True Low Power Platform (as low as $66 \mu \mathrm{~A} / \mathrm{MHz}$, and $0.60 \mu \mathrm{~A}$ for RTC + LVD), 1.6 V to 5.5 V operation, 16 to 512 Kbyte Flash, 44 DMIPS at 32 MHz , for General Purpose Applications

1. OUTLINE

1.1 Features

Ultra-Low Power Consumption Technology

- VDD $=$ single power supply voltage of 1.6 to 5.5 V which can operate a 1.8 V device at a low voltage
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU Core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed $(0.03125 \mu \mathrm{~s}$: @ 32 MHz operation with high-speed on-chip oscillator) to ultra-low speed (30.5 $\mu \mathrm{s}$: @ 32.768 kHz operation with subsystem clock)
- Multiply/divide/multiply \& accumulate instructions are supported.
- Address space: 1 MB
- General-purpose registers: (8-bit register $\times 8) \times 4$ banks
- On-chip RAM: 2.5 to 48 KB

Code Flash Memory

- Code flash memory: 16 to 512 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

Data Flash Memory

- Data flash memory: 4 KB and 8 KB
- Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: $V_{D D}=1.8$ to 5.5 V

High-speed On-chip Oscillator

- Select from $64 \mathrm{MHz}, 48 \mathrm{MHz}, 32 \mathrm{MHz}, 24 \mathrm{MHz}, 16 \mathrm{MHz}$, $12 \mathrm{MHz}, 8 \mathrm{MHz}, 6 \mathrm{MHz}, 4 \mathrm{MHz}, 3 \mathrm{MHz}, 2 \mathrm{MHz}$, and 1 MHz
- High accuracy: $\pm 1.0 \%$ (Vdd $=1.8$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20$ to $+85^{\circ} \mathrm{C}$

Operating Ambient Temperature

- $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications, D : Industrial applications)
- $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications)

Power Management and Reset Function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 14 levels)

Data Transfer Controller (DTC)

- Transfer modes: Normal transfer mode, repeat transfer mode, block transfer mode
- Activation sources: Activated by interrupt sources.
- Chain transfer function

Event Link Controller (ELC)

- Event signals of 19 to 26 types can be linked to the specified peripheral function.

Serial Interfaces

- CSI: 3 to 8 channels
- UART/UART (LIN-bus supported): 3 or 4 channels
- $I^{2} \mathrm{C} /$ simplified $\mathrm{I}^{2} \mathrm{C}: 3$ to 8 channels

Timer

- 16-bit timer: 8 to 12 channels
(Timer Array Unit (TAU): 4 to 8 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)
- 12-bit interval timer: 1 channel
- Real-time clock: 1 channel (calendar for 99 years, alarm function, and clock correction function)
- Watchdog timer: 1 channel (operable with the dedicated low-speed on-chip oscillator)

AID Converter

- 8/10-bit resolution A/D converter (VDD $=1.6$ to 5.5 V)
- Analog input: 8 to 20 channels
- Internal reference voltage (1.45 V) and temperature sensor

DIA Converter

- 8-bit resolution D/A converter (VDD $=1.6$ to 5.5 V)
- Analog output: None or up to two channels
- Output voltage: 0 V to VDD
- Real-time output function

Comparator

- None or up to two channels
- Operating modes: Comparator high-speed mode, comparator low-speed mode, window mode
- The external reference voltage or internal reference voltage can be selected as the reference voltage.

I/O Port

- I/O port: 26 to 92 (N -ch open drain I/O [withstand voltage of 6 V]: 2 to 4 , N -ch open drain I/O [Vdd withstand voltage/EVDD withstand voltage]: 10 to 28)
- Can be set to N-ch open drain, TTL input buffer, and onchip pull-up resistor
- Different potential interface: Can connect to a 1.8/2.5/3 \checkmark device
- On-chip key interrupt function
- On-chip clock output/buzzer output controller

Others

- On-chip BCD (binary-coded decimal) correction circuit

Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

O ROM, RAM capacities

Flash ROM	Data flash	RAM	RL78/G14			
			30 pins	32 pins	36 pins	40 pins
192 KB	8 KB	20 KB	-	-	-	R5F104EH
128 KB	8 KB	16 KB	R5F104AG	R5F104BG	R5F104CG	R5F104EG
96 KB	8 KB	12 KB	R5F104AF	R5F104BF	R5F104CF	R5F104EF
64 KB	4 KB	5.5 KB Note	R5F104AE	R5F104BE	R5F104CE	R5F104EE
48 KB	4 KB	5.5 KB Note	R5F104AD	R5F104BD	R5F104CD	R5F104ED
32 KB	4 KB	4 KB	R5F104AC	R5F104BC	R5F104CC	R5F104EC
16 KB	4 KB	2.5 KB	R5F104AA	R5F104BA	R5F104CA	R5F104EA

Flash ROM	Data flash	RAM	RL78/G14			
			44 pins	48 pins	52 pins	64 pins
512 KB	8 KB	48 KB Note	-	R5F104GL	-	R5F104LL
384 KB	8 KB	32 KB	-	R5F104GK	-	R5F104LK
256 KB	8 KB	24 KB Note	R5F104FJ	R5F104GJ	R5F104JJ	R5F104LJ
192 KB	8 KB	20 KB	R5F104FH	R5F104GH	R5F104JH	R5F104LH
128 KB	8 KB	16 KB	R5F104FG	R5F104GG	R5F104JG	R5F104LG
96 KB	8 KB	12 KB	R5F104FF	R5F104GF	R5F104JF	R5F104LF
64 KB	4 KB	5.5 KB Note	R5F104FE	R5F104GE	R5F104JE	R5F104LE
48 KB	4 KB	5.5 KB Note	R5F104FD	R5F104GD	R5F104JD	R5F104LD
32 KB	4 KB	4 KB	R5F104FC	R5F104GC	R5F104JC	R5F104LC
16 KB	4 KB	2.5 KB	R5F104FA	R5F104GA	-	-

Flash ROM	Data flash	RAM	80 pins	RL78/G14
			R5F104ML	R5F100 pins
512 KB	8 KB	48 KB Note	R5F104MK	
384 KB	8 KB	32 KB	R5F104MJ	R5F104PK
256 KB	8 KB	24 KB Note	R5F104MH	R5F104PJ
192 KB	8 KB	20 KB	R5F104MG	R5F104PH
128 KB	8 KB	16 KB	R5F104MF	R5F104PG
96 KB	8 KB	12 KB	R5F104PF	

The flash library uses RAM in self-programming and rewriting of the data flash memory.
The target products and start address of the RAM areas used by the flash library are shown below.
R5F104xD (x = A to C, E to G, J, L): Start address FE900H
R5F104xE (x = A to C, E to G, J, L): Start address FE900H
R5F104xJ ($x=F, G, J, L, M, P$): Start address F9F00H
R5F104xL ($x=G, L, M, P$): Start address F3F00H
For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

1.2 Ordering Information

Figure 1-1 Part Number, Memory Size, and Package of RL78/G14

Part No. R 5F 104 LEAxxxFB \#V 0

Pin count	Package	Fields of Application Note	Ordering Part Number
30 pins	30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)	A	R5F104AAASP\#V0, R5F104ACASP\#V0, R5F104ADASP\#V0, R5F104AEASP\#V0, R5F104AFASP\#V0, R5F104AGASP\#V0 R5F104AAASP\#X0, R5F104ACASP\#X0, R5F104ADASP\#X0, R5F104AEASP\#X0, R5F104AFASP\#X0, R5F104AGASP\#X0
		D	R5F104AADSP\#V0, R5F104ACDSP\#V0, R5F104ADDSP\#V0, R5F104AEDSP\#V0, R5F104AFDSP\#V0, R5F104AGDSP\#V0 R5F104AADSP\#X0, R5F104ACDSP\#X0, R5F104ADDSP\#X0, R5F104AEDSP\#X0, R5F104AFDSP\#X0, R5F104AGDSP\#X0
		G	R5F104AAGSP\#V0, R5F104ACGSP\#V0, R5F104ADGSP\#V0, R5F104AEGSP\#V0, R5F104AFGSP\#V0, R5F104AGGSP\#V0 R5F104AAGSP\#X0, R5F104ACGSP\#X0, R5F104ADGSP\#X0, R5F104AEGSP\#X0, R5F104AFGSP\#X0, R5F104AGGSP\#X0
32 pins	32-pin plastic HWQFN ($5 \times 5 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)	A	R5F104BAANA\#U0, R5F104BCANA\#U0, R5F104BDANA\#U0, R5F104BEANA\#U0, R5F104BFANA\#U0, R5F104BGANA\#U0 R5F104BAANA\#W0, R5F104BCANA\#W0, R5F104BDANA\#W0, R5F104BEANA\#W0, R5F104BFANA\#W0, R5F104BGANA\#W0
		D	R5F104BADNA\#U0, R5F104BCDNA\#U0, R5F104BDDNA\#U0, R5F104BEDNA\#U0, R5F104BFDNA\#U0, R5F104BGDNA\#U0 R5F104BADNA\#W0, R5F104BCDNA\#W0, R5F104BDDNA\#W0, R5F104BEDNA\#W0, R5F104BFDNA\#W0, R5F104BGDNA\#W0
		G	R5F104BAGNA\#U0, R5F104BCGNA\#U0, R5F104BDGNA\#U0, R5F104BEGNA\#U0, R5F104BFGNA\#U0, R5F104BGGNA\#U0 R5F104BAGNA\#W0, R5F104BCGNA\#W0, R5F104BDGNA\#W0, R5F104BEGNA\#W0, R5F104BFGNA\#W0, R5F104BGGNA\#W0
	32-pin plastic LQFP ($7 \times 7,0.8 \mathrm{~mm}$ pitch)	A	R5F104BAAFP\#V0, R5F104BCAFP\#V0, R5F104BDAFP\#V0, R5F104BEAFP\#V0, R5F104BFAFP\#V0, R5F104BGAFP\#V0 R5F104BAAFP\#X0, R5F104BCAFP\#X0, R5F104BDAFP\#X0, R5F104BEAFP\#X0, R5F104BFAFP\#X0, R5F104BGAFP\#X0
		D	R5F104BADFP\#V0, R5F104BCDFP\#V0, R5F104BDDFP\#V0, R5F104BEDFP\#V0, R5F104BFDFP\#V0, R5F104BGDFP\#V0 R5F104BADFP\#X0, R5F104BCDFP\#X0, R5F104BDDFP\#X0, R5F104BEDFP\#X0, R5F104BFDFP\#X0, R5F104BGDFP\#X0
		G	R5F104BAGFP\#V0, R5F104BCGFP\#V0, R5F104BDGFP\#V0, R5F104BEGFP\#V0, R5F104BFGFP\#V0, R5F104BGGFP\#V0 R5F104BAGFP\#X0, R5F104BCGFP\#X0, R5F104BDGFP\#X0, R5F104BEGFP\#X0, R5F104BFGFP\#X0, R5F104BGGFP\#X0
36 pins	36-pin plastic WFLGA ($4 \times 4 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)	A	R5F104CAALA\#U0, R5F104CCALA\#U0, R5F104CDALA\#U0, R5F104CEALA\#U0, R5F104CFALA\#U0, R5F104CGALA\#U0 R5F104CAALA\#W0, R5F104CCALA\#W0, R5F104CDALA\#W0, R5F104CEALA\#W0, R5F104CFALA\#W0, R5F104CGALA\#W0
		G	R5F104CAGLA\#U0, R5F104CCGLA\#U0, R5F104CDGLA\#U0, R5F104CEGLA\#U0, R5F104CFGLA\#U0, R5F104CGGLA\#U0 R5F104CAGLA\#W0, R5F104CCGLA\#W0, R5F104CDGLA\#W0, R5F104CEGLA\#W0, R5F104CFGLA\#W0, R5F104CGGLA\#W0

