Spread-Spectrum Crystal Multiplier

Abstract

\section*{General Description}

The DS1080CL is a low-jitter, crystal-based clock generator with an integrated phase-locked loop (PLL) to generate spread-spectrum clock outputs from 8 MHz to 64 MHz . The device is pin programmable to select the clock multiplier rate as well as the dither magnitude. The DS1080CL has a spread-spectrum disable mode and a power-down mode to conserve power.

Applications
Copiers
Infotainment
PCs
Printers
Pin Configuration

TOP VIEW

- Generates Spread-Spectrum Clocks from 8MHz to 64MHz
- Selectable Clock Multiplier Rates of 1x, 2x, and 4x
- Center Spread-Spectrum Dithering
- Selectable Spread-Spectrum Modulation Magnitudes of $\pm 0.5 \%, \pm 1.0 \%$, and $\pm 1.5 \%$
- Spread-Spectrum Disable Mode
- Low Cycle-to-Cycle Jitter
- Power-Down Mode with High-Impedance Output
- Low-Power Consumption
- 3.0V to 3.6V Single-Supply Operation
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Temperature Operation
- Small 8-Pin μ SOP Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DS1080CLU +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{SOP}$
DS1080CLU +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{SOP}$
DS1080CLU $/ \mathrm{V}+$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{SOP}$
DS1080CLU $/ \mathrm{V}+\mathrm{T}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{SOP}$

+Denotes a lead-free package.
N denotes an automotive qualified part.
T = Tape and reel.

Typical Operating Circuit

NOTE: IN THE ABOVE CONFIGURATION WITH PDN CONNECTED TO VCc, SMSEL CONNECTED TO GND, AND CMSEL OPEN, THE DEVICE IS IN NORMAL OPERATION WITH $2 \times$ CLOCK MULTIPLICATION AND A SPREAD-SPECTRUM MAGNITUDE OF $\pm 0.5 \%$.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Spread-Spectrum Crystal Multiplier

ABSOLUTE MAXIMUM RATINGS

Voltage Range on VCC Relative to GND-0.5V to +3.63 V Voltage Range on Any Pin Relative
to GND-0.5V to ($\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$), not to exceed +3.63 V
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$)
$\mu \mathrm{SOP}$ (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).. \qquad .. 362 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

($T_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Supply Voltage	VCC	(Note 1)	3.0	3.6	V
Input Logic 1	V_{IH}		$\begin{aligned} & 0.8 x \\ & V_{C C} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \end{gathered}$	V
Input Logic 0	VIL		$\begin{gathered} \text { VGND }^{-} \\ 0.3 \end{gathered}$	$\begin{aligned} & 0.2 x \\ & V_{C C} \end{aligned}$	V
Input Logic Open	IIF	OV < V IN < VCC (Note 2)		± 1	$\mu \mathrm{A}$
Input Leakage	IIL	OV < V IN < VCC (Note 3)		± 80	$\mu \mathrm{A}$
SSO Load	Csso			15	pF
Crystal or Clock Input Frequency	fin		8	16	MHz
Crystal ESR	XESR			90	Ω
Clock Input Duty Cycle	FINDC		40	60	\%
Crystal Parallel Load Capacitance	CL	(Note 4)		18	pF

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX
UNITS					
Supply Current	$\mathrm{ICC1}$	$\mathrm{CSSO}=15 \mathrm{pF}, \mathrm{fSSO}=8 \mathrm{MHz}$	7	12	mA
Power-Down Current	ICCQ	$\overline{\mathrm{PDN}}=\mathrm{GND}$, all input pins open	200	$\mu \mathrm{~A}$	
Output Leakage (SSO)	IOZ	$\overline{\mathrm{PDN}}=\mathrm{GND}$	-1	+1	$\mu \mathrm{~A}$
Low-Level Output VoItage (SSO)	VOL	$\mathrm{IOL}=4 \mathrm{~mA}$		0.4	V
High-Level Output Voltage (SSO)	VOH	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4	V	
Input Capacitance $(\mathrm{X} 1 / \mathrm{X} 2)$	CIN	(Note 5)	5	pF	

Spread-Spectrum Crystal Multiplier

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+3.0\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
SSO Duty Cycle	SSODC	Measured at $\mathrm{V}_{\mathrm{C}} / 2$		45		55	\%
Rise Time	tR	(Note 6)			1.6		ns
Fall Time	t_{F}	(Note 6)			1.6		ns
Peak Cycle-to-Cycle Jitter	tJ	$\begin{aligned} & \text { fSSO }=8 \mathrm{MHz}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ & 10,000 \text { cycles (Note 5) } \end{aligned}$			75		ps
Power-Up Time	tPOR	$\overline{\text { PDN }}$ pin (Note 7)	8MHz			20	ms
			16 MHz			10	
Power-Down Time	tPDN	$\overline{\text { PDN }}$ pin (Notes 8, 9)				100	ns
Dither Rate	fDITHER				$\mathrm{fin}^{\prime} 512$		

Note 1: All voltages referenced to ground.
Note 2: Maximum source/sink current applied to input to be considered an open
Note 3: Applicable to pins CMSEL, SMSEL, and $\overline{\text { PDN. }}$
Note 4: See information about CL1 and CL2 in the Applications Information section.
Note 5: Not production tested.
Note 6: For 15pF load.
Note 7: Time between $\overline{P D N}$ deasserted to output active.
Note 8: Time between $\overline{\mathrm{PDN}}$ asserted to output high impedance.
Note 9: Guaranteed by design.

