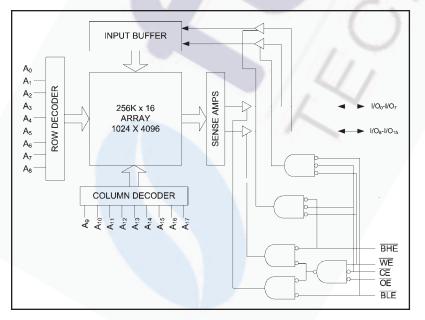


FEATURES

- High Speed (Equal Access and Cycle Times)
 10/12/15/20 ns (Commercial)
 12/15/20 ns (Industrial/Military)
- Low Power
- Single 5.0V ± 10% Power Supply
- 2.0V Data Retention


- Easy Memory Expansion Using CE and OE Inputs
- Fully TTL Compatible Inputs and Outputs
- Advanced CMOS Technology
- Fast t_{oe}
- Automatic Power Down when deselected
- Package: 44-Pin SOJ

DESCRIPTION

The FTC41041 is a 262,144 words by 16 bits high-speed CMOS static RAM. The CMOS memory requires no clocks or refreshing, and has equal access and cycle times. Inputs are fully TTL-compatible. The RAM operates from a single $5.0V \pm 10\%$ tolerance power supply.

Access times as fast as 10 nanoseconds permit greatly enhanced system operating speeds. CMOS is utilised to reduce power consumption to a low level. The FTC41041 is a member of a family of FTSRAM products offering fast access times. The FTC41041 device provides asynchronous operation with matching access and cycle times. Memory locations are specified on address pins A_0 to A_{17} . Reading is accomplished by device selection (\overline{CE} and output enabling (\overline{OE}) while write enable (\overline{WE}) remains HIGH. By presenting the address under these conditions, the data in the addressed memory location is presented on the data input/output pins. The input/output pins stay in the HIGH Z state when either \overline{CE} or \overline{OE} is HIGH or \overline{WE} is LOW.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

A ₀	1	44 🗖 A ₁₇
A1 🗆	2	43 🗖 A ₁₆
A2 🗆	3	42 🗖 A ₁₅
A3 🗆	4	41 🗖 OE
A4 🗆	5	
	6	39 🗖 BLE
I/O ₀ 🖂	7	38 🗖 I/O ₁₅
I/O₁ □	8	37 🗖 I/O ₁₄
I/O2 🖂	9	36 🗖 I/O ₁₃
I/O3 🖂	10	35 🗖 I/O ₁₂
V _{cc} \square	11	34 🗖 V _{SS}
Vss 🗆	12	33 🗖 V _{CC}
I/O4 🖂	13	32 🗖 1/O ₁₁
I/O5 🖂	14	31 🗖 I/O ₁₀
I/O ₆ 🖂	15	30 🗖 I/O9
I/O7 🗖	16	29 🗖 1/O ₈
WE 🗆	17	28 🗖 NC
A ₅ 🖂	18	27 🗖 A ₁₄
A ₆ 🖂	19	26 🗖 A ₁₃
A7 🖂	20	25 🗖 A ₁₂
A ₈ 🖂	21	24 🗖 A ₁₁
A9 🗆	22	23 🗖 A ₁₀
	SOJ	
	000	

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade ⁽²⁾	Ambient Temperature	GND	V _{cc}
Commercial	0 - 70°C	0V	5.0V ± 10%
Industrial	-40 - 85°C	0V	5.0V ± 10%
Military	-55 - 125°C	0V	5.0V ± 10%

CAPACITANCES (4)

 $V_{cc} = 5.0V, T_{A} = 25^{\circ}C, f = 1.0MHz$

Sym	Parameter	Conditions	Тур.	Unit
C	Input Capacitance	$V_{IN} = 0V$	8	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	8	pF

DC ELECTRICAL CHARACTERISTICS

MAXIMUM RATINGS (1)