Note
For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G14.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.
(2/5)

Pin count	Package	Fields of Application Note	Ordering Part Number
40 pins	40-pin plastic HWQFN ($6 \times 6 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)	A	R5F104EAANA\#U0, R5F104ECANA\#U0, R5F104EDANA\#U0, R5F104EEANA\#U0, R5F104EFANA\#U0, R5F104EGANA\#U0, R5F104EHANA\#U0 R5F104EAANA\#W0, R5F104ECANA\#W0, R5F104EDANA\#W0, R5F104EEANA\#W0, R5F104EFANA\#W0, R5F104EGANA\#W0, R5F104EHANA\#W0
		D	R5F104EADNA\#U0, R5F104ECDNA\#U0, R5F104EDDNA\#U0, R5F104EEDNA\#U0, R5F104EFDNA\#U0, R5F104EGDNA\#U0, R5F104EHDNA\#U0 R5F104EADNA\#W0, R5F104ECDNA\#W0, R5F104EDDNA\#W0, R5F104EEDNA\#W0, R5F104EFDNA\#W0, R5F104EGDNA\#W0, R5F104EHDNA\#W0
		G	R5F104EAGNA\#U0, R5F104ECGNA\#U0, R5F104EDGNA\#U0, R5F104EEGNA\#U0, R5F104EFGNA\#U0, R5F104EGGNA\#U0, R5F104EHGNA\#U0 R5F104EAGNA\#W0, R5F104ECGNA\#W0, R5F104EDGNA\#W0, R5F104EEGNA\#W0, R5F104EFGNA\#W0, R5F104EGGNA\#W0, R5F104EHGNA\#W0
44 pins	44-pin plastic LQFP ($10 \times 10,0.8 \mathrm{~mm}$ pitch)	A	R5F104FAAFP\#V0, R5F104FCAFP\#V0, R5F104FDAFP\#V0, R5F104FEAFP\#V0, R5F104FFAFP\#V0, R5F104FGAFP\#V0, R5F104FHAFP\#V0, R5F104FJAFP\#V0 R5F104FAAFP\#X0, R5F104FCAFP\#X0, R5F104FDAFP\#X0, R5F104FEAFP\#X0, R5F104FFAFP\#X0, R5F104FGAFP\#X0, R5F104FHAFP\#X0, R5F104FJAFP\#X0
		D	R5F104FADFP\#V0, R5F104FCDFP\#V0, R5F104FDDFP\#V0, R5F104FEDFP\#V0, R5F104FFDFP\#V0, R5F104FGDFP\#V0, R5F104FHDFP\#V0, R5F104FJDFP\#V0 R5F104FADFP\#X0, R5F104FCDFP\#X0, R5F104FDDFP\#X0, R5F104FEDFP\#X0, R5F104FFDFP\#X0, R5F104FGDFP\#X0, R5F104FHDFP\#X0, R5F104FJDFP\#X0
		G	R5F104FAGFP\#V0, R5F104FCGFP\#V0, R5F104FDGFP\#V0, R5F104FEGFP\#V0, R5F104FFGFP\#V0, R5F104FGGFP\#V0, R5F104FHGFP\#V0, R5F104FJGFP\#V0 R5F104FAGFP\#X0, R5F104FCGFP\#X0, R5F104FDGFP\#X0, R5F104FEGFP\#X0, R5F104FFGFP\#X0, R5F104FGGFP\#X0, R5F104FHGFP\#X0, R5F104FJGFP\#X0

Note \quad For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G14.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

Pin count	Package	Fields of Application Note	Ordering Part Number
48 pins	48-pin plastic LFQFP ($7 \times 7 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)	A	R5F104GAAFB\#V0, R5F104GCAFB\#V0, R5F104GDAFB\#V0, R5F104GEAFB\#V0, R5F104GFAFB\#V0, R5F104GGAFB\#V0, R5F104GHAFB\#V0, R5F104GJAFB\#V0 R5F104GAAFB\#X0, R5F104GCAFB\#X0, R5F104GDAFB\#X0, R5F104GEAFB\#X0, R5F104GFAFB\#X0, R5F104GGAFB\#X0, R5F104GHAFB\#X0, R5F104GJAFB\#X0 R5F104GKAFB\#30, R5F104GLAFB\#30 R5F104GKAFB\#50, R5F104GLAFB\#50
		D	R5F104GADFB\#V0, R5F104GCDFB\#V0, R5F104GDDFB\#V0, R5F104GEDFB\#V0, R5F104GFDFB\#V0, R5F104GGDFB\#V0, R5F104GHDFB\#V0, R5F104GJDFB\#V0 R5F104GADFB\#X0, R5F104GCDFB\#X0, R5F104GDDFB\#X0, R5F104GEDFB\#X0, R5F104GFDFB\#X0, R5F104GGDFB\#X0, R5F104GHDFB\#X0, R5F104GJDFB\#X0
		G	R5F104GAGFB\#V0, R5F104GCGFB\#V0, R5F104GDGFB\#V0, R5F104GEGFB\#V0, R5F104GFGFB\#V0, R5F104GGGFB\#V0, R5F104GHGFB\#V0, R5F104GJGFB\#V0 R5F104GAGFB\#X0, R5F104GCGFB\#X0, R5F104GDGFB\#X0, R5F104GEGFB\#X0, R5F104GFGFB\#X0, R5F104GGGFB\#X0, R5F104GHGFB\#X0, R5F104GJGFB\#X0 R5F104GKGFB\#30, R5F104GLGFB\#30 R5F104GKGFB\#50, R5F104GLGFB\#50
	48-pin plastic HWQFN ($7 \times 7 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)	A	R5F104GAANA\#U0, R5F104GCANA\#U0, R5F104GDANA\#U0, R5F104GEANA\#U0, R5F104GFANA\#U0, R5F104GGANA\#U0, R5F104GHANA\#U0, R5F104GJANA\#U0 R5F104GAANA\#W0, R5F104GCANA\#W0, R5F104GDANA\#W0, R5F104GEANA\#W0, R5F104GFANA\#W0, R5F104GGANA\#W0, R5F104GHANA\#W0, R5F104GJANA\#W0 R5F104GKANA\#U0, R5F104GLANA\#U0 R5F104GKANA\#W0, R5F104GLANA\#W0
		D	R5F104GADNA\#U0, R5F104GCDNA\#U0, R5F104GDDNA\#U0, R5F104GEDNA\#U0, R5F104GFDNA\#U0, R5F104GGDNA\#U0, R5F104GHDNA\#U0, R5F104GJDNA\#U0 R5F104GADNA\#W0, R5F104GCDNA\#W0, R5F104GDDNA\#W0, R5F104GEDNA\#W0, R5F104GFDNA\#W0, R5F104GGDNA\#W0, R5F104GHDNA\#W0, R5F104GJDNA\#W0
		G	R5F104GAGNA\#U0, R5F104GCGNA\#U0, R5F104GDGNA\#U0, R5F104GEGNA\#U0, R5F104GFGNA\#U0, R5F104GGGNA\#U0, R5F104GHGNA\#U0, R5F104GJGNA\#U0 R5F104GAGNA\#W0, R5F104GCGNA\#W0, R5F104GDGNA\#W0, R5F104GEGNA\#W0, R5F104GFGNA\#W0, R5F104GGGNA\#W0, R5F104GHGNA\#W0, R5F104GJGNA\#W0 R5F104GKGNA\#U0, R5F104GLGNA\#U0 R5F104GKGNA\#W0, R5F104GLGNA\#W0
52 pins	52-pin plastic LQFP$(10 \times 10 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch $)$	A	R5F104JCAFA\#V0, R5F104JDAFA\#V0, R5F104JEAFA\#V0, R5F104JFAFA\#V0, R5F104JGAFA\#V0, R5F104JHAFA\#V0, R5F104JJAFA\#V0 R5F104JCAFA\#X0, R5F104JDAFA\#X0, R5F104JEAFA\#X0, R5F104JFAFA\#X0, R5F104JGAFA\#X0, R5F104JHAFA\#X0, R5F104JJAFA\#X0
		D	R5F104JCDFA\#V0, R5F104JDDFA\#V0, R5F104JEDFA\#V0, R5F104JFDFA\#V0, R5F104JGDFA\#V0, R5F104JHDFA\#V0, R5F104JJDFA\#V0 R5F104JCDFA\#X0, R5F104JDDFA\#X0, R5F104JEDFA\#X0, R5F104JFDFA\#X0, R5F104JGDFA\#X0, R5F104JHDFA\#X0, R5F104JJDFA\#X0
		G	R5F104JCGFA\#V0, R5F104JDGFA\#V0, R5F104JEGFA\#V0, R5F104JFGFA\#V0, R5F104JGGFA\#V0, R5F104JHGFA\#V0, R5F104JJGFA\#V0 R5F104JCGFA\#X0, R5F104JDGFA\#X0, R5F104JEGFA\#X0, R5F104JFGFA\#X0, R5F104JGGFA\#X0, R5F104JHGFA\#X0, R5F104JJGFA\#X0

Note \quad For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G14.
Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

