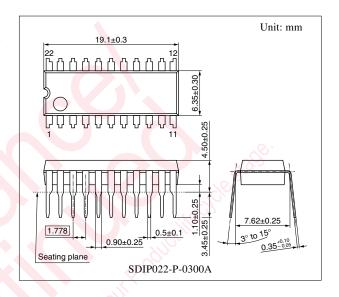
Panasonic

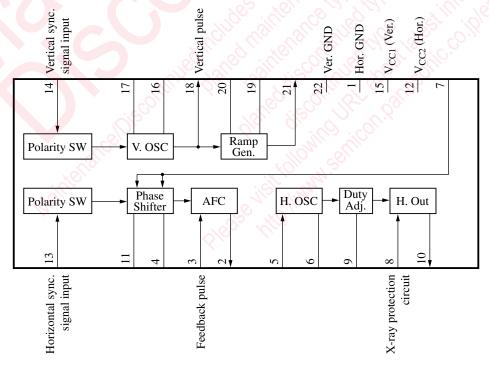
AN5793K

Defle-ction signal processing IC for CRT display

■ Overview


The AN5793K is a deflection signal processor IC for CRT display. It incorporates a stable wideband horizontal oscillation circuit and a vertical oscillation circuit.

■ Features


- Built-in horizontal oscillation circuit (applicable from f_H = 15.75 kHz to 115 kHz)
- With horizontal phase adjustment and output duty adjustment functions
- Built-in vertical oscillation circuit ($f_V = 50 \text{ Hz}$ to 150 Hz)

■ Applications

• CRT monitors

■ Block Diagram

Panasonic

■ Pin Descriptions

Pin No.	Description	Pin No.	Description
1	Horizontal system GND	12	Horizontal system V _{CC2}
2	AFC output	13	Horizontal synchronous signal input
3	AFC input (Feedback pulse)	14	Vertical synchronous signal input
4	Pulse width control	15	Vertical system V _{CC1}
5	Resistor for horizontal oscillation	16	Capacitor for vertical oscillation
6	Capacitor for horizontal oscillation	17	Resistor for vertical oscillation
7	Phase shifter circuit main control	18	Vertical pulse output
8	X-ray protection circuit	19	Capacitor for ramp wave generation
9	Duty adjustment control	20	Resistor for ramp wave control
10	Horizontal system output	21	Ramp wave output
11	Phase shifter control	22	Vertical system GND

■ Absolte Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V_{CC1}	13.2	V
	V _{CC2}	110 ¹¹ 10° 2 30	"(Q)"
Supply current	$I_{12} + I_{15}$	46.0	mA
Power dissipation *2	P_{D}	700.0	mW
Operating ambient temperature *1	T _{opr}	-25 to +75	°C∘C
Storage temperature *1	T _{stg}	-55 to +150	°C

Note) *1: Except for the operating ambient temperature and storage temperature, all ratings are for $T_a = 25$ °C.

■ Recommended Operating Range

Range	Symbol	Rating	Unit
Supply voltage	V _{CC1}	9.8 to 13.0	V
	V _{CC2}	Cas lyin	

2 Panasonic

^{*2:} The power dissipation shown is the value for $T_a = 75^{\circ}$ C.

