Symbol VCC RL Toper CL VICM VSTB Supply Voltage Load Resistor Operating Free Air Temperature Range Load Capacitor RL = 16 to 100 RL > 100 Common Mode Input Voltage Range Standby Voltage Input TS421 ACTIVE / TS419 in STANDBY TS421 in STANDBY / TS419 ACTIVE Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 2) Wake-up time from standby to active mode (Cb = 1F) 3) Parameter Value 2 to 5.5 16 -40 to + 85 400 100 GND to VCC-1V 1.5 VSTB VCC GND VSTB 0.4 1) 150 190 41 C/W Unit V C pF V V
RTHJA Twu
0.12
s
1. The minimum current consumption (ISTANDBY) is guaranteed at VCC (TS419) or GND (TS421) for the whole temperature range. 2. When mounted on a 4-layer PCB 3. For more details on T WU , please refer to application note section on Wake-up time page 28.
2/32
TS419-TS421
FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTICS VCC from +5V to +2V, GND = 0V, Tamb = 25C (unless otherwise specified)
Symbol RIN Input Resistance Gain value for Gain TS419/TS421-2 G Gain value for Gain TS419/TS421-4 Gain value for Gain TS419/TS421-8 Parameter Min. Typ. 20 6dB 12dB 18dB dB Max. Unit k
APPLICATION COMPONENTS INFORMATION
Components RIN CIN RFEED CS CB Functional Description Inverting input resistor which sets the closed loop gain in conjunction with RFEED. This resistor also forms a high pass filter with CIN (fcl = 1 / (2 x Pi x RIN x CIN)). Not needed in fixed gain versions. Input coupling capacitor which blocks the DC voltage at the amplifier's input terminal Feedback resistor which sets the closed loop gain in conjunction with RIN. AV= Closed Loop Gain= 2xRFEED/RIN. Not needed in fixed gain versions. Supply Bypass capacitor which provides power supply filtering. Bypass capacitor which provides half supply filtering.
TYPICAL APPLICATION SCHEMATICS:
3/32
TS419-TS421
ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25C (unless otherwise specified)
Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, VSTANDBY=GND for TS421 No input signal, VSTANDBY=Vcc for TS419 Output Offset Voltage No input signal, RL = 16 or 32, Rfeed=20k Output Power THD+N THD+N THD+N THD+N THD+N THD+N = = = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 10% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 10% Max, F = 1kHz, RL = 16 Min. Typ. 1.8 10 Max. 2.5 1000 Unit mA nA
ISTANDBY
Voo
5
25
mV
166
PO
240
190 207 258 270 295 367
mW
THD + N
Total Harmonic Distortion + Noise (Av=2) RL = 32, Pout = 150mW, 20Hz F 20kHz RL = 16, Pout = 220mW, 20Hz F 20kHz Power Supply Rejection Ratio (Av=2) 1) F = 1kHz, Vripple = 200mVpp, input grounded, Cb=1F Signal-to-Noise Ratio (Filter Type A, Av=2) 1) (RL = 32, THD +N < 0.5%, 20Hz F 20kHz) Phase Margin at Unity Gain RL = 16, CL = 400pF Gain Margin RL = 16, CL = 400pF Gain Bandwidth Product RL = 16 Slew Rate RL = 16 50
0.15 0.2 56
%
PSRR
dB
SNR M GM GBP SR
85
98
dB
58 18 1.1 0.4
Degrees dB MHz V/S
1. Guaranteed by design and evaluation.
4/32
TS419-TS421
ELECTRICAL CHARACTERISTICS VCC = +3.3V, GND = 0V, Tamb = 25C (unless otherwise specified) 1)
Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, VSTANDBY=GND for TS421 No input signal, VSTANDBY=Vcc for TS419 Output Offset Voltage No input signal, RL = 16 or 32, Rfeed=20k Output Power THD+N THD+N THD+N THD+N THD+N THD+N = = = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 10% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 10% Max, F = 1kHz, RL = 16 Min. Typ. 1.8 10 Max. 2.5 1000 Unit mA nA
ISTANDBY
Voo
5
25
mV
65
PO
91
75 81 102 104 113 143
mW
THD + N
Total Harmonic Distortion + Noise (Av=2) RL = 32, Pout = 50mW, 20Hz F 20kHz RL = 16, Pout = 70mW, 20Hz F 20kHz Power Supply Rejection Ratio inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1F Signal-to-Noise Ratio (Weighted A, Av=2) (RL = 32, THD +N < 0.5%, 20Hz F 20kHz) Phase Margin at Unity Gain RL = 16, CL = 400pF Gain Margin RL = 16, CL = 400pF Gain Bandwidth Product RL = 16 Slew Rate RL = 16 50 82
0.15 0.2 56 94 58 18 1.1 0.4
%
PSRR SNR M GM GBP SR
1.
dB dB Degrees dB MHz V/S
All electrical values are guaranted with correlation measurements at 2V and 5V
5/32
TS419-TS421
ELECTRICAL CHARACTERISTICS VCC = +2.5V, GND = 0V, Tamb = 25C (unless otherwise specified)1)
Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, No input signal, VSTANDBY=GND for TS421 VSTANDBY=Vcc for TS419 Min. Typ. 1.7 10 Max. 2.5 1000 Unit mA nA
ISTANDBY
Voo
Output Offset Voltage No input signal, RL = 16 or 32, Rfeed=20k Output Power THD+N THD+N THD+N THD+N THD+N THD+N = = = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 10% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 10% Max, F = 1kHz, RL = 16
5
25
mV
32
PO
44
37 41 52 50 55 70
mW
THD + N
Total Harmonic Distortion + Noise (Av=2) RL = 32, Pout = 30mW, 20Hz F 20kHz RL = 16, Pout = 40mW, 20Hz F 20kHz Power Supply Rejection Ratio (Av=2) inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1F Signal-to-Noise Ratio (Weighted A, Av=2) (RL = 32, THD +N < 0.5%, 20Hz F 20kHz) Phase Margin at Unity Gain RL = 16, CL = 400pF Gain Margin RL = 16, CL = 400pF Gain Bandwidth Product RL = 16 Slew Rate RL = 16 50 80
0.15 0.2 56 91 58 18 1.1 0.4
%
PSRR SNR M GM GBP SR
1.