Pin count	Package	Fields of Application Note	Ordering Part Number
64 pins	64-pin plastic LQFP ($12 \times 12 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)	A	R5F104LCAFA\#V0, R5F104LDAFA\#V0, R5F104LEAFA\#V0, R5F104LFAFA\#V0, R5F104LGAFA\#V0, R5F104LHAFA\#V0, R5F104LJAFA\#V0 R5F104LCAFA\#X0, R5F104LDAFA\#X0, R5F104LEAFA\#X0, R5F104LFAFA\#X0, R5F104LGAFA\#X0, R5F104LHAFA\#X0, R5F104LJAFA\#X0 R5F104LKAFA\#30, R5F104LLAFA\#30 R5F104LKAFA\#50, R5F104LLAFA\#50
		D	R5F104LCDFA\#V0, R5F104LDDFA\#V0, R5F104LEDFA\#V0, R5F104LFDFA\#V0, R5F104LGDFA\#V0, R5F104LHDFA\#V0, R5F104LJDFA\#V0 R5F104LCDFA\#X0, R5F104LDDFA\#X0, R5F104LEDFA\#X0, R5F104LFDFA\#X0, R5F104LGDFA\#X0, R5F104LHDFA\#X0, R5F104LJDFA\#X0
		G	R5F104LCGFA\#V0, R5F104LDGFA\#V0, R5F104LEGFA\#V0, R5F104LFGFA\#V0, R5F104LGGFA\#V0, R5F104LHGFA\#V0, R5F104LJGFA\#V0 R5F104LCGFA\#X0, R5F104LDGFA\#X0, R5F104LEGFA\#X0, R5F104LFGFA\#X0, R5F104LGGFA\#X0, R5F104LHGFA\#X0, R5F104LJGFA\#X0 R5F104LKGFA\#30, R5F104LLGFA\#30 R5F104LKGFA\#50, R5F104LLGFA\#50
	64-pin plastic LFQFP ($10 \times 10 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)	A	R5F104LCAFB\#V0, R5F104LDAFB\#V0, R5F104LEAFB\#V0, R5F104LFAFB\#V0, R5F104LGAFB\#V0, R5F104LHAFB\#V0, R5F104LJAFB\#V0 R5F104LCAFB\#X0, R5F104LDAFB\#X0, R5F104LEAFB\#X0, R5F104LFAFB\#X0, R5F104LGAFB\#X0, R5F104LHAFB\#X0, R5F104LJAFB\#X0 R5F104LKAFB\#30, R5F104LLAFB\#30 R5F104LKAFB\#50, R5F104LLAFB\#50
		D	R5F104LCDFB\#V0, R5F104LDDFB\#V0, R5F104LEDFB\#V0, R5F104LFDFB\#V0, R5F104LGDFB\#V0, R5F104LHDFB\#V0, R5F104LJDFB\#V0 R5F104LCDFB\#X0, R5F104LDDFB\#X0, R5F104LEDFB\#X0, R5F104LFDFB\#X0, R5F104LGDFB\#X0, R5F104LHDFB\#X0, R5F104LJDFB\#X0
		G	R5F104LCGFB\#V0, R5F104LDGFB\#V0, R5F104LEGFB\#V0, R5F104LFGFB\#V0, R5F104LGGFB\#V0, R5F104LHGFB\#V0, R5F104LJGFB\#V0 R5F104LCGFB\#X0, R5F104LDGFB\#X0, R5F104LEGFB\#X0, R5F104LFGFB\#X0, R5F104LGGFB\#X0, R5F104LHGFB\#X0, R5F104LJGFB\#X0 R5F104LKGFB\#30, R5F104LLGFB\#30 R5F104LKGFB\#50, R5F104LLGFB\#50
	64-pin plastic FLGA ($5 \times 5 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)	A	R5F104LCALA\#U0, R5F104LDALA\#U0, R5F104LEALA\#U0, R5F104LFALA\#U0, R5F104LGALA\#U0, R5F104LHALA\#U0, R5F104LJALA\#U0 R5F104LCALA\#W0, R5F104LDALA\#W0, R5F104LEALA\#W0, R5F104LFALA\#W0, R5F104LGALA\#W0, R5F104LHALA\#W0, R5F104LJALA\#W0 R5F104LKALA\#U0, R5F104LLALA\#U0 R5F104LKALA\#W0, R5F104LLALA\#W0
		G	R5F104LCGLA\#U0, R5F104LDGLA\#U0, R5F104LEGLA\#U0, R5F104LFGLA\#U0, R5F104LGGLA\#U0, R5F104LHGLA\#U0, R5F104LJGLA\#U0, R5F104LKGLA\#U0, R5F104LLGLA\#U0 R5F104LCGLA\#W0, R5F104LDGLA\#W0, R5F104LEGLA\#W0, R5F104LFGLA\#W0, R5F104LGGLA\#W0, R5F104LHGLA\#W0, R5F104LJGLA\#W0, R5F104LKGLA\#W0, R5F104LLGLA\#W0
	64-pin plastic LQFP ($14 \times 14 \mathrm{~mm}, 0.8 \mathrm{~mm}$ pitch)	A	R5F104LCAFP\#V0, R5F104LDAFP\#V0, R5F104LEAFP\#V0, R5F104LFAFP\#V0, R5F104LGAFP\#V0, R5F104LHAFP\#V0, R5F104LJAFP\#V0 R5F104LCAFP\#X0, R5F104LDAFP\#X0, R5F104LEAFP\#X0, R5F104LFAFP\#X0, R5F104LGAFP\#X0, R5F104LHAFP\#X0, R5F104LJAFP\#X0
		D	R5F104LCDFP\#V0, R5F104LDDFP\#V0, R5F104LEDFP\#V0, R5F104LFDFP\#V0, R5F104LGDFP\#V0, R5F104LHDFP\#V0, R5F104LJDFP\#V0 R5F104LCDFP\#X0, R5F104LDDFP\#X0, R5F104LEDFP\#X0, R5F104LFDFP\#X0, R5F104LGDFP\#X0, R5F104LHDFP\#X0, R5F104LJDFP\#X0
		G	R5F104LCGFP\#V0, R5F104LDGFP\#V0, R5F104LEGFP\#V0, R5F104LFGFP\#V0, R5F104LGGFP\#V0, R5F104LHGFP\#V0, R5F104LJGFP\#V0 R5F104LCGFP\#X0, R5F104LDGFP\#X0, R5F104LEGFP\#X0, R5F104LFGFP\#X0, R5F104LGGFP\#X0, R5F104LHGFP\#X0, R5F104LJGFP\#X0

Note \quad For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G14.
Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

Pin count	Package	Fields of Application Note	Ordering Part Number
80 pins	80 -pin plastic LFQFP$(12 \times 12 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$	A	R5F104MFAFB\#V0, R5F104MGAFB\#V0, R5F104MHAFB\#V0, R5F104MJAFB\#V0 R5F104MFAFB\#X0, R5F104MGAFB\#X0, R5F104MHAFB\#X0, R5F104MJAFB\#X0 R5F104MKAFB\#30, R5F104MLAFB\#30 R5F104MKAFB\#50, R5F104MLAFB\#50
		D	R5F104MFDFB\#V0, R5F104MGDFB\#V0, R5F104MHDFB\#V0, R5F104MJDFB\#V0 R5F104MFDFB\#X0, R5F104MGDFB\#X0, R5F104MHDFB\#X0, R5F104MJDFB\#X0
		G	R5F104MFGFB\#V0, R5F104MGGFB\#V0, R5F104MHGFB\#V0, R5F104MJGFB\#V0 R5F104MFGFB\#X0, R5F104MGGFB\#X0, R5F104MHGFB\#X0, R5F104MJGFB\#X0 R5F104MKGFB\#30, R5F104MLGFB\#30 R5F104MKGFB\#X0, R5F104MLGFB\#50
	80-pin plastic LQFP ($14 \times 14 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)	A	R5F104MFAFA\#V0, R5F104MGAFA\#V0, R5F104MHAFA\#V0, R5F104MJAFA\#V0 R5F104MFAFA\#X0, R5F104MGAFA\#X0, R5F104MHAFA\#X0, R5F104MJAFA\#X0 R5F104MKAFA\#30, R5F104MLAFA\#30 R5F104MKAFA\#50, R5F104MLAFA\#50
		D	R5F104MFDFA\#V0, R5F104MGDFA\#V0, R5F104MHDFA\#V0, R5F104MJDFA\#V0 R5F104MFDFA\#X0, R5F104MGDFA\#X0, R5F104MHDFA\#X0, R5F104MJDFA\#X0
		G	R5F104MFGFA\#V0, R5F104MGGFA\#V0, R5F104MHGFA\#V0, R5F104MJGFA\#V0 R5F104MFGFA\#X0, R5F104MGGFA\#X0, R5F104MHGFA\#X0, R5F104MJGFA\#X0 R5F104MKGFA\#30, R5F104MLGFA\#30 R5F104MKGFA\#50, R5F104MLGFA\#50
100 pins	100-pin plastic LFQFP$(14 \times 14 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$	A	R5F104PFAFB\#V0, R5F104PGAFB\#V0, R5F104PHAFB\#V0, R5F104PJAFB\#V0 R5F104PFAFB\#X0, R5F104PGAFB\#X0, R5F104PHAFB\#X0, R5F104PJAFB\#X0 R5F104PKAFB\#30, R5F104PLAFB\#30 R5F104PKAFB\#50, R5F104PLAFB\#50
		D	R5F104PFDFB\#V0, R5F104PGDFB\#V0, R5F104PHDFB\#V0, R5F104PJDFB\#V0 R5F104PFDFB\#X0, R5F104PGDFB\#X0, R5F104PHDFB\#X0, R5F104PJDFB\#X0
		G	R5F104PFGFB\#V0, R5F104PGGFB\#V0, R5F104PHGFB\#V0, R5F104PJGFB\#V0 R5F104PFGFB\#X0, R5F104PGGFB\#X0, R5F104PHGFB\#X0, R5F104PJGFB\#X0 R5F104PKGFB\#30, R5F104PLGFB\#30 R5F104PKGFB\#50, R5F104PLGFB\#50
	100-pin plastic LQFP $(14 \times 20 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)	A	R5F104PFAFA\#V0, R5F104PGAFA\#V0, R5F104PHAFA\#V0, R5F104PJAFA\#V0 R5F104PFAFA\#X0, R5F104PGAFA\#X0, R5F104PHAFA\#X0, R5F 104PJAFA\#X0 R5F104PKAFA\#30, R5F104PLAFA\#30 R5F104PKAFA\#50, R5F104PLAFA\#50
		D	R5F104PFDFA\#V0, R5F104PGDFA\#V0, R5F104PHDFA\#V0, R5F104PJDFA\#V0 R5F104PFDFA\#X0, R5F104PGDFA\#X0, R5F104PHDFA\#X0, R5F104PJDFA\#X0
		G	R5F104PFGFA\#V0, R5F104PGGFA\#V0, R5F104PHGFA\#V0, R5F104PJGFA\#V0 R5F104PFGFA\#X0, R5F104PGGFA\#X0, R5F104PHGFA\#X0, R5F104PJGFA\#X0 R5F104PKGFA\#30, R5F104PLGFA\#30 R5F104PKGFA\#50, R5F104PLGFA\#50

Note Caution

For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G14.
The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Pin Configuration (Top View)

1.3.1 30-pin products

-30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).

1.3.2 32-pin products

-32-pin plastic HWQFN ($5 \times 5 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).
Remark 3. It is recommended to connect an exposed die pad to Vss.

- 32-pin plastic LQFP ($7 \times 7 \mathrm{~mm}, 0.8 \mathrm{~mm}$ pitch)

Note
Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).

1.3.3 36-pin products

-36-pin plastic WFLGA ($4 \times 4 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)

Top View

Bottom View

INDEX MARK

	A		C		E	F	
6	P60/SCLA0	Vdd	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	6
5	P62/SSI00	P61/SDAA0	Vss	REGC	RESET	P120/ANI19/ VCOUTO Note	5
4	P72/SO21	$\begin{aligned} & \hline \text { P71/SI21/ } \\ & \text { SDA21 } \end{aligned}$	P14/RxD2/SI20/ SDA20/TRDIOD0/ (SCLAO)	P31/TI03/TO03/ INTP4/PCLBUZ0/ (TRJIOO)	P00/TI00/TxD1/ TRGCLKA/ (TRJOO)	P01/TO00/ RxD1/TRGCLKB/ TRJIO0	4
3	P50/INTP1/ SIOO/RxD0/ TOOLRxD/ SDA00/TRGIOA/ (TRJOO)	$\begin{aligned} & \text { P70/SCK21/ } \\ & \text { SCL21 } \end{aligned}$	P15/PCLBUZ1/ SCK20/SCL20/ TRDIOBO/ (SDAAO)	P22/ANI2/ ANOO Note	P20/ANIO/ AVRefp	P21/ANI1/ AVrefm	3
2	P30/INTP3/ SCK00/SCL00/ TRJO0	P16/TI01/TO01/ INTP5/TRDIOC0/ IVREFO Note/ (RXD0)	P12/SO11/ TRDIOB1/ IVREF1 Note	P11/SI11/ SDA11/ TRDIOC1	P24/ANI4	P23/ANI3/ ANO1 Note	2
1	P51/INTP2/ SO00/TxD0/ TOOLTxD/ TRGIOB	$\begin{aligned} & \text { P17/TI02/TO02/ } \\ & \text { TRDIOA0/ } \\ & \text { TRDCLK/ } \\ & \text { IVCMP0 Note/ } \\ & \text { (TXD0) } \end{aligned}$	P13/TxD2/ SO20/TRDIOA1/ IVCMP1 Note	$\begin{aligned} & \text { P10/SCK11/ } \\ & \text { SCL11/ } \\ & \text { TRDIOD1 } \end{aligned}$	P147/ANI18/ VCOUT1 Note	P25/ANI5	1
	A	B	C	D	E	F	

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIOR0, 1).