ICs for TV AN5793K

\blacksquare Electrical Characteristics at $T_a=25^{\circ}C$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Circuit current	I ₁₅	$V_{CC1} = 12 \text{ V}, V_{CC2} = 12 \text{ V}$	6.9	8.1	10.1	mA
	I ₁₂	$V_{CC1} = 12 \text{ V}, V_{CC2} = 12 \text{ V}, \text{ pin } 8 = 0 \text{ V}$	12.9	15.0	17.1	
Circuit terminal voltage	V_3	$V_{CC1} = 12 \text{ V}, V_{CC2} = 12 \text{ V}, \text{ pin } 8 = 0 \text{ V}$	6.2	7.0	7.8	V
	V_5	$V_{CC1} = 12 \text{ V}, V_{CC2} = 12 \text{ V}, \text{ pin } 8 = 0 \text{ V}$	2.60	2.95	3.25	
	V_7	$V_{CC1} = 12 \text{ V}, V_{CC2} = 12 \text{ V}, \text{ pin } 8 = 0 \text{ V}$	6.4	7.4	8.2	
	V ₁₃	$V_{CC1} = 12 \text{ V}, V_{CC2} = 12 \text{ V}, \text{ pin } 8 = 0 \text{ V}$	2.4	2.9	3.4	
	V ₁₄	$V_{CC1} = 12 \text{ V}, V_{CC2} = 12 \text{ V}, \text{ pin } 8 = 0 \text{ V}$	2.4	2.9	3.4	
	V ₁₇	$V_{CC1} = 12 \text{ V}, V_{CC2} = 12 \text{ V}, \text{ pin } 8 = 0 \text{ V}$	6.4	7.4	8.2	
	V ₂₀	$V_{CC1} = 12 \text{ V}, V_{CC2} = 12 \text{ V}, \text{ pin } 8 = 0 \text{ V}$	4.9	5.9	6.8	
Horizontal output pin voltage	V _{10-1(H)}	V _{CC1} = 12 V, V _{CC2} = 12 V, pin 6 = 8 V, pin 9 = 6.8 V	3.8	4.3	4.9	V
Horizontal output saturation voltage	V _{10-1(L)}	V _{CC1} = 12 V, V _{CC2} = 12 V, pin 6 = 6.8 V, pin 9 = 8 V	- 0.2	0.1	0.2	V
X-ray protection circuit operation start voltage	V ₈₋₁	V _{CC1} = 12 V, V _{CC2} = 12 V, pin 6 = 8 V pin 9 = 6.8 V, pin 8 = 0 V to 1 V	0.65	0.75	0.90	V
Horizontal system		E CUIT				•
Horizontal oscillation start voltage	$V_{\mathrm{fH,S}}$	$f_{HO} = 15.8 \text{ kHz (allowance: } \pm 5\%)$	_	_	9.0	V.
Horizontal oscillation frequency	f _{HO1}	$V_{CC2} = 12 \text{ V}$ pin 5 = 8.5 k Ω , pin 6 = 1 800 pF (J)	15.0	15.75	16.5	kHz
Maximum horizontal oscillation frequency	f_{HO2}	$V_{CC2} = 12 \text{ V}$ pin 5 = 3.4 k Ω , pin 6 = 470 pF (J)	100	115	130	kHz
Oscillation frequency control sensitivity	β	$V_{CC2} = 12 \text{ V}, \Delta I = \pm 25 \mu\text{A}$	35.0	43.0	50.0	Hz/μA
Minimum horizontal output pulse duty	T_{D1}	V _{CC2} = 12 V, pin 9 = 8.5 V	7.0	10.3	13.5	%
Maximum horizontal output pulse duty	T_{D2}	V _{CC2} = 12 V, pin 9 = 5.8 V	89.0	93.2	97.0	%
Minimum phase shifter amount	T_{P1}	$V_{CC2} = 12 \text{ V}, \text{ pin } 11 = 1.2 \text{ V},$ pin 7 = 24 k Ω	0.5	1.0	1.5	μs
Maximum phase shifter amount	T _{P2}	V_{CC2} = 12 V, pin 7 = 24 k Ω , pin 11 = 5 V	3.2	3.7	4.2	μs
Phase shifter range	T _{P3}	$V_{CC2} = 12 \text{ V}, \text{ pin } 7 = 83 \text{ k}\Omega, \text{ pin } 11 = 5 \text{ V}$	11.5	12.4	13.3	μs
Minimum pulse width	T_{PW1}	$V_{CC2} = 12 \text{ V}, \text{ pin } 4 = 1.5 \text{ V}, \text{ pin } 7 = 24 \text{ k}\Omega$	0.5	1.0	1.5	μs
Maximum pulse width	T_{PW2}	$V_{CC2} = 12 \text{ V}, \text{ pin } 7 = 83 \text{ k}\Omega, \text{ pin } 4 = 5 \text{ V}$	11.1	12.2	13.2	μs
Minimum horizontal input level	V ₁₃₋₁	$V_{CC2} = 12 \text{ V}$	_		2.9	V[p-p]

AN5793K ICs for TV

\blacksquare Electrical Characteristics at $T_a = 25^{\circ}C$ (continued)

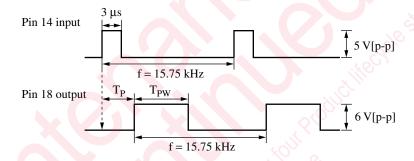
Parameter	Parameter Symbol Conditions		Min	Тур	Max	Unit
Vertical system						
Vertical oscillation start voltage	$V_{\mathrm{fV,S}}$	$f_{VO} = 56$ Hz (allowance: $\pm 10\%$)	_	_	8.0	V
Vertical oscillation frequency	f _{VO1}	$V_{CC1} = 12 \text{ V},$ pin 17 = 30.0 k Ω , pin 16 = 0.027 μ F (J)	45	50	55	Hz
Maximum vertical oscillation frequency	f_{VO2}	$V_{CC1} = 12 \text{ V}$ pin 17 = 7.7 k Ω , pin 16 = 0.027 μ F (J)	140	150	160	Hz
Vertical pulse width	T_{VO}	$V_{CCI} = 12 \text{ V}, f_{VIN} = 60 \text{ Hz}$ $f_{VO} = 50 \text{ Hz (free-running frequency)}$	0.17	0.21	0.25	ms
Vertical pull-in range	f_{PV}	$V_{CCI} = 12 \text{ V}, f_{VIN} = 140 \text{ Hz}$ $f_{VO} = 50 \text{ Hz}$ (free-running frequency)	89	90	91	Hz
Minimum vertical input level	V ₁₄₋₂₂	$V_{CC1} = 12 \text{ V}, f_{VIN} = 60 \text{ Hz}$ $f_{VO} = 50 \text{ Hz}$ (free-running frequency)		1/20	2.9	V[p-p]
Ramp wave output	V ₂₁	$V_{CCI} = 12 \text{ V}, f_{VIN} = 60 \text{ Hz}$ $f_{VO} = 50 \text{ Hz}$ (free-running frequency)	1.70	2.00	2.30	V[p-p]