dB dB Degrees dB MHz V/S
All electrical values are guaranted with correlation measurements at 2V and 5V
6/32
TS419-TS421
ELECTRICAL CHARACTERISTICS VCC = +2V, GND = 0V, Tamb = 25C (unless otherwise specified)
Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, VSTANDBY=GND for TS421 No input signal, VSTANDBY=Vcc for TS419 Output Offset Voltage No input signal, RL = 16 or 32, Rfeed=20k Output Power THD+N THD+N THD+N THD+N THD+N THD+N = = = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 10% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 10% Max, F = 1kHz, RL = 16 Min. Typ. 1.7 10 Max. 2.5 1000 Unit mA nA
ISTANDBY
Voo
5
25
mV
19
PO
24
20 23 30 26 30 40
mW
THD + N
Total Harmonic Distortion + Noise (Av=2) RL = 32, Pout = 13mW, 20Hz F 20kHz RL = 16, Pout = 20mW, 20Hz F 20kHz Power Supply Rejection Ratio (Av=2) 1) inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1F Signal-to-Noise Ratio (Weighted A, Av=2) 1) (RL = 32, THD +N < 0.5%, 20Hz F 20kHz) Phase Margin at Unity Gain RL = 16, CL = 400pF Gain Margin RL = 16, CL = 400pF Gain Bandwidth Product RL = 16 Slew Rate RL = 16 49
0.1 0.15 54
%
PSRR
dB
SNR M GM GBP SR
80
89
dB
58 20 1.1 0.4
Degrees dB MHz V/S
1. Guaranteed by design and evaluation.
7/32
TS419-TS421
Index of Graphs
Description Common Curves Open Loop Gain and Phase vs Frequency Current Consumption vs Power Supply Voltage Current Consumption vs Standby Voltage Output Power vs Power Supply Voltage Output Power vs Load Resistor Power Dissipation vs Output Power Power Derating vs Ambiant Temperature Output Voltage Swing vs Supply Voltage Low Frequency Cut Off vs Input Capacitor Curves With 6dB Gain Setting (Av=2) THD + N vs Output Power THD + N vs Frequency Signal to Noise Ratio vs Power Supply Voltage Noise Floor PSRR vs Frequency Curves With 12dB Gain Setting (Av=4) THD + N vs Output Power THD + N vs Frequency Signal to Noise Ratio vs Power Supply Voltage Noise Floor PSRR vs Frequency Curves With 18dB Gain Setting (Av=8) THD + N vs Output Power THD + N vs Frequency Signal to Noise Ratio vs Power Supply Voltage Noise Floor PSRR vs Frequency
Note : All measurements made with Rin=20k, Cb=1F, and Cin=10F unless otherwise specified.
Figure
Page
1 to 12 13 14 to 19 20 to 23 24 to 27 28 to 31 32 33 34
9 to 10 11 11 to 12 12 12 to 13 13 to 14 14 14 14
35 to 43 44 to 46 47 to 48 49 to 50 51 to 55
15 to 16 16 17 17 17 to 18
56 to 64 65 to 67 68 to 69 70 to 71 72 to 76
19 to 20 20 21 21 21 to 22
77 to 85 86 to 88 89 to 90 91 to 92 93 to 97
23 to 24 24 25 25 25 to 26
8/32
TS419-TS421
Fig. 1: Open Loop Gain and Phase vs Frequency
180 80 60
Gain (dB)
Fig. 2: Open Loop Gain and Phase vs Frequency
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V RL = 8 Tamb = 25C
160 140 120
Gain
Vcc = 2V RL = 8 Tamb = 25C
160 140 120 100
100 Phase 80 60
Phase 20 0 -20 -40 0.1
20 0 -20 -40 0.1
80 60 40 20 0
40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
1
10 100 Frequency (kHz)
1000
-20 10000
Fig. 3: Open Loop Gain and Phase vs Frequency
180 80 60
Gain (dB)
Fig. 4: Open Loop Gain and Phase vs Frequency
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V ZL = 8+400pF Tamb = 25C
160 140 120
Gain
Vcc = 2V ZL = 8+400pF Tamb = 25C
160 140 120 100
100 Phase 80 60
Phase 20 0 -20 -40 0.1
20 0 -20 -40 0.1
80 60 40 20 0
40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
1
10 100 Frequency (kHz)
1000
-20 10000
Fig. 5: Open Loop Gain and Phase vs Frequency
180 80 60
Gain (dB)
Fig. 6: Open Loop Gain and Phase vs Frequency
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V RL = 16 Tamb = 25C
160 140 120
Gain
Vcc = 2V RL = 16 Tamb = 25C
160 140 120 100
100 Phase 80 60
