

QUAD P-CHANNEL MOSFET Qualified per MIL-PRF-19500/599

DESCRIPTION

This 2N7335 device is military qualified up to a JANTXV level for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N7335.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/599.
- RoHS compliant version available (commercial grade only).

APPLICATIONS / BENEFITS

- High Frequency Operation.
- Lightweight.
- ESD to class 1A.

MAXIMUM RATINGS @ $T_A = +25 \text{ °C}$ unless otherwise noted.

Parameters / Test Conditions	Symbol	Value	Unit	
Operating & Storage Temperature	T _{op} , T _{stg}	-55 to +150	°C	
Thermal Resistance, Junction to Ambient 1 die 4 die		R _{ØJA}	90 50	°C/W
Thermal Resistance, Junction to Case	1 die	R _{ejc}	17	°C/W
Gate – Source Voltage	V _{GS}	± 20	V	
Continuous Drain Current @ $T_C = +25 \text{ °C}$	I _{D1}	-0.75	A	
Continuous Drain Current @ $T_c = +100 \text{ °C}$	I _{D2}	-0.50	Α	
Max. Power Dissipation @ $T_C = +25^{\circ}C$ (free a	P _{D1}	1.4	W	
Maximum Drain to Source On State Resistan @ T @ T	MAX R _{ds(on)}	1.4 2.5	Ω	
Collector Efficiency	Is	-0.75	Α	
Single Pulse Avalanche Energy Capability	E _{AS}	75	mJ	
Repetitive Avalanche Energy Capability	E _{AR}	.14	mJ	
Rated Avalanche Current (repetitive and nonn	I _{AR}	075	Α	
Off-State Current	I _{DM}	-3.0	A (pk)	

<u>Notes</u>: 1. Derated Linearly by 11 mW/°C for $T_c > +25$ °C.

2. $V_{GS} = -10 V$, $I_D = -0.5 A$.

Qualified Levels:

JAN, JANTX, and

JANTXV

MO-036AB Package

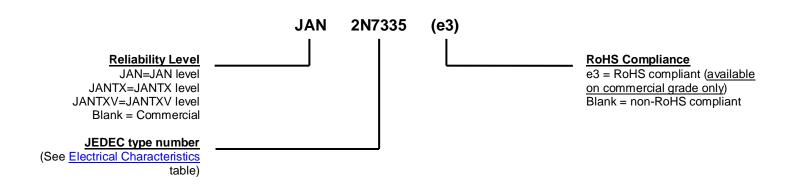
MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic, lid: alloy 42, Au over Ni plating.
- TERMINALS: Alloy 42, Au over Ni plating, solder dipped.
- MARKING: Manufacturer's ID, part number, date code.
- POLARITY: See package outline.
- WEIGHT: Approx. 1.3 grams.
- See <u>Package Dimensions</u> on last page.

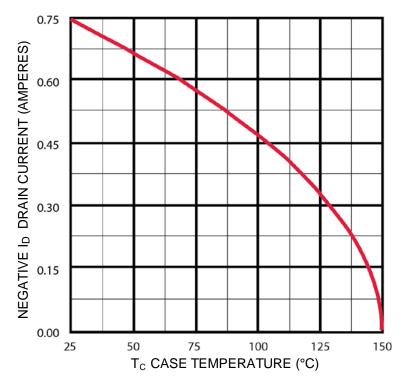
PART NOMENCLATURE

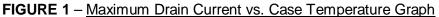
	SYMBOLS & DEFINITIONS				
Symbol	Definition				
I _D	Drain current.				
l _F	Forward current.				
Tc	Case temperature.				
V _{DD}	Drain supply voltage.				
V _{DS}	Drain to source voltage.				
V _{GS}	Gate to source voltage.				

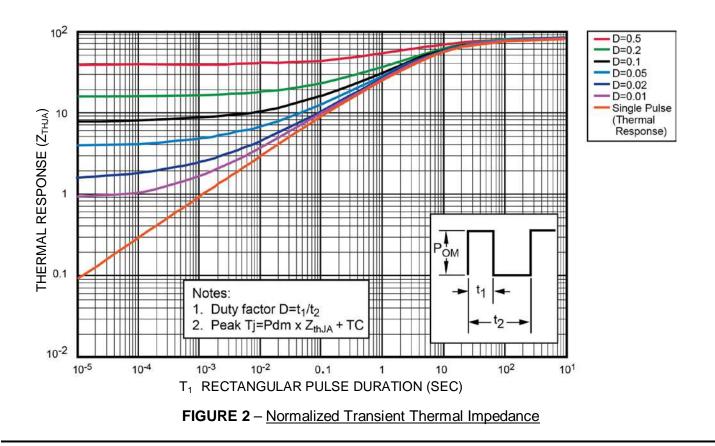
Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERTICS				
Drain-Source Breakdown Voltage	V	-100		V
$V_{GS} = 0 V, I_{D} = -1m A$	V _{(BR)DSS}	-100		v
Gate-Source Voltage (Threshold)				
$V_{DS} \ge V_{GS}, I_D = -0.25 \text{mA}$	V _{GS(th)1}	-2.0	-4.0	V
$V_{DS} \ge V_{GS}, I_{D} = -0.25 \text{ mA}, T_{j} = +125 \text{ °C}$	V _{GS(th)2}	-1.0		v
$V_{DS} \ge V_{GS}, I_{D} = -0.25 \text{ mA}, T_{j} = -55 \text{ °C}$	V _{GS(th)3}		-5.0	
Gate Current				
$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GSS1}		±100	nA
$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_j = +125 \text{ °C}$	I _{GSS2}		±200	
Drain Current				
$V_{GS} = 0 V$, $V_{DS} = 80 \%$ of rated V_{DS}	I _{DSS1}		-25	μA
$V_{GS} = 0 V, V_{DS} = 80 \%$ of rated $V_{DS}, T_j = +125 \text{ °C}$	I _{DSS2}		-0.25	mA
Static Drain-Source On-State Resistance				
V_{GS} = -10 V, cond. A pulsed per MIL-STD-750, sect. 4, I_D = -0.50 A	r _{DS(on)1}		1.4	Ω
T _j = +125 °C				
V_{GS} = -10 V, pulsed per MIL-STD-750, section 4, I_D = -0.50 A	r _{DS(on)2}		2.3	Ω
Diode Forward Voltage	V		5 5	V
V_{GS} = 0 V, I_D = -0.75 Å, pulsed per MIL-STD-750, section 4	V_{SD}		5.5	V