1.3.4 40-pin products

- 40-pin plastic HWQFN ($6 \times 6 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIOR0, 1).
Remark 3. It is recommended to connect an exposed die pad to Vss.

1.3.5 44-pin products

- 44-pin plastic LQFP (10 $\times 10 \mathrm{~mm}, 0.8 \mathrm{~mm}$ pitch $)$

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).

1.3.6 48-pin products

- 48-pin plastic LFQFP ($7 \times 7 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)

Note 1. Mounted on the 96 KB or more code flash memory products.
Note 2. Mounted on the 384 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIOR0, 1).

Note 1. Mounted on the 96 KB or more code flash memory products.
Note 2. Mounted on the 384 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).
Remark 3. It is recommended to connect an exposed die pad to Vss.

1.3.7 52-pin products

- 52-pin plastic LQFP ($10 \times 10 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch $)$

Note 1. Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIOR0, 1).

1.3.8 64-pin products

-64-pin plastic LQFP ($14 \times 14 \mathrm{~mm}, 0.8 \mathrm{~mm}$ pitch $)$
-64-pin plastic LQFP ($12 \times 12 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch $)$
-64-pin plastic LFQFP ($10 \times 10 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$

Note 1. Mounted on the 96 KB or more code flash memory products.
Note 2. Mounted on the 384 KB or more code flash memory products.
Caution 1. Make EVsso pin the same potential as Vss pin.
Caution 2. Make Vdd pin the potential that is higher than EVddo pin.
Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDDo pins and connect the Vss and EVsso pins to separate ground lines.
Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIOR0, 1).
-64-pin plastic FLGA ($5 \times 5 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)

	A	B	C	D	E	F	G	H	
8	EVdDo	EVsso	P121/X1	$\begin{aligned} & \text { P122/X2/ } \\ & \text { EXCLK } \end{aligned}$	P137/INTP0	P123/XT1	P124/XT2/ EXCLKS	$\begin{aligned} & \hline \text { P120/ANI19/ } \\ & \text { VCOUT0 Note } 1 \end{aligned}$	8
7	P60/SCLA0	Vdd	Vss	REGC	RESET	P01/TO00/ TRGCLKB/ TRJIOO	P00/TIOO/ TRGCLKA/ (TRJOO)	$\begin{aligned} & \text { P140/ } \\ & \text { PCLBUZ0/ } \\ & \text { INTP6 } \end{aligned}$	7
6	P61/SDAA0	P62/SSIO0	P63	P40/TOOL0	P41/(TRJIO0)	P43/(INTP9)	P02/ANI17/ SO10/TxD1	P141/ PCLBUZ1/ INTP7	6
5	$\begin{aligned} & \text { P77/KR7/ } \\ & \text { INTP11/(TXD2) } \end{aligned}$	P31/TI03/ TO03/INTP4/ (PCLBUZO)/ (TRJIOO)	P53/(INTP2)	P42/(INTP8)	P03/ANI16/ SI10/RxD1/ SDA10	P04/SCK10/ SCL10	P130	P20/ANIO/ AVRefp	5
4	P75/KR5/ INTP9/ SCK01/ SCL01	P76/KR6/ INTP10/ (RXD2)	P52/(INTP1)	P54/(INTP3)	$\begin{array}{\|l} \hline \text { P16/TIO1/ } \\ \text { TO01/INTP5/ } \\ \text { TRDIOC0/ } \\ \text { IVREF0 Note 1/ } \\ \text { (SIO0)/(RXD0) } \end{array}$	P21/ANI1/ AVrefm	P22/ANI2/ ANOO Note 1	P23/ANI3/ ANO1 Note 1	4
3	$\begin{aligned} & \hline \text { P70/KR0/ } \\ & \text { SCK21/ } \\ & \text { SCL21 } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{P} 73 / \mathrm{KR} 3 / \\ \mathrm{SO01} \end{array}$	P74/KR4/ INTP8/SI01/ SDA01	$\begin{array}{\|l\|} \hline \text { P17/TIO2/TO02/ } \\ \text { TRDIOA0/ } \\ \text { TRDCLK/ } \\ \text { IVCMP0 Note 1// } \\ \text { (SO00)/(TXD0) } \\ \hline \end{array}$	P15/SCK20/ SCL20/ TRDIOB0/ (SDAA0)	P12/SO11/ TRDIOB1/ IVREF1 Note 1/ (INTP5)/ (TxD0_1) Note 2	P24/ANI4	P26/ANI6	3
2	P30/INTP3/ RTC1HZ/ SCK00/ SCL00/TRJO0	$\begin{array}{\|l\|} \hline \mathrm{P} 72 / \mathrm{KR} 2 / \\ \mathrm{SO} 21 \end{array}$	$\begin{aligned} & \text { P71/KR1/ } \\ & \text { SI21/SDA21 } \end{aligned}$	P06/(INTP11)/ (TRJIOO)	$\begin{array}{\|l\|} \hline \text { P14/RxD2/ } \\ \text { SI20/SDA20/ } \\ \text { TRDIOD0/ } \\ \text { (SCLA0) } \end{array}$	P11/SI11/ SDA11/ TRDIOC1/ (RxD0_1) Note 2	P25/ANI5	P27/ANI7	2
1	P05/(INTP10)	P50/INTP1/ SI00/RxD0/ TOOLRxD/ SDA00/ TRGIOA/ (TRJOO)	P51/INTP2/ SO00/TxD0/ TOOLTxD/ TRGIOB	P55/ (PCLBUZ1)/ (SCK00)/ (INTP4)	$\begin{aligned} & \text { P13/TxD2/ } \\ & \text { SO20/ } \\ & \text { TRDIOA1/ } \end{aligned}$	$\begin{array}{\|l} \hline \text { P10/SCK11/ } \\ \text { SCL11/ } \\ \text { TRDIOD1 } \end{array}$	P146	$\begin{aligned} & \text { P147/ANI18/ } \\ & \text { VCOUT1 Note } 1 \end{aligned}$	1
	A	B	C	D	E	F	G	H	

Note 1. Mounted on the 96 KB or more code flash memory products.
Note 2. Mounted on the 384 KB or more code flash memory products.

Caution 1. Make EVsso pin the same potential as VSS pin.
Caution 2. Make Vdd pin the potential that is higher than EVddo pin.
Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVdDo pins and connect the Vss and EVsso pins to separate ground lines.
Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).

1.3.9 80-pin products

- 80-pin plastic LQFP ($14 \times 14 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)
- 80-pin plastic LFQFP ($12 \times 12 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)

Note Mounted on the 384 KB or more code flash memory products.

Caution 1. Make EVsso pin the same potential as Vss pin.
Caution 2. Make VDD pin the potential that is higher than EVdDo pin.
Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDDo pins and connect the Vss and EVsso pins to separate ground lines.
Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).

1.3.10 100-pin products

- 100-pin plastic LFQFP ($14 \times 14 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$

Note Mounted on the 384 KB or more code flash memory products.

Caution 1. Make EVsso, EVss1 pins the same potential as Vss pin.
Caution 2. Make Vdd pin the potential that is higher than EVddo, EVdd1 pins (EVddo = EVdd1).
Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVdDo and EVDD1 pins and connect the Vss, EVsso and EVss1 pins to separate ground lines.
Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIOR0, 1).

- 100-pin plastic LQFP ($14 \times 20 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch $)$

Note Mounted on the 384 KB or more code flash memory products.

Caution 1. Make EVsso, EVss1 pins the same potential as Vss pin.
Caution 2. Make Vdd pin the potential that is higher than EVddo, EVdd1 pins (EVddo = EVdd1).
Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVdDo and EVDD1 pins and connect the Vss, EVss0 and EVss1 pins to separate ground lines.
Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIOR0, 1).

1.4 Pin Identification

ANI0 to ANI14,:	Analog input	RxD0 to RxD3:	Receive data
ANI16 to ANI20		SCK00, SCK01, SCK10,:	Serial clock input/output
ANO0, ANO1:	Analog output	SCK11, SCK20, SCK21,	
AVREFM:	A/D converter reference	SCK30, SCK31	
AVREFP:	potential (- side) input	SCLA0, SCLA1,:	Serial clock input/output
EVDD0, EVDD1:	A/D converter reference	SCL00, SCL01, SCL10, SCL11,:	Serial clock output
EVss0, EVsS1:	Power supply for port	Ground for port	SCL20, SCL21, SCL30,

1.5 Block Diagram

1.5.1 30-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.2 32-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.3 36-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.4 40-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.5 44-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.6 48-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.7 52-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.8 64-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.9 80-pin products

1.5.10 100-pin products

1.6 Outline of Functions

[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 16 KB to 64 KB)]
Caution This outline describes the functions at the time when Peripheral I/O redirection register 0,1 (PIORO, 1) are set to 00 H .
(1/2)

Item		30-pin	32-pin	36-pin	40-pin
		$\begin{aligned} & \text { R5F104Ax } \\ & (x=A, C \text { to } E) \end{aligned}$	$\begin{gathered} \text { R5F104Bx } \\ (x=A, C \text { to } E) \end{gathered}$	$\begin{gathered} \text { R5F104Cx } \\ (x=A, C \text { to } E) \end{gathered}$	$\begin{aligned} & \text { R5F104Ex } \\ & (x=A, C \text { to } E) \end{aligned}$
Code flash memory (KB)		16 to 64	16 to 64	16 to 64	16 to 64
Data flash memory (KB)		4	4	4	4
RAM (KB)		2.5 to 5.5 Note			
Address space		1 MB			
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz ($\mathrm{VDD}=2.7$ to 5.5 V), HS (high-speed main) mode: 1 to $16 \mathrm{MHz}(\mathrm{VDD}=2.4$ to 5.5 V$)$, LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD $=1.6$ to 5.5 V)			
	High-speed on-chip oscillator clock (fiH)	HS (high-speed main) mode: 1 to 32 MHz (VDD $=2.7$ to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD $=2.4$ to 5.5 V), LS (low-speed main) mode: 1 to $8 \mathrm{MHz}(\mathrm{VdD}=1.8$ to 5.5 V$)$, LV (low-voltage main) mode: 1 to $4 \mathrm{MHz}(\mathrm{VDD}=1.6$ to 5.5 V)			
Subsystem clock		-			XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz
Low-speed on-chip oscillator clock		15 kHz (TYP.): Vdd $=1.6$ to 5.5 V			
General-purpose register		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)			
Minimum instruction execution time		0.03125μ s (High-speed on-chip oscillator clock: fiH $=32 \mathrm{MHz}$ operation)			
		$0.05 \mu \mathrm{~s}$ (High-speed system clock: $\mathrm{fmx}=20 \mathrm{MHz}$ operation)			
		-			$30.5 \mu \mathrm{~s}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)
Instruction set		- Data transfer (8/16 bits) - Adder and subtractor/logical operation ($8 / 16$ bits) - Multiplication (8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division (16 bits $\div 16$ bits, 32 bits $\div 32$ bits) - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits) - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.			
I/O port	Total	26	28	32	36
	CMOS I/O	21	22	26	28
	CMOS input	3	3	3	5
	CMOS output	-	-	-	-
	N -ch open-drain I/O (6 V tolerance)	2	3	3	3
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)			
	Watchdog timer	1 channel			
	Real-time clock (RTC)	1 channel			
	12-bit interval timer	1 channel			
	Timer output	Timer outputs: 13 channels PWM outputs: 9 channels			
	RTC output	-			1 - 1 Hz (subsystem clock: fsub $=32.768 \mathrm{kHz}$)

(Note is listed on the next page.)