Phase 20 0 -20 -40 0.1
20 0 -20 -40 0.1
80 60 40 20 0
40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
1
10 100 Frequency (kHz)
1000
-20 10000
9/32
Phase (Deg)
40
40
Phase (Deg)
40
40
Phase (Deg)
40
40
TS419-TS421
Fig. 7: Open Loop Gain and Phase vs Frequency
180 80 60
Gain (dB)
Fig. 8: Open Loop Gain and Phase vs Frequency
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V ZL = 16+400pF Tamb = 25C
160 140 120
Gain
Vcc = 2V ZL = 16+400pF Tamb = 25C
160 140 120 100
100 Phase 80 60
Phase 20 0 -20 -40 0.1
20 0 -20 -40 0.1
80 60 40 20 0
40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
1
10 100 Frequency (kHz)
1000
-20 10000
Fig. 9: Open Loop Gain and Phase vs Frequency
180 80 Gain 60
Gain (dB)
Fig. 10: Open Loop Gain and Phase vs Frequency
180 80 Gain 60
Phase (Deg) Gain (dB)
Vcc = 5V RL = 32 Tamb = 25C
160 140 120
Vcc = 2V RL = 32 Tamb = 25C
160 140 120 100
Phase (Deg) Phase (Deg)
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
40 20 0 -20 -40 0.1 Phase
80 60 40 20 0
1
10 100 Frequency (kHz)
1000
-20 10000
Fig. 11: Open Loop Gain and Phase vs Frequency
180 80 Gain 60
Gain (dB)
Fig. 12: Open Loop Gain and Phase vs Frequency
180 80 Gain 60
Phase (Deg) Gain (dB)
Vcc = 5V ZL = 32+400pF Tamb = 25C
160 140 120
Vcc = 2V ZL = 32+400pF Tamb = 25C
160 140 120
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
10/32
Phase (Deg)
40
40
TS419-TS421
Fig. 13: Current Consumption vs Power Supply Voltage
2.0 No load Current Consumption (mA) Current Consumption (mA) Ta=85C 1.5
Fig. 14: Current Consumption vs Standby Voltage
2.0
1.5 Ta=85C Ta=25C 1.0 Ta=-40C 0.5 TS419 Vcc = 5V No load 0.0 0 1 2 3 4 5
Ta=25C 1.0
Ta=-40C
0.5
0.0
0
1
2
3
4
5
Power Supply Voltage (V)
Standby Voltage (V)
Fig. 15: Current Consumption vs Standby Voltage
2.0
Fig. 16: Current Consumption vs Standby Voltage
2.0 Ta=85C
Current Consumption (mA)
1.5 Ta=85C Ta=25C 1.0 Ta=-40C 0.5 TS419 Vcc = 3.3V No load 0.0 0 1 2 Standby Voltage (V) 3
Current Consumption (mA)
1.5 Ta=25C 1.0
0.5
Ta=-40C TS419 Vcc = 2V No load
0.0
0
1 Standby Voltage (V)
2
Fig. 17: Current Consumption vs Standby Voltage
2.5 Ta=85C Current Consumption (mA) 2.0 Ta=25C
Fig. 18: Current Consumption vs Standby Voltage
2.0 Ta=25C
Current Consumption (mA)
1.5 Ta=85C Ta=-40C 1.0
1.5
1.0
Ta=-40C
0.5 TS421 Vcc = 3.3V No load 0.0 0 1 2 Standby Voltage (V) 3
0.5
TS421 Vcc = 5V No load 0 1 2 3 4 5
0.0
Standby Voltage (V)
11/32
TS419-TS421
Fig. 19: Current Consumption vs Standby Voltage
2.0 Ta=85C Current Consumption (mA)
Fig. 20: Output Power vs Power Supply Voltage
550 500 450 RL = 8 F = 1kHz BW < 125kHz Tamb = 25C
THD+N=1%
1.5
Output power (mW)
400 350 300 250 200 150 100 50
Ta=25C 1.0
THD+N=10%
0.5
Ta=-40C TS421 Vcc = 2V No load
THD+N=0.1%
0.0
0
1 Standby Voltage (V)
2
0 2.0
2.5
3.0
3.5 4.0 Vcc (V)
4.5
5.0
5.5
Fig. 21: Output Power vs Power Supply Voltage
500 450 400
Output power (mW)
Fig. 22: Output Power vs Power Supply Voltage
Output power (mW)
350 300 250 200 150 100 50
RL = 16 F = 1kHz BW < 125kHz Tamb = 25C THD+N=10%
300 THD+N=1% 250 200 150 100 50
RL = 32 F = 1kHz BW < 125kHz Tamb = 25C THD+N=10%
THD+N=1%
THD+N=0.1%
THD+N=0.1%
0 2.0
2.5
3.0
3.5 4.0 Vcc (V)
4.5
5.0
5.5
0 2.0
2.5
3.0
3.5 4.0 Vcc (V)
4.5
5.0
5.5
Fig. 23: Output Power vs Power Supply Voltage
Fig. 24: Output Power vs Load Resistor
200 RL = 64 F = 1kHz BW < 125kHz Tamb = 25C THD+N=10% 100
500 450 THD+N=1%
Output power (mW)
400 350 300 250 200 150 100 50
THD+N=10% THD+N=1%
150
Output power (mW)
Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25C
50 THD+N=0.1%
THD+N=0.1%
0 2.0
0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5
8
16
24
32 40 48 Load Resistance ( )
56
64
12/32