Sym	Parameter	Value	Unit
V _{cc}	Power Supply Pin with Respect to GND	-0.5 to 7.0	V
V _{TERM}	Terminal Voltage with Respect to GND	-0.5 to VCC+0.5	V
T _A	Operating Temperature	-55 to 125	°C
T _{BIAS}	Temperature Under Bias	-55 to 125	°C
T _{STG}	Storage Temperature	-65 to 150	°C
I _{OUT}	DC Output Current	20	mA

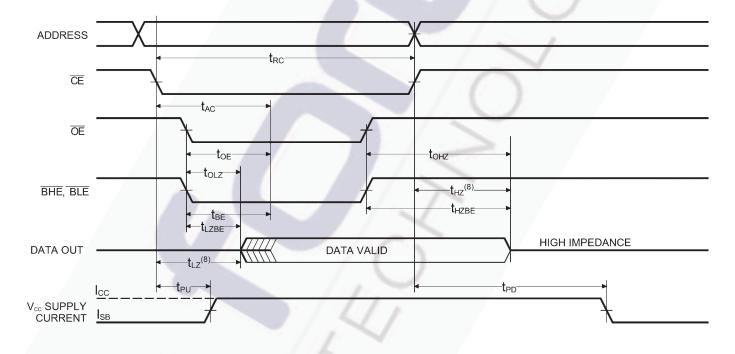
0	Deservation	To at O an distance	FTC	Unit	
Sym	Parameter	Test Conditions	Min	n Max	
$V_{\rm IH}$	Input High Voltage		2.2	V _{cc} +0.5	V
V	Input Low Voltage		-0.5(3)	0.8	V
V _{ol}	Output Low Voltage (TTL Load)	I_{OL} = +8 mA, V_{CC} = Min.		0.4	V
V _{OH}	Output High Voltage (TTL Load)	$I_{OH} = -4 \text{ mA}, V_{CC} = \text{Min}.$	2.4		V
I _{LI}	Input Leakage Current	V_{cc} = Max. V_{IN} = GND to V_{cc}	-2	+2	μA
I _{LO}	Output Leakage Current	$V_{cc} = Max.,$ $\overline{CE} = V_{IH},$ $V_{out} = GND \text{ to } V_{cc}$	-1	+1	μA
I _{SB}	Standby Power Supply Current (TTL Input Levels)	$\label{eq:cell} \begin{array}{l} \overline{CE} \geq V_{_{IH}} \\ V_{_{CC}} = Max, \\ f = Max., \mbox{ Outputs Open} \\ V_{_{IN}} \geq V_{_{IH}} \mbox{ or } V_{_{IN}} \leq V_{_{IL}} \end{array}$	_	40	mA
I _{SB1}	Standby Power Supply Current (CMOS Input Levels)	$\label{eq:cell} \begin{split} \overline{CE} &\geq V_{cc} \text{-} 0.2V \\ V_{cc} \text{=} Max, \\ f \text{=} 0, \ Outputs \ Open \\ V_{IN} &\geq V_{cc} \text{-} 0.3V \ or \\ V_{IN} &\leq 0.3V \end{split}$	_	6	mA

POWER DISSIPATION CHARACTERISTICS VS. SPEED

Sym	Parameter	Temperature Range	-10	-12	-15	-20	Unit
		Commercial	100	90	80	70	mA
I _{cc}	Dynamic Operating Current*	Industrial	100	90	80	70	mA
		Military	N/A	110	100	90	mA

*V_{cc} = 3.6V. Tested with outputs open. f = Max. Switching inputs are 0V and 3V. $\overline{CE} = V_{\mu}$, $\overline{OE} = V_{\mu}$.