Note The flash library uses RAM in self-programming and rewriting of the data flash memory.
The target products and start address of the RAM areas used by the flash library are shown below.
R5F104xD ($x=A$ to C, E to G, J, L): Start address FE900H
R5F104xE (x = A to C, E to G, J, L): Start address FE900H
For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Item		30-pin	32-pin	36-pin	40-pin
		$\begin{aligned} & \text { R5F104Ax } \\ & (x=A, C \text { to } E) \end{aligned}$	$\begin{aligned} & \text { R5F104Bx } \\ & (x=A, C \text { to } E) \end{aligned}$	$\begin{aligned} & \text { R5F104Cx } \\ & (x=A, C \text { to } E) \end{aligned}$	$\begin{aligned} & \text { R5F104Ex } \\ & (x=A, C \text { to } E) \end{aligned}$
Clock output/buzzer output		2	2	2	2
		[30-pin, 32-pin, 36-pin products] - $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: fmain $=20 \mathrm{MHz}$ operation) [40-pin products] - $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: fmain $=20 \mathrm{MHz}$ operation) - $256 \mathrm{~Hz}, 512 \mathrm{~Hz}, 1.024 \mathrm{kHz}, 2.048 \mathrm{kHz}, 4.096 \mathrm{kHz}, 8.192 \mathrm{kHz}, 16.384 \mathrm{kHz}, 32.768 \mathrm{kHz}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)			
8/10-bit resolution A/D converter		8 channels	8 channels	8 channels	9 channels
Serial interface		[30-pin, 32-pin products] - CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}$: 1 channel - CSI: 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel - CSI: 1 channel/UART: 1 channel/simplified ${ }^{2} \mathrm{C}$: 1 channel [36-pin, 40-pin products] - CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified ${ }^{2} \mathrm{C}$: 1 channel - CSI: 1 channel/UART: 1 channel/simplified ${ }^{2} \mathrm{C}: 1$ channel - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels			
	$1^{2} \mathrm{C}$ bus	1 channel	1 channel	1 channel	1 channel
Data transfer controller (DTC)		28 sources			29 sources
Event link controller (ELC)		Event input: 19 Event trigger output: 7			Event input: 20 Event trigger output: 7
Vectored interrupt sources	Internal	24	24	24	24
	External	6	6	6	7
Key interrupt		-	-	-	4
Reset		- Reset by $\overline{\text { RESET }}$ pin - Internal reset by watchdog timer - Internal reset by power-on-reset - Internal reset by voltage detector - Internal reset by illegal instruction execution Note - Internal reset by RAM parity error - Internal reset by illegal-memory access			
Power-on-reset circuit		- Power-on-reset: $\quad 1.51 \pm 0.04 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ $1.51 \pm 0.06 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}\right)$ - Power-down-reset: $1.50 \pm 0.04 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ $1.50 \pm 0.06 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$			
Voltage detector		1.63 V to 4.06 V (14 stages)			
On-chip debug function		Provided			
Power supply voltage		$\begin{aligned} & \text { VDD }=1.6 \text { to } 5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \\ & \text { VDD }=2.4 \text { to } 5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}\right) \end{aligned}$			
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications, D: Industrial applications), $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications)			

Note The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.
[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 96 KB to 256 KB)]
Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIORO, 1) are set to 00H.

Item		30-pin	32-pin	36-pin	40-pin
		R5F104Ax $(x=F, G)$	R5F104Bx $(x=F, G)$	$\begin{aligned} & \text { R5F104Cx } \\ & (x=F, G) \end{aligned}$	$\begin{aligned} & \text { R5F104Ex } \\ & (x=F \text { to } H) \end{aligned}$
Code flash memory (KB)		96 to 128	96 to 128	96 to 128	96 to 192
Data flash memory (KB)		8	8	8	8
RAM (KB)		12 to 16 Note	12 to 16 Note	12 to 16 Note	12 to 20 Note
Address space		1 MB			
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VDD $=2.7$ to 5.5 V), HS (high-speed main) mode: 1 to $16 \mathrm{MHz}(\mathrm{VDD}=2.4$ to 5.5 V$)$, LS (low-speed main) mode: 1 to 8 MHz ($\mathrm{VDD}=1.8$ to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD $=1.6$ to 5.5 V)			
	High-speed on-chip oscillator clock (fiH)	HS (high-speed main) mode: 1 to 32 MHz (VDD $=2.7$ to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD $=2.4$ to 5.5 V), LS (low-speed main) mode: 1 to $8 \mathrm{MHz}(\mathrm{VdD}=1.8$ to 5.5 V$)$, LV (low-voltage main) mode: 1 to $4 \mathrm{MHz}(\mathrm{VDD}=1.6$ to 5.5 V$)$			
Subsystem clock		-			XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz
Low-speed on-chip oscillator clock		15 kHz (TYP.): VdD $=1.6$ to 5.5 V			
General-purpose register		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)			
Minimum instruction execution time		0.03125μ (High-speed on-chip oscillator clock: fil $=32 \mathrm{MHz}$ operation)			
		$0.05 \mu \mathrm{~s}$ (High-speed system clock: fmx $=20 \mathrm{MHz}$ operation)			
		-			$30.5 \mu \mathrm{~s}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)
Instruction set		- Data transfer (8/16 bits) - Adder and subtractor/logical operation ($8 / 16$ bits) - Multiplication (8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division (16 bits $\div 16$ bits, 32 bits $\div 32$ bits) - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits) - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.			
I/O port	Total	26	28	32	36
	CMOS I/O	21	22	26	28
	CMOS input	3	3	3	5
	CMOS output	-	-	-	-
	N-ch open-drain I/O (6 V tolerance)	2	3	3	3
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)			
	Watchdog timer	1 channel			
	Real-time clock (RTC)	1 channel			
	12-bit interval timer	1 channel			
	Timer output	Timer outputs: 13 channels PWM outputs: 9 channels			
	RTC output	-			1 - 1 Hz (subsystem clock: fsub $=32.768 \mathrm{kHz}$)

(Note is listed on the next page.)

Note The flash library uses RAM in self-programming and rewriting of the data flash memory.
The target products and start address of the RAM areas used by the flash library are shown below.
R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H
For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Item		30-pin	32-pin	36-pin	40-pin
		R5F104Ax (x = F, G)	R5F104Bx (x = F, G)	R5F104Cx (x = F, G)	$\begin{aligned} & \text { R5F104Ex } \\ & (x=F \text { to } H) \end{aligned}$
Clock output/buzzer output		2	2	2	2
		[30-pin, 32-pin, 36-pin products] - $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: fmaln $=20 \mathrm{MHz}$ operation) [40-pin products] - $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: fmain $=20 \mathrm{MHz}$ operation) - $256 \mathrm{~Hz}, 512 \mathrm{~Hz}, 1.024 \mathrm{kHz}, 2.048 \mathrm{kHz}, 4.096 \mathrm{kHz}, 8.192 \mathrm{kHz}, 16.384 \mathrm{kHz}, 32.768 \mathrm{kHz}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)			
8/10-bit resolution A/D converter		8 channels	8 channels	8 channels	9 channels
D/A converter		1 channel	2 channels		
Comparator		2 channels			
Serial interface		[30-pin, 32-pin products] - CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified $I^{2} \mathrm{C}$: 1 channel - CSI: 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel - CSI: 1 channel/UART: 1 channel/simplified ${ }^{2} \mathrm{C}$: 1 channel [36-pin, 40-pin products] - CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified ${ }^{2} \mathrm{C}$: 1 channel - CSI: 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels			
	$1^{2} \mathrm{C}$ bus	1 channel	1 channel	1 channel	1 channel
Data transfer controller (DTC)		30 sources			31 sources
Event link controller (ELC)		Event input: 21 Event trigger output: 8	Event input: 21, Event trigger output: 9		Event input: 22 Event trigger output: 9
Vectored interrupt sources	Internal	24	24	24	24
	External	6	6	6	7
Key interrupt		-	-	-	4
Reset		- Reset by RESET pin - Internal reset by watchdog timer - Internal reset by power-on-reset - Internal reset by voltage detector - Internal reset by illegal instruction execution Note - Internal reset by RAM parity error - Internal reset by illegal-memory access			
Power-on-reset circuit		- Power-on-reset: $1.51 \pm 0.04 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ $1.51 \pm 0.06 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$ - Power-down-reset: $1.50 \pm 0.04 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ $1.50 \pm 0.06 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$			
Voltage detector		1.63 V to 4.06 V (14 stages)			
On-chip debug function		Provided			
Power supply voltage		$\begin{aligned} & V D D=1.6 \text { to } 5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \\ & \mathrm{VDD}=2.4 \text { to } 5.5 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}\right) \end{aligned}$			
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications, D: Industrial applications), $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications)			

Note The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.
[44-pin, 48-pin, 52-pin, 64-pin products (code flash memory 16 KB to 64 KB)]
Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIORO, 1) are set to 00H.

Item		44-pin	48-pin	52-pin	64-pin
		$\begin{gathered} \text { R5F104Fx } \\ (x=A, C \text { to } E) \end{gathered}$	$\begin{gathered} \text { R5F104Gx } \\ (x=A, C \text { to } E) \end{gathered}$	$\begin{aligned} & \text { R5F104Jx } \\ & (x=C \text { to } E) \end{aligned}$	$\begin{aligned} & \text { R5F104Lx } \\ & (x=C \text { to } E) \end{aligned}$
Code flash memory (KB)		16 to 64	16 to 64	32 to 64	32 to 64
Data flash memory (KB)		4	4	4	4
RAM (KB)		2.5 to 5.5 Note	2.5 to 5.5 Note	4 to 5.5 Note	4 to 5.5 Note
Address space		1 MB			
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to $20 \mathrm{MHz}(\mathrm{VDD}=2.7$ to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD $=2.4$ to 5.5 V), LS (low-speed main) mode: 1 to $8 \mathrm{MHz}(\mathrm{VDD}=1.8$ to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD $=1.6$ to 5.5 V)			
	High-speed on-chip oscillator clock (fiH)	HS (high-speed main) mode: 1 to 32 MHz (Vdd $=2.7$ to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VdD $=2.4$ to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD $=1.8$ to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD $=1.6$ to 5.5 V)			
Subsystem clock		XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz			
Low-speed on-chip oscillator clock		15 kHz (TYP.): VDD $=1.6$ to 5.5 V			
General-purpose register		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)			
Minimum instruction execution time		$0.03125 \mu \mathrm{~s}$ (High-speed on-chip oscillator clock: fiH $=32 \mathrm{MHz}$ operation)			
		$0.05 \mu \mathrm{~s}$ (High-speed system clock: fmx $=20 \mathrm{MHz}$ operation)			
		$30.5 \mu \mathrm{~s}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)			
Instruction set		- Data transfer (8/16 bits) - Adder and subtractor/logical operation (8/16 bits) - Multiplication (8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division (16 bits $\div 16$ bits, 32 bits $\div 32$ bits) - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits) - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.			
I/O port	Total	40	44	48	58
	CMOS I/O	31	34	38	48
	CMOS input	5	5	5	5
	CMOS output	-	1	1	1
	N -ch open-drain I/O (6 V tolerance)	4	4	4	4
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)			
	Watchdog timer	1 channel			
	Real-time clock (RTC)	1 channel			
	12-bit interval timer	1 channel			
	Timer output	Timer outputs: 13 channels PWM outputs: 9 channels			
	RTC output	1 - 1 Hz (subsystem clock: fsuB $=32.768 \mathrm{kHz}$)			

(Note is listed on the next page.)