TS419-TS421
Fig. 25: Output Power vs Load Resistor Fig. 26: Output Power vs Load Resistor
200 THD+N=10%
Output power (mW)
100
Output power (mW)
150 THD+N=1%
Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25C
90 80 70 60 50 40 30 20 10 THD+N=0.1% THD+N=1% THD+N=10%
Vcc = 2.5V F = 1kHz BW < 125kHz Tamb = 25C
100
50
THD+N=0.1%
0
0
8
16
24
32 40 48 Load Resistance ( )
56
64
8
16
24
32 40 48 Load Resistance ( )
56
64
Fig. 27: Output Power vs Load Resistor
Fig. 28: Power Dissipation vs Output Power
600
50 45 40
Output power (mW)
THD+N=10% THD+N=1%
35 30 25 20 15 10 5 0 THD+N=0.1%
Power Dissipation (mW)
Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25C
500 400 300 200 100 0
Vcc=5V F=1kHz THD+N<1% RL=8
RL=16
RL=32
8
16
24
32 40 48 Load Resistance ( )
56
64
0
50
100
150 200 250 Output Power (mW)
300
350
Fig. 29: Power Dissipation vs Output Power
300 Vcc=3.3V F=1kHz 250 THD+N<1% 200 150 100 50 RL=32 0 0 30 60 90 120 Output Power (mW) 150 RL=8
Fig. 30: Power Dissipation vs Output Power
140 120 Vcc=2.5V F=1kHz THD+N<1%
Power Dissipation (mW)
Power Dissipation (mW)
RL=8
100 80 60 40 20 RL=32 0 0 10 20 30 40 50 60 RL=16
RL=16
Output Power (mW)
13/32
TS419-TS421
Fig. 31: Power Dissipation vs Output Power Fig. 32: Power Derating Curves
100
Power Dissipation (mW)
Vcc=2V F=1kHz 80 THD+N<1% RL=8 60
40 RL=16 20 RL=32 0 0 5 10 15 20 25 Output Power (mW) 30 35
Fig. 33: Output Voltage Swing For One Amp. vs Power Supply Voltage
5.0
VOH & VOL for Vs1 and Vs2 (V)
Fig. 34: Low Frequency Cut Off vs Input Capacitor for fixed gain versions
4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Tamb=25C Amps. in BTL

RL=8 RL=16 RL=32
0.0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
14/32
TS419-TS421
Fig. 35: THD + N vs Output Power Fig. 36: THD + N vs Output Power
10 RL = 8 F = 20Hz 1 Av = 2 Cb = 1F BW < 22kHz Tamb = 25C 0.1
10 RL = 16 F = 20Hz Av = 2 1 Cb = 1F BW < 22kHz Tamb = 25C 0.1
THD + N (%)
THD + N (%)
Vcc=2V Vcc=2.5V
Vcc=2V
Vcc=2.5V
0.01
Vcc=3.3V Vcc=5V
0.01
Vcc=3.3V Vcc=5V
1E-3
1
10 100 Output Power (mW)
1E-3
1
10 100 Output Power (mW)
Fig. 37: THD + N vs Output Power
10 RL = 32 F = 20Hz Av = 2 1 Cb = 1F Vcc=2V BW < 22kHz Tamb = 25C Vcc=2.5V 0.1
Fig. 38: THD + N vs Output Power
10 RL = 8 F = 1kHz Av = 2 1 Cb = 1F BW < 125kHz Tamb = 25C
THD + N (%)
THD + N (%)
Vcc=2V
0.1
Vcc=2.5V
0.01 0.01 1
Vcc=3.3V
Vcc=5V
Vcc=3.3V
Vcc=5V
1E-3
1
10 Output Power (mW)
100
10 100 Output Power (mW)
Fig. 39: THD + N vs Output Power
Fig. 40: THD + N vs Output Power
10 RL = 32 F = 1kHz Av = 2 1 Cb = 1F BW < 125kHz Tamb = 25C 0.1
10 RL = 16 F = 1kHz Av = 2 1 Cb = 1F BW < 125kHz Tamb = 25C 0.1
THD + N (%)
THD + N (%)
Vcc=2V Vcc=2.5V
Vcc=2V Vcc=2.5V
0.01
0.01
Vcc=3.3V Vcc=5V
Vcc=3.3V
Vcc=5V
1E-3
1
10 Output Power (mW)
100
1
10 Output Power (mW)
100
15/32
TS419-TS421
Fig. 41: THD + N vs Output Power Fig. 42: THD + N vs Output Power
10 RL = 8 F = 20kHz Av = 2 Cb = 1F BW < 125kHz Tamb = 25C 1
Vcc=2.5V
10 RL = 16 F = 20kHz Av = 2 Cb = 1F BW < 125kHz 1 Tamb = 25C
THD + N (%)
THD + N (%)
Vcc=2V
Vcc=2V
Vcc=2.5V
0.1
Vcc=3.3V Vcc=5V Vcc=3.3V
Vcc=5V
0.1
1
10 100 Output Power (mW)
1
10 100 Output Power (mW)
Fig. 43: THD + N vs Output Power
10 RL = 32 F = 20kHz Av = 2 Cb = 1F BW < 125kHz 1 Tamb = 25C
Fig. 44: THD + N vs Frequency
THD + N (%)
Vcc=2.5V
THD + N (%)
Vcc=2V
RL=8 Av=2 Cb = 1F Bw < 125kHz 0.1 Tamb = 25C
Vcc=2V, Po=28mW
0.1
Vcc=3.3V Vcc=5V
0.01
Vcc=5V, Po=300mW
1
10 Output Power (mW)
100
20
100
1000 Frequency (Hz)
10000 20k
Fig. 45: THD + N vs Frequency
Fig. 46: THD + N vs Frequency
THD + N (%)
Vcc=5V, Po=220mW
THD + N (%)
RL=16 Av=2 Cb = 1F Bw < 125kHz 0.1 Tamb = 25C
Vcc=2V, Po=20mW
RL=32 Av=2 Cb = 1F Bw < 125kHz 0.1 Tamb=25C