Spread-Spectrum Crystal Multiplier

$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)
Typical Operating Characteristics

Spread-Spectrum Crystal Multiplier

Pin Description

PIN	NAME	FUNCTION		
1	X1	Crystal Drive/Clock Input. A crystal with the proper loading capacitors is connected across X1 and X2. Instead of a crystal, a clock can be applied at the X1 input.		
2	GND	Signal Ground		
3	CMSEL	Clock Multiplier Select. Trilevel digital input. $0=1 \mathrm{x}$ Open = 2x $1=4 \mathrm{x}$		
4	SMSEL	Spread-Spectrum Magnitude Select. Trilevel digital input. $0= \pm 0.5 \%$ Open = $\pm 1.0 \%$ $1= \pm 1.5 \%$		
5	$\overline{\text { PDN }}$			Power-Down/Spread-Spectrum Disable. Trilevel digital input.
:---				
O= Power-Down/SSO High Impedance Open = Power-Up/Spread Spectrum Disabled $1=$ Power-Up/Spread Spectrum Enabled				
6				

Block Diagram

NOTE: SEE INFORMATION ABOUT CL1 AND CL2 IN THE APPLICATIONS INFORMATIONSECTION.

Spread-Spectrum Crystal Multiplier

Detailed Description

The DS1080CL is a crystal multiplier with center spread-spectrum capability. An 8 MHz to 16 MHz crystal is connected to the X1 and X2 pins. Alternately, an 8 MHz to 16 MHz clock can be applied to X 1 in place of the crystal. In such applications, X2 would be left open circuit. Using the CMSEL input, the user selects whether the attached crystal or input clock is multiplied by 1, 2, or 4. The DS1080CL can generate spreadspectrum clocks from 8 MHz to 64 MHz .
The PLL can dither the output clock about its center frequency at a user-selectable magnitude. Using the

SMSEL input, the user selects the dither magnitude. The $\overline{P D N}$ input can be used to place the device into a low-power standby mode where the SSO output is high impedance. If the $\overline{\mathrm{PDN}}$ pin is open, the SSO output is active but the spread-spectrum dithering is disabled. The spread-spectrum dither rate is fixed at $\mathrm{f} / \mathrm{N} / 512$ to keep the dither rate above the audio frequency range. On power-up, the output clock (SSO) remains high impedance until the PLL reaches a stable frequency (fSSO) and dither (fDITHER). A power cycle is needed for the PLL whenever there is a change in input frequency, CMSEL, or SMSEL.

Figure 1. Spread-Spectrum Frequency Modulation

Spread-Spectrum Crystal Multiplier

Applications Information

Crystal Selection

The DS1080CL requires a parallel resonating crystal operating in the fundamental mode, with an ESR of less than 90Ω. The crystal should be placed very close to the device to minimize excessive loading due to parasitic capacitances.

Oscillator Input
When driving the DS1080CL using an external oscillator clock, consider the input (X1) to be high impedance.

Crystal Capacitor Selection

The load capacitors CL1 and CL2 are selected based on the crystal specifications (from the data sheet of the crystal used). The crystal parallel load capacitance is calculated as follows:

$$
\begin{equation*}
C_{L}=\frac{C_{L 1} \times C_{L 2}}{C_{L 1}+C_{L 2}}+C_{I N} \tag{1}
\end{equation*}
$$

For the DS1080CL use CL1 = CL2 = CLX In this case, the equation then reduces to:

$$
\begin{equation*}
C_{L}=\frac{C_{L X}}{2}+C_{I N} \tag{2}
\end{equation*}
$$

Power-Supply Decoupling

To achieve best results, it is highly recommended that a decoupling capacitor is used on the IC power-supply pins. Typical values of decoupling capacitors are $0.001 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. Use a high-quality, ceramic, sur-face-mount capacitor, and mount it as close as possible to the VCC and GND pins of the IC to minimize lead inductance.

Layout Considerations

As noted earlier, the crystal should be placed very close to the device to minimize excessive loading due to parasitic capacitances. Care should also be taken to minimize loading on pins that could be open as a programming option (SMSEL and CMSEL). Coupling on inputs due to clocks should be minimized.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
$8 \mu \mathrm{SOP}$	$\mathrm{U}+1$	$\underline{\underline{\mathbf{2 1}-0036}}$	$\underline{\underline{90-0092}}$

where $C_{L 1}=C_{L 2}=C_{L X}$.
Equation 2 is used to calculate the values of $C_{L 1}$ and CL2 based on values of CL and CIN noted in the electrical specifications.

Spread-Spectrum Crystal Multiplier

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$5 / 08$	Initial release	-
1	$10 / 11$	Updated the Ordering Information table and the Absolute Maximum Ratings section; added the land pattern no. to the Package Information table	$1,2,7$