AC ELECTRICAL CHARACTERISTICS—READ CYCLE


 $(V_{cc} = 5.0V \pm 10\%, All Temperature Ranges)$ ⁽²⁾

C	Devenuetor	-1	10	-12		-15		-20		Unit
Sym	Parameter	Min	Мах	Min	Max	Min	Max	Min	Max	Unit
t _{RC}	Read Cycle Time	10		12		15		20		ns
t _{AA}	Address Access Time		10		12	1	15		20	ns
t _{AC}	Chip Enable Access Time		10		12		15		20	ns
t _{он}	Output Hold from Address Change	3		3		3		3		ns
t _{LZ}	Chip Enable to Output in Low Z	3		3		3		3		ns
t _{HZ}	Chip Disable to Output in High Z	2.1	5	-	6		7		8	ns
t _{oe}	Output Enable Low to Data Valid		5		6		7		8	ns
t _{olz}	Output Enable Low to Low Z	0		0		0		0		ns
t _{onz}	Output Enable High to High Z		5		6		7		8	ns
t _{PU}	Chip Enable to Power Up Time	0	C .	0		0		0		ns
t _{PD}	Chip Disable to Power Down Time	1	10	1	12		15		20	ns
t _{BE}	Byte Enable to Data Valid	110	5		6		7		8	ns
t _{LZBE}	Byte Enable to Low Z	0		0		0		0		ns
t _{HZBE}	Byte Disable to High Z	1	6		6		7		8	ns

TIMING WAVEFORM OF READ CYCLE NO. 1 ADDRESS Image: transmission of the transmission of t

TIMING WAVEFORM OF READ CYCLE NO. 2 (OE CONTROLLED)^(5,6)

Notes:

- Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to MAXIMUM rating conditions for extended periods may affect reliability.
- Extended temperature operation guaranteed with 400 linear feet per minute of air flow.
- 3. Transient inputs with $V_{\scriptscriptstyle \parallel}$ not more negative than –2.0V and
- $V_{IH} \le V_{CC}$ + 0.5V, are permissible for pulse widths up to 20 ns.

- 4. This parameter is sampled and not 100% tested.
- 5. WE is HIGH for READ cycle.
- 6. CE is LOW and OE is LOW for READ cycle.
- 7. ADDRESS must be valid prior to, or coincident with $\overline{\text{CE}}$ transition LOW.
- Transition is measured ± 200 mV from steady state voltage prior to change, with loading as specified in Figure 1. This parameter is sampled and not 100% tested.
- Read Cycle Time is measured from the last valid address to the first transitioning address.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns
Input Timing Reference Level	1.5V
Output Timing Reference Value	1.5V
Output Load	See Figures 1 & 2

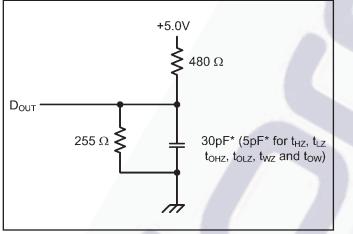
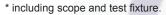



Figure 1. Output Load

Note:

Because of the ultra-high speed of the FTC41041, care must be taken when testing this device; an inadequate setup can cause a normal functioning part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the V_{cc} and ground planes directly up to the contactor fingers. A 0.01 µF high frequency capacitor is also required between V_{cc} and ground. To avoid signal reflections,

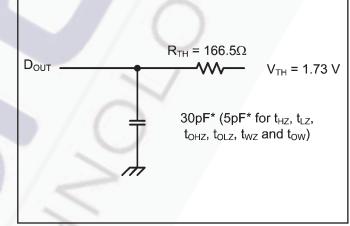
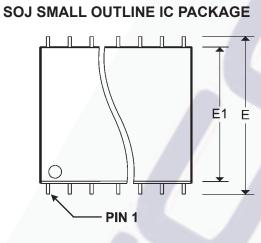
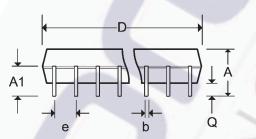
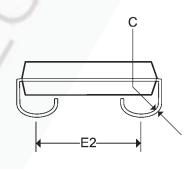


Figure 2. Thevenin Equivalent

proper termination must be used; for example, a 50Ω test environment should be terminated into a 50Ω load with 1.73V (Thevenin Voltage) at the comparator input, and a 116Ω resistor must be used in series with D_{out} to match 166Ω (Thevenin Resistance).