Note The flash library uses RAM in self-programming and rewriting of the data flash memory.
The target products and start address of the RAM areas used by the flash library are shown below.
R5F104xD ($x=A$ to C, E to G, J, L): Start address FE900H
R5F104xE (x = A to C, E to G, J, L): Start address FE900H
For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Item		44-pin	48-pin	52-pin	64-pin
		$\begin{gathered} \text { R5F104Fx } \\ (x=A, C \text { to } E) \end{gathered}$	$\begin{gathered} \text { R5F104Gx } \\ (x=A, C \text { to } E) \end{gathered}$	$\begin{aligned} & \text { R5F104Jx } \\ & (x=C \text { to } E) \end{aligned}$	$\begin{aligned} & \text { R5F104Lx } \\ & (x=C \text { to } E) \end{aligned}$
Clock output/buzzer output		2	2	2	2
		```•2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) - 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fSUB = 32.768 kHz operation)```			
8/10-bit resolution A/D converter		10 channels	10 channels	12 channels	12 channels
Serial interface		[44-pin products]   - CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified ${ }^{2} \mathrm{C}$ : 1 channel   - CSI: 1 channeI/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel   - CSI: 2 channels/UART: 1 channel/simplified $I^{2} C: 2$ channels   [48-pin, 52-pin products]   - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified $I^{2} \mathrm{C}: 2$ channels   - CSI: 1 channeI/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel   - CSI: 2 channels/UART: 1 channel/simplified $I^{2} C: 2$ channels [64-pin products]   - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified $I^{2} \mathrm{C}: 2$ channels   - CSI: 2 channels/UART: 1 channel/simplified $I^{2} \mathrm{C}: 2$ channels   - CSI: 2 channels/UART: 1 channel/simplified $I^{2} C: 2$ channels			
	$1^{2} \mathrm{C}$ bus	1 channel	1 channel	1 channel	1 channel
Data transfer controller (DTC)		29 sources	30 sources		31 sources
Event link controller (ELC)		Event input: 20   Event trigger output: 7			
Vectored interrupt sources	Internal	24	24	24	24
	External	7	10	12	13
Key interrupt		4	6	8	8
Reset		- Reset by RESET pin   - Internal reset by watchdog timer   - Internal reset by power-on-reset   - Internal reset by voltage detector   - Internal reset by illegal instruction execution Note   - Internal reset by RAM parity error   - Internal reset by illegal-memory access			
Power-on-reset circuit		- Power-on-reset: $1.51 \pm 0.04 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$    $1.51 \pm 0.06 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$   - Power-down-reset: $1.50 \pm 0.04 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$    $1.50 \pm 0.06 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$			
Voltage detector		1.63 V to 4.06 V (14 stages)			
On-chip debug function		Provided			
Power supply voltage		$\begin{aligned} & \text { VDD }=1.6 \text { to } 5.5 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \\ & \mathrm{VDD}=2.4 \text { to } 5.5 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}\right) \end{aligned}$			
Operating ambient temperature		$\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications, D: Industrial applications), $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications)			

## Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.
[44-pin, 48-pin, 52-pin, 64-pin products (code flash memory 96 KB to 256 KB )]
Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIORO, 1) are set to 00H.

Item		44-pin	48-pin	52-pin	64-pin
		$\begin{gathered} \text { R5F104Fx } \\ (x=F \text { to } H, J) \end{gathered}$	$\begin{gathered} \text { R5F104Gx } \\ (x=F \text { to } H, J) \end{gathered}$	$\begin{gathered} \text { R5F104Jx } \\ (x=F \text { to } \mathrm{H}, \mathrm{~J}) \end{gathered}$	$\begin{gathered} \text { R5F104Lx } \\ (x=F \text { to } H, J) \end{gathered}$
Code flash memory (KB)		96 to 256	96 to 256	96 to 256	96 to 256
Data flash memory (KB)		8	8	8	8
RAM (KB)		12 to 24 Note			
Address space		1 MB			
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)   HS (high-speed main) mode: 1 to 20 MHz (VDD $=2.7$ to 5.5 V ),   HS (high-speed main) mode: 1 to $16 \mathrm{MHz}(\mathrm{VDD}=2.4$ to 5.5 V ),   LS (low-speed main) mode: 1 to $8 \mathrm{MHz}(\mathrm{VDD}=1.8$ to 5.5 V ),   LV (low-voltage main) mode: 1 to 4 MHz (VDD $=1.6$ to 5.5 V )			
	High-speed on-chip oscillator clock (fiH)	HS (high-speed main) mode: 1 to 32 MHz (Vdd $=2.7$ to 5.5 V ),   HS (high-speed main) mode: 1 to 16 MHz (VdD $=2.4$ to 5.5 V ),   LS (low-speed main) mode: 1 to 8 MHz (VDD $=1.8$ to 5.5 V ),   LV (low-voltage main) mode: 1 to 4 MHz (VDD $=1.6$ to 5.5 V )			
Subsystem clock		XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz			
Low-speed on-chip oscillator clock		15 kHz (TYP.): VDD $=1.6$ to 5.5 V			
General-purpose register		8 bits $\times 32$ registers ( 8 bits $\times 8$ registers $\times 4$ banks)			
Minimum instruction execution time		$0.03125 \mu \mathrm{~s}$ (High-speed on-chip oscillator clock: fiH $=32 \mathrm{MHz}$ operation)			
		$0.05 \mu \mathrm{~s}$ (High-speed system clock: fmx $=20 \mathrm{MHz}$ operation)			
		$30.5 \mu \mathrm{~s}$ (Subsystem clock: $\mathrm{fsub}=32.768 \mathrm{kHz}$ operation)			
Instruction set		- Data transfer (8/16 bits)   - Adder and subtractor/logical operation (8/16 bits)   - Multiplication ( 8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division ( 16 bits $\div 16$ bits, 32 bits $\div 32$ bits)   - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits)   - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.			
I/O port	Total	40	44	48	58
	CMOS I/O	31	34	38	48
	CMOS input	5	5	5	5
	CMOS output	-	1	1	1
	N -ch open-drain I/O (6 V tolerance)	4	4	4	4
Timer	16-bit timer	8 channels   (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)			
	Watchdog timer	1 channel			
	Real-time clock (RTC)	1 channel			
	12-bit interval timer	1 channel			
	Timer output	Timer outputs: 14 channels PWM outputs: 9 channels			
	RTC output	1   - 1 Hz (subsystem clock: fsuB $=32.768 \mathrm{kHz}$ )			

(Note is listed on the next page.)

Note The flash library uses RAM in self-programming and rewriting of the data flash memory.
The target products and start address of the RAM areas used by the flash library are shown below.
R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H
For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Item		44-pin	48-pin	52-pin	64-pin
		$\begin{gathered} \text { R5F104Fx } \\ (x=F \text { to } H, J) \end{gathered}$	$\begin{gathered} \text { R5F104Gx } \\ (x=F \text { to } H, J) \end{gathered}$	$\begin{gathered} \text { R5F104Jx } \\ (x=F \text { to } H, J) \end{gathered}$	$\begin{gathered} \text { R5F104Lx } \\ (x=F \text { to } H, J) \end{gathered}$
Clock output/buzzer output		2	2	2	2
		```•2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmAIN = 20 MHz operation) - 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fSUB = 32.768 kHz operation)```			
8/10-bit resolution A/D converter		10 channels	10 channels	12 channels	12 channels
D/A converter		2 channels			
Comparator		2 channels			
Serial interface		[44-pin products] - CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified ${ }^{2} \mathrm{C}$: 1 channel - CSI: 1 channeI/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels [48-pin, 52-pin products] - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified ${ }^{2} \mathrm{C}$: 2 channels - CSI: 1 channeI/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels [64-pin products] - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified ${ }^{2}{ }^{2} \mathrm{C}: 2$ channels - CSI: 2 channels/UART: 1 channel/simplified I ${ }^{2} \mathrm{C}: 2$ channels - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels			
	${ }^{2} \mathrm{C}$ c bus	1 channel	1 channel	1 channel	1 channel
Data transfer controller (DTC)		31 sources	32 sources		33 sources
Event link controller (ELC)		Event input: 22 Event trigger output: 9			
Vectored interrupt sources	Internal	24	24	24	24
	External	7	10	12	13
Key interrupt		4	6	8	8
Reset		- Reset by $\overline{\text { RESET }}$ pin - Internal reset by watchdog timer - Internal reset by power-on-reset - Internal reset by voltage detector - Internal reset by illegal instruction execution Note - Internal reset by RAM parity error - Internal reset by illegal-memory access			
Power-on-reset circuit		$\begin{array}{ll} \hline \text { - Power-on-reset: } & 1.51 \pm 0.04 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \\ & 1.51 \pm 0.06 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}\right) \\ \text { - Power-down-reset: } & 1.50 \pm 0.04 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \\ & 1.50 \pm 0.06 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}\right) \end{array}$			
Voltage detector		1.63 V to 4.06 V (14 stages)			
On-chip debug function		Provided			
Power supply voltage		$\begin{aligned} & \text { VDD }=1.6 \text { to } 5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \\ & \mathrm{VDD}=2.4 \text { to } 5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}\right) \end{aligned}$			
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications, D: Industrial applications), $\mathrm{T} A=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications)			

Note The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.
[48-pin, 64-pin products (code flash memory 384 KB to 512 KB)]
Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIORO, 1) are set to 00H.
(1/2)

Item		48-pin	64-pin
		$\begin{gathered} \text { R5F104Gx } \\ (x=K, L) \end{gathered}$	$\begin{aligned} & \text { R5F104LX } \\ & (x=K, L) \end{aligned}$
Code flash memory (KB)		384 to 512	384 to 512
Data flash memory (KB)		8	8
RAM (KB)		32 to 48 Note	32 to 48 Note
Address space		1 MB	
Main system clock	High-speed system clock	```X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD= 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD=1.6 to 5.5 V)```	
	High-speed on-chip oscillator clock (fï)	$\begin{aligned} & \hline \text { HS (high-speed main) mode: } 1 \text { to } 32 \mathrm{MHz}(\mathrm{VDD}=2.7 \text { to } 5.5 \mathrm{~V}), \\ & \text { HS (high-speed main) mode: } \\ & \text { LS (low-speed main) mode: } 16 \mathrm{MHz}(\mathrm{VDD}=2.4 \text { to } 5.5 \mathrm{~V} \text {), } \\ & \text { LV (low-voltage main) mode: } \\ & 1 \text { to } 4 \mathrm{MHz}(\mathrm{MDD}=1.8 \text { to } 5.5 \mathrm{~V} \text {), } \\ & \text { (} \mathrm{VDD}=1.6 \text { to } 5.5 \mathrm{~V} \text {) } \end{aligned}$	
Subsystem clock		XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz	
Low-speed on-chip oscillator clock		15 kHz (TYP.): VdD $=1.6$ to 5.5 V	
General-purpose register		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)	
Minimum instruction execution time		$0.03125 \mu \mathrm{~s}$ (High-speed on-chip oscillator clock: fil $=32 \mathrm{MHz}$ operation)	
		$0.05 \mu \mathrm{~s}$ (High-speed system clock: fmx $=20 \mathrm{MHz}$ operation)	
		$30.5 \mu \mathrm{~s}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)	
Instruction set		- Data transfer (8/16 bits) - Adder and subtractor/logical operation (8/16 bits) - Multiplication (8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division (16 bits $\div 16$ bits, 32 bits $\div 32$ bits) - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits) - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.	
I/O port	Total	44	58
	CMOS I/O	34	48
	CMOS input	5	5
	CMOS output	1	1
	N -ch open-drain I/O (6 V tolerance)	4	4
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)	
	Watchdog timer	1 channel	
	Real-time clock (RTC)	1 channel	
	12-bit interval timer	1 channel	
	Timer output	Timer outputs: 14 channels PWM outputs: 9 channels	
	RTC output	$\begin{aligned} & \hline 1 \\ & \cdot 1 \mathrm{~Hz} \text { (subsystem clock: fsub }=32.768 \mathrm{kHz} \text {) } \end{aligned}$	

(Note is listed on the next page.)