Vcc=2V, Po=13mW Vcc=5V, Po=150mW
0.01
0.01
20
100
1000 Frequency (Hz)
10000 20k
20
100
1000 Frequency (Hz)
10000 20k
16/32
TS419-TS421
Fig. 47: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)
100 95 90 85 RL=8 80 RL=16 75 70 2.0 Av = 2 Cb = 1F THD+N < 0.5% Tamb = 25C
Fig. 48: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
105 Av = 2 Cb = 1F 100 THD+N < 0.5% Tamb = 25C 95
Signal to Noise Ratio (dB)
RL=32
Signal to Noise Ratio (dB)
RL=32
90 RL=16
RL=8
85
2.5
3.0
3.5
4.0
4.5
5.0
80 2.0
2.5
3.0
3.5
4.0
4.5
5.0
Power Supply Voltage (V)
Power Supply Voltage (V)
Fig. 49: Noise Floor
30
Fig. 50: Noise Floor
30
Noise Floor ( VRms)
20
Standby=OFF
Noise Floor ( VRms)
10 Standby=ON
RL>=16 Vcc=5V Av=2 Cb = 1F Input Grounded Bw < 125kHz Tamb=25C
20
Standby=OFF
10 Standby=ON
RL>=16 Vcc=2V Av=2 Cb = 1F Input Grounded Bw < 125kHz Tamb=25C
0
20
100
1000 Frequency (Hz)
10000 20k
0
20
100
1000 Frequency (Hz)
10000 20k
Fig. 51: PSRR vs Input Capacitor
Fig. 52: PSRR vs Power Supply Voltage
0 -10 -20 PSRR (dB) -30 -40 -50 -60 Cin = 100nF -70 Cin = 1F, 220nF Vripple = 200mVpp Av = 2, Vcc = 5V Input = grounded Cb = 1F, Rin = 20k RL >= 16 Tamb = 25C
0 -10 -20 PSRR (dB) -30 -40 Vcc = 2V -50 -60 -70 Vcc = 5V, 3.3V & 2.5V -80 100 1000 10000 Frequency (Hz) 100000 100 1000 10000 Frequency (Hz) 100000 Vripple = 100mVrms Rfeed = 20k Input = floating Cb = 1F RL >= 16 Tamb = 25C
17/32
TS419-TS421
Fig. 53: PSRR vs Bypass Capacitor Fig. 54: PSRR vs Bypass Capacitor
0 -10 -20 PSRR (dB) -30 -40 -50 -60 Vcc = 5V, 3.3V & 2.5V -70 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = 2 Input = Grounded Cb = Cin = 1F RL >= 16 Tamb = 25C Vcc = 2V
0 -10 -20 PSRR (dB) -30 -40 -50 -60 Vcc = 5V, 3.3V & 2.5V -70 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = 2 Input = Grounded Cb = 4.7F Cin = 1F RL >= 16 Tamb = 25C Vcc = 2V
Fig. 55: PSRR vs Bypass Capacitor
0 -10 -20 PSRR (dB) -30 -40 -50 -60 Vcc = 5V, 3.3V & 2.5V -70 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = 2 Input = Grounded Cb = 10F Cin = 1F RL >= 16 Tamb = 25C Vcc = 2V
18/32
TS419-TS421
Fig. 56: THD + N vs Output Power Fig. 57: THD + N vs Output Power
10 RL = 8 F = 20Hz Av = 4 1 Cb = 1F BW < 22kHz Tamb = 25C
Vcc=2V
10 RL = 16 F = 20Hz Av = 4 1 Cb = 1F BW < 22kHz Tamb = 25C 0.1
THD + N (%)
THD + N (%)
Vcc=2V Vcc=2.5V
0.1
Vcc=2.5V
0.01 0.01
Vcc=3.3V Vcc=5V Vcc=3.3V Vcc=5V
1
10 100 Output Power (mW)
1E-3
1
10 100 Output Power (mW)
Fig. 58: THD + N vs Output Power
10 RL = 32 F = 20Hz Av = 4 1 Cb = 1F Vcc=2V BW < 22kHz Tamb = 25C Vcc=2.5V 0.1
Fig. 59: THD + N vs Output Power
10 RL = 8 F = 1kHz Av = 4 1 Cb = 1F BW < 125kHz Tamb = 25C
THD + N (%)
THD + N (%)
Vcc=2V
0.1
Vcc=2.5V
0.01 0.01 1
Vcc=3.3V
Vcc=5V
Vcc=3.3V
Vcc=5V
1E-3
1
10 Output Power (mW)
100
10 100 Output Power (mW)
Fig. 60: THD + N vs Output Power
10 RL = 16 F = 1kHz Av = 4 1 Cb = 1F BW < 125kHz Tamb = 25C
Fig. 61: THD + N vs Output Power
10 RL = 32 F = 1kHz Av = 4 1 Cb = 1F BW < 125kHz Tamb = 25C 0.1
THD + N (%)
Vcc=2V Vcc=2.5V
THD + N (%)
Vcc=2V Vcc=2.5V
0.1
0.01 0.01 1
Vcc=3.3V
Vcc=5V
Vcc=3.3V
Vcc=5V
10 100 Output Power (mW)
1E-3
1
10 Output Power (mW)
100
19/32
TS419-TS421
Fig. 62: THD + N vs Output Power Fig. 63: THD + N vs Output Power
10 RL = 8 F = 20kHz Av = 4 Cb = 1F BW < 125kHz Tamb = 25C 1
10 RL = 16 F = 20kHz Av = 4 Cb = 1F BW < 125kHz Tamb = 25C 1
THD + N (%)
THD + N (%)
Vcc=2V Vcc=2.5V
Vcc=2V Vcc=2.5V
Vcc=3.3V
Vcc=5V
Vcc=3.3V
Vcc=5V
1
10 100 Output Power (mW)
0.1
1
10 100 Output Power (mW)
Fig. 64: THD + N vs Output Power
10 RL = 32 F = 20kHz Av = 4 Cb = 1F BW < 125kHz 1 Tamb = 25C
Fig. 65: THD + N vs Frequency
THD + N (%)
Vcc=2.5V
0.1
Vcc=3.3V Vcc=5V