ELECTRICAL CHARACTERISTICS @ $T_A = +25^{\circ}C$, unless otherwise noted

DYNAMIC CHARACTERISTICS


Parameters / Test Conditions	Symbol	Min.	Max.	Unit	
Gate Charge: Conditio On-State Gate Charge Gate to Source Charge Gate to Drain Charge	Q _{g(on)} Q _{gs} Q _{gd}		15 7.0 8.0	nC	


SWITCHING CHARACTERISTICS


Parameters / Test Conditions			Min.	Max.	Unit	
Switching time tests: Turn-on delay time Rinse time	$I_D = -0.75$ A, $V_{GS} = -10$ V, Gate drive impedance = 7.5 Ω,	t _{d(on)}		30 60	ns	
Turn-off delay time Fall time	$V_{DD} = -50 V$	t _r t _{d(off)} t _f		70 80	115	
Diode Reverse Recovery Time	di/dt \leq -100 A/µs, V _{DD} \leq -30 V, I _D =75 A	t _{rr}		200	ns	

GRAPHS

Downloaded from: http://www.datasheetcatalog.com/

GRAPHS (continued)

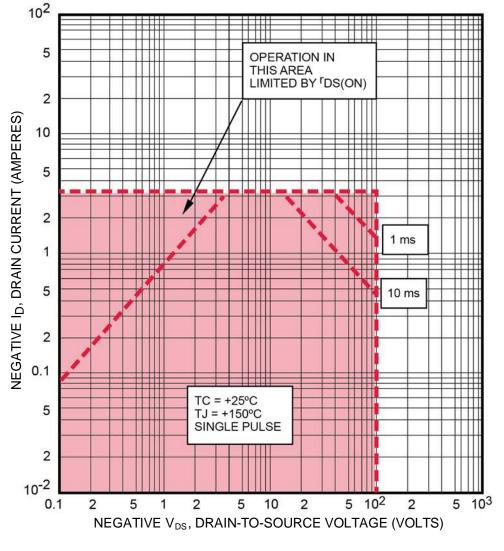
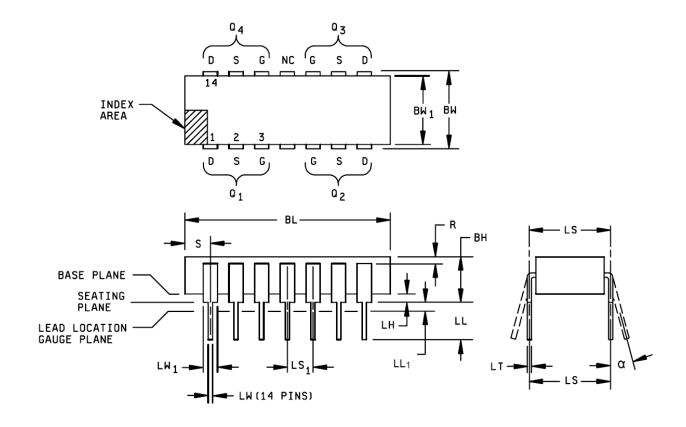



FIGURE 3 - Maximum Safe Operating Area

Downloaded from: http://www.datasheetcatalog.com/

PACKAGE DIMENSIONS

Symbol	bol Inches Millimeters		Notes		
	Min	Max	Min	Max	
BH	.105	.175	2.67	4.45	11
BL	.690	.770	17.53	19.56	
BW	.290	.325	7.37	8.26	
BW ₁	.280	.310	7.11	7.87	10
LH	.025	.055	0.64	1.40	11
LT	.008	.012	0.203	0.305	
LW	.015	.021	0.381	0.533	
LW ₁	.038	.060	0.97	1.52	

Symbol	Inc	hes	Millimeters		Notes	
	Min	Max	Min	Max		
LS	.300) TP	7.62 TP		5, 6	
LS1	.100) TP	2.54 TP		5, 6	
LL	.125	.175	3.18	4.45	11	
LL ₁	.000	.030	0.00	0.76		
α	0°	15°	0°	15°	7	
R	.010		0.25			
S	.030	.095	0.76	2.41		
Ν	1	4	14		8	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Refer to applicable symbol list.
- 4. Dimensioning and tolerancing in accordance with ASME Y14.5.
- 5. Leads within +/- .005 inch (0.13 mm) radius of True Position (TP) at gauge plane with maximum material condition and unit installed.
- 6. LS_1 and LS applies in zone LL_1 when unit installed.
- 7. α applies to spread leads prior to installation.
- 8. N is the number of terminal positions.
- 9. Outlines on which the seating plane is coincident with the base plane ($A_1 = 0$), terminals lead standoffs are not required, and LW1 may equal LW along any part of the lead above the seating/base plane.
- 10. BW₁ does not include particles of package materials.
- 11. This dimension shall be measured with the device seated in the seating plane gauge JEDEC Outline No. GS-3.

Downloaded from: http://www.datasheetcatalog.com/