Note The flash library uses RAM in self-programming and rewriting of the data flash memory.
The target products and start address of the RAM areas used by the flash library are shown below.
R5F104xL ($\mathrm{x}=\mathrm{G}, \mathrm{L}, \mathrm{M}, \mathrm{P}$): Start address F3F00H
For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Item		48-pin	64-pin
		$\begin{gathered} \text { R5F104Gx } \\ (x=K, L) \end{gathered}$	$\begin{aligned} & \text { R5F104Lx } \\ & (x=K, L) \end{aligned}$
Clock output/buzzer output		2	2
		```- 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmAin = 20 MHz operation) - 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation)```	
8/10-bit resolution A/D converter		10 channels	12 channels
D/A converter		2 channels	
Comparator		2 channels	
Serial interface		[48-pin products]   - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified $I^{2} \mathrm{C}: 2$ channels   - CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel   - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels [64-pin products]   - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified ${ }^{2} \mathrm{C}$ : 2 channels   - CSI: 2 channels/UART: 1 channel/simplified I ${ }^{2} \mathrm{C}: 2$ channels   - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels	
	${ }^{2} \mathrm{C}$ bus	1 channel	1 channel
Data transfer controller (DTC)		32 sources	33 sources
Event link controller (ELC)		Event input: 22   Event trigger output: 9	
Vectored interrupt sources	Internal	24	24
	External	10	13
Key interrupt		6	8
Reset		- Reset by $\overline{\text { RESET }}$ pin   - Internal reset by watchdog timer   - Internal reset by power-on-reset   - Internal reset by voltage detector   - Internal reset by illegal instruction execution Note   - Internal reset by RAM parity error   - Internal reset by illegal-memory access	
Power-on-reset circuit		$\begin{array}{\|ll} \hline \text { - Power-on-reset: } & 1.51 \pm 0.04 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \\ & 1.51 \pm 0.06 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}\right) \\ \text { - Power-down-reset: } & 1.50 \pm 0.04 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \\ & 1.50 \pm 0.06 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}\right) \end{array}$	
Voltage detector		1.63 V to 4.06 V (14 stages)	
On-chip debug function		Provided	
Power supply voltage		$\begin{aligned} & \text { VDD }=1.6 \text { to } 5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \\ & \text { VDD }=2.4 \text { to } 5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}\right) \end{aligned}$	
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications, D: Industrial applications), $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications)	

Note The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.
[80-pin, 100-pin products (code flash memory 96 KB to 256 KB )]
Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIORO, 1) are set to 00H.
(1/2)

Item		80-pin	100-pin
		$\begin{aligned} & \text { R5F104Mx } \\ & (x=F \text { to } H, J) \end{aligned}$	$\begin{gathered} \text { R5F104Px } \\ (\mathrm{x}=\mathrm{F} \text { to } \mathrm{H}, \mathrm{~J}) \end{gathered}$
Code flash memory (KB)		96 to 256	96 to 256
Data flash memory (KB)		8	8
RAM (KB)		12 to 24 Note	12 to 24 Note
Address space		1 MB	
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VdD $=2.7$ to 5.5 V ), HS (high-speed main) mode: 1 to 16 MHz ( $\mathrm{VDD}=2.4$ to 5.5 V ),   LS (low-speed main) mode: 1 to $8 \mathrm{MHz}(\mathrm{VDD}=1.8$ to 5.5 V ),   LV (low-voltage main) mode: 1 to 4 MHz (VDD $=1.6$ to 5.5 V )	
	High-speed on-chip oscillator clock (fiH)	$\begin{aligned} & \hline \text { HS (high-speed main) mode: } 1 \text { to } 32 \mathrm{MHz}(\mathrm{VDD}=2.7 \text { to } 5.5 \mathrm{~V} \text { ), } \\ & \text { HS (high-speed main) mode: } 1 \text { to } 16 \mathrm{MHz}(\mathrm{VDD}=2.4 \text { to } 5.5 \mathrm{~V} \text {, }, \\ & \text { LS (low-speed main) mode: } 1 \text { to } 8 \mathrm{MHz}(\mathrm{VDD}=1.8 \text { to } 5.5 \mathrm{~V} \text { ), } \\ & \text { LV (low-voltage main) mode: } \\ & 1 \text { to } 4 \mathrm{MHz}(\mathrm{VDD}=1.6 \text { to } 5.5 \mathrm{~V} \text { ) } \end{aligned}$	
Subsystem clock		XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz	
Low-speed on-chip oscillator clock		15 kHz (TYP.): VdD $=1.6$ to 5.5 V	
General-purpose register		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)	
Minimum instruction execution time		0.03125 ¢s (High-speed on-chip oscillator clock: fï $=32 \mathrm{MHz}$ operation)	
		$0.05 \mu \mathrm{~s}$ (High-speed system clock: fmx $=20 \mathrm{MHz}$ operation)	
		30.5 ¢ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)	
Instruction set		- Data transfer (8/16 bits)   - Adder and subtractor/logical operation (8/16 bits)   - Multiplication ( 8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division ( 16 bits $\div 16$ bits, 32 bits $\div 32$ bits)   - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits)   - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.	
I/O port	Total	74	92
	CMOS I/O	64	82
	CMOS input	5	5
	CMOS output	1	1
	N-ch open-drain I/O (6 V tolerance)	4	4
Timer	16-bit timer	12 channels   (TAU: 8 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)	
	Watchdog timer	1 channel	
	Real-time clock (RTC)	1 channel	
	12-bit interval timer	1 channel	
	Timer output	Timer outputs: 18 channels PWM outputs: 12 channels	
	RTC output	1   - 1 Hz (subsystem clock: fsub $=32.768 \mathrm{kHz}$ )	

Note In the case of the 24 KB , this is about 23 KB when the self-programming function and data flash function are used (For details, see CHAPTER 3 in the RL78/G14 User's Manual).

Item		80-pin	100-pin
		$\begin{gathered} \text { R5F104Mx } \\ (x=F \text { to } H, J) \end{gathered}$	$\begin{gathered} \text { R5F104Px } \\ (x=F \text { to } H, J) \end{gathered}$
Clock output/buzzer output		2	2
		```- 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmAIN = 20 MHz operation) - 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation)```	
8/10-bit resolution A/D converter		17 channels	20 channels
D/A converter		2 channels	2 channels
Comparator		2 channels	2 channels
Serial interface		[80-pin, 100-pin products] - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified ${ }^{2} \mathrm{C}$: 2 channels - CSI: 2 channels/UART: 1 channel/simplified ${ }^{2} \mathrm{C}$: 2 channels - CSI: 2 channels/UART: 1 channel/simplified ${ }^{2} \mathrm{C}: 2$ channels - CSI: 2 channels/UART: 1 channel/simplified ${ }^{2} \mathrm{C}$: 2 channels	
	${ }^{12} \mathrm{C}$ bus	2 channels	2 channels
Data transfer controller (DTC)		39 sources	39 sources
Event link controller (ELC)		Event input: 26 Event trigger output: 9	
Vectored interrupt sources	Internal	32	32
	External	13	13
Key interrupt		8	8
Reset		- Reset by RESET pin - Internal reset by watchdog timer - Internal reset by power-on-reset - Internal reset by voltage detector - Internal reset by illegal instruction execution Note - Internal reset by RAM parity error - Internal reset by illegal-memory access	
Power-on-reset circuit		- Power-on-reset: $1.51 \pm 0.04 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ $1.51 \pm 0.06 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$ - Power-down-reset: $1.50 \pm 0.04 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ $1.50 \pm 0.06 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$	
Voltage detector		1.63 V to 4.06 V (14 stages)	
On-chip debug function		Provided	
Power supply voltage		$\begin{aligned} & \mathrm{VDD}=1.6 \text { to } 5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \\ & \mathrm{V}_{\mathrm{DD}}=2.4 \text { to } 5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}\right) \end{aligned}$	
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications, D: Industrial applications), $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications)	

Note The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.
[80-pin, 100-pin products (code flash memory 384 KB to 512 KB)]
Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIORO, 1) are set to 00H.
(1/2)

Item		80-pin	100-pin
		R5F104Mx $(x=K, L)$	R5F104Px $(x=K, L)$
Code flash memory (KB)		384 to 512	384 to 512
Data flash memory (KB)		8	8
RAM (KB)		32 to 48 Note	32 to 48 Note
Address space		1 MB	
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz ($\mathrm{VDD}=2.7$ to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz ($\mathrm{VDD}=2.4$ to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz ($\mathrm{VDD}=1.8$ to 5.5 V), LV (low-voltage main) mode: 1 to $4 \mathrm{MHz}(\mathrm{VDD}=1.6$ to 5.5 V)	
	High-speed on-chip oscillator clock (fiH)	$\begin{array}{ll} \hline \text { HS (high-speed main) mode: } & 1 \text { to } 32 \mathrm{MHz}(\mathrm{VDD}=2.7 \text { to } 5.5 \mathrm{~V} \text {), }, \\ \text { HS (high-speed main) mode: } & 1 \text { to } 16 \mathrm{MHz}(\mathrm{VDD}=2.4 \text { to } 5.5 \mathrm{~V} \text {,, } \\ \text { LS (low-speed main) mode: } & 1 \text { to } 8 \mathrm{MHz}(\mathrm{VDD}=1.8 \text { to } 5.5 \mathrm{~V} \text {, } \\ \text { LV (low-voltage main) mode: } & 1 \text { to } 4 \mathrm{MHz}(\mathrm{VDD}=1.6 \text { to } 5.5 \mathrm{~V}) \end{array}$	
Subsystem clock		XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz	
Low-speed on-chip oscillator clock		15 kHz (TYP.): VdD $=1.6$ to 5.5 V	
General-purpose register		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)	
Minimum instruction execution time		0.03125 us (High-speed on-chip oscillator clock: fiH $=32 \mathrm{MHz}$ operation)	
		$0.05 \mu \mathrm{~s}$ (High-speed system clock: $\mathrm{fmx}=20 \mathrm{MHz}$ operation)	
		$30.5 \mu \mathrm{~s}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)	
Instruction set		- Data transfer (8/16 bits) - Adder and subtractor/logical operation (8/16 bits) - Multiplication (8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division (16 bits $\div 16$ bits, 32 bits $\div 32$ bits) - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits) - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.	
I/O port	Total	74	92
	CMOS I/O	64	82
	CMOS input	5	5
	CMOS output	1	1
	N-ch open-drain I/O (6 V tolerance)	4	4
Timer	16-bit timer	12 channels (TAU: 8 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)	
	Watchdog timer	1 channel	
	Real-time clock (RTC)	1 channel	
	12-bit interval timer	1 channel	
	Timer output	Timer outputs: 18 channels PWM outputs: 12 channels	
	RTC output	1 - 1 Hz (subsystem clock: fsub $=32.768 \mathrm{kHz}$)	

Note In the case of the 48 KB , this is about 47 KB when the self-programming function and data flash function are used (For details, see CHAPTER 3 in the RL78/G14 User's Manual).