• Design reference data

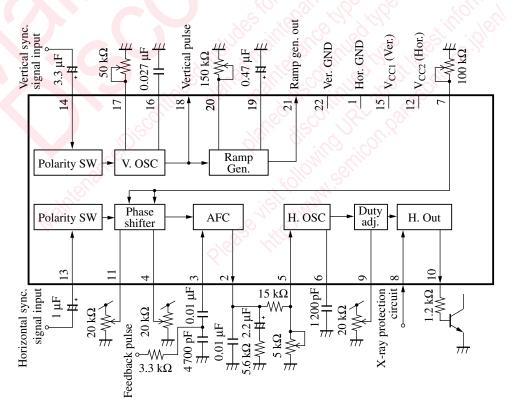
Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Horizontal system	6		M.			
Horizontal oscillation supply voltage variation	Δf_{HO} / ΔV_{CC2}	$V_{CC2} = 10.8 \text{ V to } 13.2 \text{ V}$ $f_{HO} = 31.5 \text{ kHz}$	8-	15	101	Hz/V
Horizontal oscillation temperature variation	$\Delta f_{HO} / \Delta T$	$V_{CC2} = 12 \text{ V}, T_a = -20^{\circ}\text{C to } 70^{\circ}\text{C}$ $f_{HO} = 31.5 \text{ kHz}$	100 III	1.0		Hz/°C
Phase detection sensitivity	μ	$V_{CC2} = 12 \text{ V}$	000	67	_	μΑ/μs
Horizontal output pulse duty supply voltage variation	$\Delta T_D / \Delta V_{CC2}$	$V_{CC2} = 10.8 \text{ V to } 13.2 \text{ V}, T_D = 32\%$ $f_{HO} = 31.5 \text{ kHz}$		0.25	_	%/V
Horizontal output pulse duty temperature variation	$\Delta T_{\rm D}$ / ΔT	$V_{CC2} = 12 \text{ V}, T_D = 32\%$ $T_a = -20^{\circ}\text{C to } 70^{\circ}\text{C}, f_{HO} = 31.5 \text{ kHz}$	_	0.01	_	%/°C
Horizontal output drive current	I ₁₀	$V_{CC2} = 12 \text{ V}$	_	_	5	mA
Phase shifter amount supply voltage variation	$\frac{\Delta T_P/T_{PREF}}{\Delta V_{CC2}}$	$V_{CC2} = 10.8 \text{ V to } 13.2 \text{ V}$ $T_{PREF} = 6 \mu \text{s} (V_{CC2} = 12 \text{ V})$	_	0.06	_	%/V
Phase shifter amount temperature variation	$\frac{\Delta T_P/T_{PREF}}{\Delta T}$	$V_{CC2} = 12 \text{ V}, T_{PREF} = 6 \mu \text{s}$ $T_a = -20^{\circ}\text{C} \text{ to } 70^{\circ}\text{C}$		0.02	_	%/°C
Pulse width supply voltage variation	$\frac{\Delta T_{PW}/T_{PWREF}}{\Delta V_{CC2}}$	$V_{CC2} = 10.8 \text{ V to } 13.2 \text{ V}$ $T_{PWREF} = 6 \mu\text{s} \text{ (V}_{CC2} = 12 \text{ V)}$	_	0.2	_	%/V
Pulse width temperature variation	$\frac{\Delta T_{PW}/T_{PWREF}}{\Delta T}$	$V_{CC2} = 12 \text{ V}, T_{PWREF} = 6 \mu \text{s}$ $T_a = -20^{\circ}\text{C} \text{ to } 70^{\circ}\text{C}$	_	0.02	_	%/°C

ICs for TV AN5793K


■ Electrical Characteristics at T_a = 25°C (continued)

• Design reference data (continued)


Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter Syn		Conditions		Тур	Max	Unit
Vertical system						
Vertical oscillation supply voltage variation	$\Delta f_{VO} / \Delta V_{CC1}$	$V_{CC1} = 10.8 \text{ V to } 13.2 \text{ V}$ $f_{VO} = 50 \text{ Hz}$		1.08	_	Hz/V
Vertical oscillation $\Delta f_{VO}/\Delta f_{VO$		$V_{CC1} = 12 \text{ V}, f_{VO} = 50 \text{ Hz}$ $T_a = -20^{\circ}\text{C to } 70^{\circ}\text{C}$		0.01	_	Hz/°C

• T_P, T_{PW}

■ Application Circuit Example

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
- Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.