THD + N (%)
Vcc=2V
0.1
RL=8 Av=4 Cb = 1F Bw < 125kHz Tamb = 25C
Vcc=2V, Po=28mW
0.01 20 100
Vcc=5V, Po=300mW
1
10 Output Power (mW)
100
1000 Frequency (Hz)
10000 20k
Fig. 66: THD + N vs Frequency
Fig. 67: THD + N vs Frequency
THD + N (%)
THD + N (%)
RL=16 Av=4 Cb = 1F Bw < 125kHz 0.1 Tamb = 25C
Vcc=2V, Po=20mW
RL=32 Av=4 Cb = 1F Bw < 125kHz 0.1 Tamb=25C
Vcc=2V, Po=13mW
Vcc=5V, Po=150mW
0.01
0.01
Vcc=5V, Po=220mW
20
100
1000 Frequency (Hz)
10000 20k
20
100
1000 Frequency (Hz)
10000 20k
20/32
TS419-TS421
Fig. 68: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)
90 Av = 4 Cb = 1F THD+N < 0.5% 85 Tamb = 25C RL=32
Signal to Noise Ratio (dB)
Fig. 69: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
100 Av = 4 Cb = 1F 95 THD+N < 0.5% Tamb = 25C 90 RL=32
Signal to Noise Ratio (dB)
80 RL=8 75 RL=16
85 RL=16
RL=8
80
70 2.0
2.5
3.0
3.5
4.0
4.5
5.0
75 2.0
2.5
3.0
3.5
4.0
4.5
5.0
Power Supply Voltage (V)
Power Supply Voltage (V)
Fig. 70: Noise Floor
Fig. 71: Noise Floor
40
40
Noise Floor ( VRms)
30
Standby=OFF
Noise Floor ( VRms)
20
10
RL>=16 Vcc=5V Av=4 Cb = 1F Input Grounded Bw < 125kHz Tamb=25C
30
Standby=OFF
20
Standby=ON
10
RL>=16 Vcc=2V Av=4 Cb = 1F Input Grounded Bw < 125kHz Tamb=25C
Standby=ON
0
20
100
1000 Frequency (Hz)
10000 20k
0
20
100
1000 Frequency (Hz)
10000 20k
Fig. 72: PSRR vs Power Supply Voltage
Fig. 73: PSRR vs Input Capacitor
0 -10 -20 PSRR (dB) -30 -40 Vcc = 2V -50 -60 -70 Vcc = 5V, 3.3V & 2.5V -80 100 1000 10000 Frequency (Hz) 100000 Vripple = 100mVrms Rfeed = 40k Input = floating Cb = 1F RL >= 16 Tamb = 25C
0 -10 -20 -30 -40 -50 Cin = 100nF -60 100 1000 10000 Frequency (Hz) 100000 Cin = 1F, 220nF Vripple = 200mVpp Av = 4, Vcc = 5V Input = grounded Cb = 1F, Rin = 20k RL >= 16 Tamb = 25C
PSRR (dB)
21/32
TS419-TS421
Fig. 74: PSRR vs Bypass Capacitor Fig. 75: PSRR vs Bypass Capacitor
0 -10 -20 PSRR (dB) -30 -40 -50 -60 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = 4 Input = Grounded Cb = Cin = 1F RL >= 16 Tamb = 25C Vcc = 2V
0 -10 -20 PSRR (dB) -30 -40 -50 -60 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = 4 Input = Grounded Cb = 4.7F Cin = 1F RL >= 16 Tamb = 25C Vcc = 2V
Fig. 76: PSRR vs Bypass Capacitor
0 -10 -20 PSRR (dB) -30 -40 -50 -60 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = 4 Input = Grounded Cb = 10F Cin = 1F RL >= 16 Tamb = 25C Vcc = 2V
22/32
TS419-TS421
Fig. 77: THD + N vs Output Power Fig. 78: THD + N vs Output Power
10 RL = 8 F = 20Hz Av = 8 1 Cb = 1F BW < 22kHz Tamb = 25C 0.1
10 RL = 16 F = 20Hz Av = 8 1 Cb = 1F BW < 22kHz Tamb = 25C
THD + N (%)
THD + N (%)
Vcc=2V Vcc=2.5V
Vcc=2V Vcc=2.5V
0.1
0.01 1
Vcc=3.3V
Vcc=5V
0.01 1
Vcc=3.3V
Vcc=5V
10 100 Output Power (mW)
10 100 Output Power (mW)
Fig. 79: THD + N vs Output Power
10 RL = 32 F = 20Hz Av = 8 Cb = 1F 1 BW < 22kHz Tamb = 25C
Vcc=2V
Fig. 80: THD + N vs Output Power
10 RL = 8 F = 1kHz Av = 8 Cb = 1F 1 BW < 125kHz Tamb = 25C
THD + N (%)
THD + N (%)
Vcc=2V
Vcc=2.5V
0.1
0.1
Vcc=2.5V
0.01
Vcc=3.3V
Vcc=5V
Vcc=3.3V
Vcc=5V
0.01 100
1
10 Output Power (mW)
1
10 100 Output Power (mW)
Fig. 81: THD + N vs Output Power
Fig. 82: THD + N vs Output Power
10 RL = 32 F = 1kHz Av = 8 1 Cb = 1F BW < 125kHz Tamb = 25C
10 RL = 16 F = 1kHz Av = 8 Cb = 1F 1 BW < 125kHz Tamb = 25C
THD + N (%)
Vcc=2V Vcc=2.5V
THD + N (%)
Vcc=2V Vcc=2.5V
0.1
0.1
Vcc=3.3V
0.01
Vcc=5V
Vcc=3.3V
Vcc=5V
0.01
1
10 100 Output Power (mW)
1
10 Output Power (mW)
100
23/32
TS419-TS421
Fig. 83: THD + N vs Output Power Fig. 84: THD + N vs Output Power
10 RL = 8, F = 20kHz Av = 8, Cb = 1F BW < 125kHz, Tamb = 25C
THD + N (%) THD + N (%)
Vcc=2V Vcc=2.5V
10 RL = 16 F = 20kHz Av = 8 Cb = 1F BW < 125kHz Tamb = 25C 1
Vcc=2V Vcc=2.5V