TRUTH TABLE


Mode	CE	ŌĒ	WE	BLE	BHE	I/O ₀ - I/O ₇	1/0 ₈ - 1/0 ₁₅	Power
Powerdown	Н	Х	Х	Х	X	High Z	High Z	Standby
Read All Bits	L	L	Н	L	L	D _{out}	D _{OUT}	Active
Read Lower Bits Only	L	L	Н	L	Н	D _{out}	High Z	Active
Read Upper Bits Only	L	L	Н	н	L	High Z	D _{OUT}	Active
Write All Bits	L	Х	L	L	L	D _{IN}	D _{IN}	Active
Write Lower Bits Only	L	Х	L	L	Н	D _{IN}	High Z	Active
Write Upper Bits Only	L	Х	L	Н	L	High Z	D _{IN}	Active
Selected, Outputs Disabled	L	Н	н	Х	Х	High Z	High Z	Active

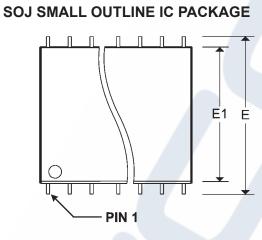

Download from alldatasheet.com

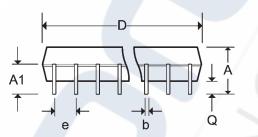
Pkg #	J8				
# Pins	44 (40	0 mil)			
Symbol	Min	Max			
А	0.128	0.148			
A1	0.082	-			
b	0.013	0.023			
С	0.007	0.013			
D	1.120	1.130			
е	0.050	BSC			
Е	0.435	0.445			
E1	0.395	0.405			
E2	0.370	BSC			
Q	0.025	-			

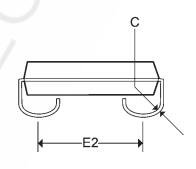


REVISIONS

DOCU	MENT NUMBER	SRAM 1478	
DOCU	MENT TITLE	FTC41041 HIG	H SPEED 256K X 16 (4 MEG) STATIC CMOS RAM
REV			
	ISSUE DATE	ORIGINATOR	DESCRIPTION OF CHANGE
OR	Jan-2007	BS	New Data Sheet
A	July-2008	BS	Added Military processing, lead-free designation
В	Sept-2009	BS	Updated TSOP II Package Drawing
С	Nov-2013	JC	Removed TSOP II Package Drawing




ORDERING INFORMATION



Pkg #	J8				
# Pins	44 (40	0 mil)			
Symbol	Min	Мах			
А	0.128	0.148			
A1	0.082	-			
b	0.013	0.023			
С	0.007	0.013			
D	1.120	1.130			
е	0.050	BSC			
Е	0.435	0.445			
E1	0.395	0.405			
E2	0.370 BSC				
Q	0.025	-			

REVISIONS

DOCUMENT NUMBER		SRAM 1478	
DOCUMENT TITLE		FTC41041 HIGH SPEED 256K X 16 (4 MEG) STATIC CMOS RAM	
REV	ISSUE DATE	ORIGINATOR	DESCRIPTION OF CHANGE
OR	Jan-2007	BS	New Data Sheet
А	July-2008	BS	Added Military processing, lead-free designation
В	Sept-2009	BS	Updated TSOP II Package Drawing
С	Nov-2013	JC	Removed TSOP II Package Drawing

Ashley Crt, Henley, Marlborough, Wilts, SN8 3RH UK **Tel: +44(0)1264 731200 Fax:+44(0)1264 731444** E-mail info@forcetechnologies.co.uk tech@forcetechnologies.co.uk sales@forcetechnologies.co.uk

www.forcetechnologies.co.uk

Unless otherwise stated in this SCD/Data sheet, Force Technologies Ltd reserve the right to make changes, without notice, in the products, Includ -ing circuits, cells and/or software, described or contained herein in order to improve design and/or performance. Force Technologies resumes no responsibility or liability for the use of any of these products, conveys no licence or any title under patent, copyright, or mask work to these products, and makes no representation or warranties that these products are free from patent, copyright or mask work infringement, unless otherwise specified.

Life Support Applications

Force Technologies products are not designed for use in life support appliances, devices or systems where malfunction of a Force Technologies product can reasonably be expected to result in a personal injury. Force Technologies customers using or selling Force Technologies products for use in such applications do so at their own risk and agree to fully indemnify Force Technologies for any damages resulting from such improper use or sale.

All trademarks acknowledged

Copyright Force Technologies Ltd 2032