1
Vcc=3.3V
Vcc=5V
Vcc=3.3V
Vcc=5V
1
10 100 Output Power (mW)
1
10 100 Output Power (mW)
Fig. 85: THD + N vs Output Power
10 RL = 32 F = 20kHz Av = 8 Cb = 1F BW < 125kHz Tamb = 25C 1
Vcc=2.5V
Fig. 86: THD + N vs Frequency
THD + N (%)
THD + N (%)
Vcc=2V
RL=8 Av=8 Cb = 1F Bw < 125kHz Tamb = 25C 0.1
Vcc=2V, Po=28mW
Vcc=3.3V
Vcc=5V
Vcc=5V, Po=300mW
0.1
1
10 Output Power (mW)
100
20
100
1000 Frequency (Hz)
10000 20k
Fig. 87: THD + N vs Frequency
Fig. 88: THD + N vs Frequency
THD + N (%)
THD + N (%)
RL=16 Av=8 Cb = 1F Bw < 125kHz 0.1 Tamb = 25C
Vcc=2V, Po=20mW
RL=32 Av=8 Cb = 1F Bw < 125kHz 0.1 Tamb=25C
Vcc=2V, Po=13mW
Vcc=5V, Po=150mW
0.01
Vcc=5V, Po=220mW
0.01
20
100
1000 Frequency (Hz)
10000 20k
20
100
1000 Frequency (Hz)
10000 20k
24/32
TS419-TS421
Fig. 89: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)
90 Av = 8 Cb = 1F 85 THD+N < 0.5% Tamb = 25C 80 75 RL=8 70 RL=16 65 60 2.0 RL=32
Fig. 90: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
95 Av = 8 Cb = 1F 90 THD+N < 0.5% Tamb = 25C 85
Signal to Noise Ratio (dB)
Signal to Noise Ratio (dB)
RL=32
80 RL=16
RL=8
75
2.5
3.0
3.5
4.0
4.5
5.0
70 2.0
2.5
3.0
3.5
4.0
4.5
5.0
Power Supply Voltage (V)
Power Supply Voltage (V)
Fig. 91: Noise Floor
70 60
Noise Floor ( VRms)
Fig. 92: Noise Floor
70 60
Noise Floor ( VRms)
50 40 30 20 10 0
Standby=OFF RL>=16 Vcc=5V Av=8 Cb = 1F Input Grounded Bw < 125kHz Tamb=25C Standby=ON 20 100 1000 Frequency (Hz) 10000 20k
50 40 30 20 10 0
Standby=OFF RL>=16 Vcc=2V Av=8 Cb = 1F Input Grounded Bw < 125kHz Tamb=25C Standby=ON 20 100 1000 Frequency (Hz) 10000 20k
Fig. 93: PSRR vs Power Supply Voltage
Fig. 94: PSRR vs Input Capacitor
0 -10 -20 PSRR (dB) -30 -40 -50 Vripple = 100mVrms Rfeed = 80k Input = floating Cb = 1F RL >= 16 Tamb = 25C Vcc = 2V
0 Vripple = 200mVpp Av = 8, Vcc = 5V Input = grounded Cb = 1F, Rin = 20k RL >= 16 Tamb = 25C
-10 Cin = 1F, 220nF PSRR (dB) -20
-30
-40 -60 -70 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 Frequency (Hz) 100000 -50 100 Cin = 100nF 1000 10000 Frequency (Hz) 100000
25/32
TS419-TS421
Fig. 95: PSRR vs Bypass Capacitor Fig. 96: PSRR vs Bypass Capacitor
0 Vripple = 200mVpp Av = 8 Input = Grounded Cb = Cin = 1F RL >= 16 Tamb = 25C
0 -10 -20 -30 -40 Vripple = 200mVpp Av = 8 Input = Grounded Cb = 4.7F Cin = 1F RL >= 16 Tamb = 25C Vcc = 2V
-10
PSRR (dB)
-30 Vcc = 2V -40
PSRR (dB)
-20
-50 -50 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 Frequency (Hz) 100000 -60 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 Frequency (Hz) 100000
Fig. 97: PSRR vs Bypass Capacitor
0 -10 -20 -30 -40 -50 Vcc = 5V, 3.3V & 2.5V -60 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = 8 Input = Grounded Cb = 10F Cin = 1F RL >= 16 Tamb = 25C Vcc = 2V
26/32
PSRR (dB)
TS419-TS421
APPLICATION INFORMATION In the high frequency region, you can limit the bandwidth by adding a capacitor (Cfeed) in parallel with Rfeed. It forms a low-pass filter with a -3dB cut off frequency . 1 FCH = (Hz) 2 Rfeed Cfeed
s BTL Configuration Principle
The TS419 & TS420 are monolithic power amplifiers with a BTL output type. BTL (Bridge Tied Load) means that each end of the load is connected to two single-ended output amplifiers. Thus, we have: Single ended output 1 = Vout1 = Vout (V) Single ended output 2 = Vout2 = -Vout (V) And Vout1 - Vout2 = 2Vout (V) The output power is :
s Power dissipation and efficiency
Hypothesis: * Load voltage and current are sinusoidal (Vout and Iout) * Supply voltage is a pure DC source (Vcc) Regarding the load we have:
Pout =
(2 VoutRMS )2 (W) RL
VOUT = VPEAK sin t (V)
and
For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single ended configuration.
IOUT =
and
VOUT ( A) RL
s Gain In Typical Application Schematic
(cf. page 3 of TS419-TS421 datasheet) In the flat region (no CIN effect), the output voltage of the first stage is: Rfeed Vout1 = - Vin (V) Rin For the second stage : Vout2 = -Vout1 (V) The differential output voltage is Rfeed Vout2 - Vout1 = 2 Vin (V) Rin The differential gain named gain (Gv) for more convenient usage is :
POUT =
VPEAK (W) 2 RL
2
Then, the average current delivered by the supply voltage is:
Icc AVG = 2
VPEAK ( A) RL
The power delivered by the supply voltage is: Psupply = Vcc IccAVG (W) Then, the power dissipated by the amplifier is: Pdiss = Psupply - Pout (W)
Pdiss = 2 2 Vcc RL POUT - POUT (W )
Vout2 - Vout1 Rfeed Gv = =2 Vin Rin
Remark : Vout2 is in phase with Vin and Vout1 is phased 180 with Vin. This means that the positive terminal of the loudspeaker should be connected to Vout2 and the negative to Vout1.
and the maximum value is obtained when: Pdiss =0 POUT and its value is:
s Low and high frequency response
In the low frequency region, CIN starts to have an effect. CIN forms with R IN a high-pass filter with a -3dB cut off frequency .
Pdiss max =
2 Vcc 2 2RL
(W)
FCL
1 = 2RinCin
(Hz)
Remark : This maximum value is only dependent upon power supply voltage and load values.
27/32
TS419-TS421
The efficiency is the ratio between the output power and the power supply Due to process tolerances, the range of the wake-up time is : 0.12xCb < TWU < 0.18xCB (s) with C B in F Note : When the standby command is set, the time to put the device in shutdown mode is a few microseconds.
=
VPEAK POUT = P sup ply 4 Vcc
The maximum theoretical value is reached when Vpeak = Vcc, so
= 78.5% 4 s Decoupling of the circuit
Two capacitors are needed to bypass properly the TS419/TS421. A power supply bypass capacitor CS and a bias voltage bypass capacitor C B. CS has particular influence on the THD+N in the high frequency region (above 7kHz) and an indirect influence on power supply disturbances. With 1F, you can expect similar THD+N performances to those shown in the datasheet. In the high frequency region, if CS is lower than 1F, it increases THD+N and disturbances on the power supply rail are less filtered. On the other hand, if CS is higher than 1F, those disturbances on the power supply rail are more filtered. CB has an influence on THD+N at lower frequencies, but its function is critical to the final result of PSRR (with input grounded and in the lower frequency region). If CB is lower than 1F, THD+N increases at lower frequencies and PSRR worsens. If CB is higher than 1F, the benefit on THD+N at lower frequencies is small, but the benefit to PSRR is substantial. Note that CIN has a non-negligible effect on PSRR at lower frequencies. The lower the value of CIN, the higher the PSRR.
s Pop performance
Pop performance is intimately linked with the size of the input capacitor Cin and the bias voltage bypass capacitor CB. The size of CIN is dependent on the lower cut-off frequency and PSRR values requested. The size of CB is dependent on THD+N and PSRR values requested at lower frequencies. Moreover, CB determines the speed with which the amplifier turns ON. The slower the speed is, the softer the turn ON noise is. The charge time of CB is directly proportional to the internal generator resistance 150k.. Then, the charge time constant for CB is B = 150kxCB (s) As CB is directly connected to the non-inverting input (pin 2 & 3) and if we want to minimize, in amplitude and duration, the output spike on Vout1 (pin 5), CIN must be charged faster than CB. The equivalent charge time constant of CIN is: IN = (Rin+Rfeed)xCIN (s) Thus we have the relation: IN < B (s) Proper respect of this relation allows to minimize the pop noise. Remark : Minimizing CIN and CB benefits both the pop phenomena, and the cost and size of the application.
s Application : Differential inputs BTL power
amplifier. The schematic on figure 98, shows how to design the TS419/21 to work in a differential input mode.
s Wake-up Time: TWU
When standby is released to put the device ON, the bypass capacitor CB will not be charged immediatly. As CB is directly linked to the bias of the amplifier, the bias will not work properly until the CB voltage is correct. The time to reach this voltage is called wake-up time or TWU and typically equal to: TWU=0.15xCB (s) with C B in F.
28/32
The gain of the amplifier is:
G VDIFF = 2
R2 R1
In order to reach optimal performances of the differential function, R1 and R2 should be matched at 1% max.
TS419-TS421
Fig. 98 : Differential Input Amplifier Configuration Note : This formula is true only if: 1 FCB = (Hz ) 942000 x C B is ten times lower than FL. The following bill of material is an example of a differential amplifier with a gain of 2 and a -3dB lower cuttoff frequency of about 80Hz. Components :
Designator R1 R2 C Part Type 20k / 1% 20k / 1% 100nF 1F TS419/21
Input capacitance C can be calculated by the following formula using the -3dB lower frequency required. (FL is the lower frequency required)
1 C (F ) 2 R1 FL
CB=CS U1
29/32
TS419-TS421 PACKAGE MECHANICAL DATA
SO-8 MECHANICAL DATA
DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 8 (max.) 0.04 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157
0016023/C
30/32
TS419-TS421 PACKAGE MECHANICAL DATA
31/32
TS419-TS421 PACKAGE MECHANICAL DATA
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics (c) 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States http://www.st.com
32/32


▲Up To Search▲   

 
Price & Availability of TS419

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X