Item		80-pin	100-pin
		$\begin{gathered} \text { R5F104Mx } \\ (x=K, L) \end{gathered}$	$\begin{aligned} & \text { R5F104Px } \\ & (x=K, L) \end{aligned}$
Clock output/buzzer output		2	2
		```• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) - 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation)```	
8/10-bit resolution A/D converter		17 channels	20 channels
D/A converter		2 channels	2 channels
Comparator		2 channels	2 channels
Serial interface		[80-pin, 100-pin products]   - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified $I^{2} \mathrm{C}: 2$ channels   - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels   - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels   - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels	
	${ }^{2} \mathrm{C}$ bus	2 channels	2 channels
Data transfer controller (DTC)		39 sources	$39 \text { sources }$
Event link controller (ELC)		Event input: 26   Event trigger output: 9	
Vectored interrupt sources	Internal	32	32
	External	13	13
Key interrupt		8	8
Reset		- Reset by $\overline{\text { RESET }}$ pin   - Internal reset by watchdog timer   - Internal reset by power-on-reset   - Internal reset by voltage detector   - Internal reset by illegal instruction execution Note   - Internal reset by RAM parity error   - Internal reset by illegal-memory access	
Power-on-reset circuit		- Power-on-reset: $1.51 \pm 0.04 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$    $1.51 \pm 0.06 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$   - Power-down-reset: $1.50 \pm 0.04 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$    $1.50 \pm 0.06 \mathrm{~V}\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$	
Voltage detector		1.63 V to 4.06 V (14 stages)	
On-chip debug function		Provided	
Power supply voltage		$\begin{aligned} & \mathrm{VDD}=1.6 \text { to } 5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \\ & \mathrm{VDD}=2.4 \text { to } 5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}\right) \end{aligned}$	
Operating ambient temperature		$\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications, D: Industrial applications), $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications)	

Note The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or onchip debug emulator.

## 2. ELECTRICAL SPECIFICATIONS ( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$ )

This chapter describes the following electrical specifications.
Target products A: Consumer applications $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ R5F104xxAxx
D: Industrial applications $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ R5F104xxDxx
G: Industrial applications when $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ products is used in the range of $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ R5F104xxGxx

Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
Caution 2. With products not provided with an EVddo, EVdd1, EVsso, or EVss1 pin, replace EVddo and EVdd1 with Vdd, or replace EVsso and EVssi with Vss.
Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.

### 2.1 Absolute Maximum Ratings

## Absolute Maximum Ratings

(1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVddo, EVdD1	EVddo = EVdD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	Viregc	REGC	$\begin{gathered} -0.3 \text { to }+2.8 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 1 \end{gathered}$	V
Input voltage	V11	P00 to P06, P10 to P17, P30, P31,   P40 to P47, P50 to P57, P64 to P67,   P70 to P77, P80 to P87, P100 to P102,   P110, P111, P120, P140 to P147	$\begin{aligned} & -0.3 \text { to EVDDO }+0.3 \\ & \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 2 \end{aligned}$	V
	$\mathrm{V}_{12}$	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	V13	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, $\overline{\text { RESET }}$	-0.3 to VDD +0.3 Note 2	V
Output voltage	Vo1	$\begin{aligned} & \text { P00 to P06, P10 to P17, P30, P31, } \\ & \text { P40 to P47, P50 to P57, P60 to P67, } \\ & \text { P70 to P77, P80 to P87, P100 to P102, } \\ & \text { P110, P111, P120, P130, P140 to P147 } \end{aligned}$	$\begin{aligned} & -0.3 \text { to EVDDo }+0.3 \\ & \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 2 \end{aligned}$	V
	Vo2	P20 to P27, P150 to P156	-0.3 to Vdd +0.3 Note 2	V
Analog input voltage	VAl1	ANI16 to ANI20	-0.3 to EVDDo +0.3 and -0.3 to $\operatorname{AVREF}(+)+0.3$ Notes 2,3	V
	VAI2	ANI0 to ANI14	-0.3 to $\operatorname{VDD}+0.3$ and -0.3 to $\operatorname{AVREF}(+)+0.3$ Notes 2,3	V

Note 1. Connect the REGC pin to Vss via a capacitor ( 0.47 to $1 \mu \mathrm{~F}$ ). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
Note 2. Must be 6.5 V or lower.
Note 3. Do not exceed $\operatorname{AVREF}(+)+0.3 \mathrm{~V}$ in case of $\mathrm{A} / \mathrm{D}$ conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
Remark 2. $A V R E F(+):+$ side reference voltage of the A/D converter.
Remark 3. Vss: Reference voltage

Absolute Maximum Ratings
(2/2)

Parameter	Symbols	Conditions		Ratings	Unit
Output current, high	IOH 1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-40	mA
		Total of all pins$-170 \mathrm{~mA}$	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA
	IOH 2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IoL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA
	IoL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient temperature	TA	In normal operation mode		-40 to +85	${ }^{\circ} \mathrm{C}$
		In flash memory programming mode			
Storage temperature	Tstg			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

### 2.2 Oscillator Characteristics

### 2.2.1 X1, XT1 characteristics

( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/ crystal resonator	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1.0		20.0	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VdD}<2.7 \mathrm{~V}$	1.0		16.0	
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$	1.0		8.0	
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

### 2.2.2 On-chip oscillator characteristics

( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = 0 V )

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency   Notes 1, 2	fiH			1		32	MHz
High-speed on-chip oscillator clock frequency accuracy		-20 to $+85^{\circ} \mathrm{C}$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	-1.0		+1.0	\%
			$1.6 \mathrm{~V} \leq \mathrm{VdD}<1.8 \mathrm{~V}$	-5.0		+5.0	\%
		-40 to $-20^{\circ} \mathrm{C}$	$1.8 \mathrm{~V} \leq \mathrm{VDD}<5.5 \mathrm{~V}$	-1.5		+1.5	\%
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$	-5.5		+5.5	\%
Low-speed on-chip oscillator clock frequency	fil				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	\%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte ( 000 C 2 H ) and bits 0 to 2 of the HOCODIV register.
Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

### 2.3 DC Characteristics

### 2.3.1 Pin characteristics

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $\left.=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	$\mathrm{IOH1}$	Per pin for P00 to P06,   P10 to P17, P30, P31,   P40 to P47, P50 to P57,   P64 to P67, P70 to P77,   P80 to P87, P100 to P102, P110,   P111, P120, P130, P140 to P147	$1.6 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$			$\begin{aligned} & -10.0 \\ & \text { Note } 2 \end{aligned}$	mA
		$\begin{aligned} & \text { Total of P00 to P04, P40 to P47, } \\ & \text { P102, P120, P130, P140 to P145 } \\ & \text { (When duty } \leq 70 \% \text { Note } 3 \text { ) } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$			-55.0	mA
			2.7 V S EVddo < 4.0 V			-10.0	mA
			1.8 V < EVdDo < 2.7 V			-5.0	mA
			1.6 V S EVddo < 1.8 V			-2.5	mA
		```Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty \leq 70% Note 3)```	$4.0 \mathrm{~V} \leq$ EVddo $\leq 5.5 \mathrm{~V}$			-80.0	mA
			2.7 V S EVdDo < 4.0 V			-19.0	mA
			$1.8 \mathrm{~V} \leq$ EVddo $<2.7 \mathrm{~V}$			-10.0	mA
			1.6 V S EVdDo < 1.8 V			-5.0	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)	$1.6 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$			$\begin{array}{r} -135.0 \\ \text { Note } 4 \end{array}$	mA
	IOH 2	Per pin for P20 to P27, P150 to P156	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			-0.1 Note 2	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVddo, EVdD1, Vdd pins to an output pin.
Note 2. Do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $\mathrm{n} \%$).

- Total output current of pins $=(\mathrm{IOH} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOH}=-10.0 \mathrm{~mA}$ Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \approx-8.7 \mathrm{~mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.
Note 4. -100 mA for industrial applications (R5F104xxDxx, R5F104xxGxx).

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVSS} 0=\mathrm{EVSS} 1=0 \mathrm{~V}\right)$
(2/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	```Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147```				$\begin{gathered} 20.0 \\ \text { Note } 2 \end{gathered}$	mA
		Per pin for P60 to P63				$\begin{gathered} 15.0 \\ \text { Note } 2 \end{gathered}$	mA
		Total of P00 to P04, P40 to P47,	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			70.0	mA
		P102, P120, P130, P140 to P145	$2.7 \mathrm{~V} \leq$ EVDDo $<4.0 \mathrm{~V}$			15.0	mA
			$1.8 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$			9.0	mA
			$1.6 \mathrm{~V} \leq$ EVdDo $<1.8 \mathrm{~V}$			4.5	mA
		Total of P05, P06, P10 to P17,	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			80.0	mA
		P30, P31, P50 to P57,	$2.7 \mathrm{~V} \leq \mathrm{EV}$ dDo $<4.0 \mathrm{~V}$			35.0	mA
		P80 to P87, P100, P101, P110	$1.8 \mathrm{~V} \leq$ EVdDo $<2.7 \mathrm{~V}$			20.0	mA
		P111, P146, P147 (When duty $\leq 70 \%$ Note 3)	$1.6 \mathrm{~V} \leq$ EVDDO $<1.8 \mathrm{~V}$			10.0	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)				150.0	mA
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			5.0	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.
Note 2. Do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $\mathrm{n} \%$).

- Total output current of pins $=(\mathrm{IoL} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOL}=10.0 \mathrm{~mA}$
Total output current of pins $=(10.0 \times 0.7) /(80 \times 0.01) \approx 8.7 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor.
A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$
(3/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0.8 EVddo		EVddo	V
	VIH2	$\begin{aligned} & \text { P01, P03, P04, P10, P14 to P17, } \\ & \text { P30, P43, P44, P50, P53 to P55, } \\ & \text { P80, P81, P142, P143 } \end{aligned}$	TTL input buffer $4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	2.2		EVddo	V
			TTL input buffer $3.3 \mathrm{~V} \leq \text { EVDDo }<4.0 \mathrm{~V}$	2.0		EVDDo	V
			TTL input buffer $1.6 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}$	1.5		EVddo	V
	VıH3	P20 to P27, P150 to P156		0.7 Vdd		VDD	V
	VIH4	P60 to P63		0.7 EVddo		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0.8 VDD		VDD	V
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		0.2 EVddo	V
	VIL2	$\begin{aligned} & \text { P01, P03, P04, P10, P14 to P17, } \\ & \text { P30, P43, P44, P50, P53 to P55, } \\ & \text { P80, P81, P142, P143 } \end{aligned}$	TTL input buffer $4.0 \mathrm{~V} \leq$ EVddo $\leq 5.5 \mathrm{~V}$	0		0.8	V
			TTL input buffer $3.3 \mathrm{~V} \leq \text { EVDDO }<4.0 \mathrm{~V}$	0		0.5	V
			TTL input buffer $1.6 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}$	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3 VDD	V
	VIL4	P60 to P63		0		0.3 EVddo	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0		0.2 Vdd	V

Caution The maximum value of Vıн of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVdDo, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$
(4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH} 1=-10.0 \mathrm{~mA} \end{aligned}$	EVDDo-1.5			V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH} 1=-3.0 \mathrm{~mA} \end{aligned}$	EVddo-0.7			V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH} 1=-1.5 \mathrm{~mA} \end{aligned}$	EVddo - 0.5			V
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{IOH} 1=-1.0 \mathrm{~mA} \end{aligned}$	EVDDo-0.5			V
	VoH2	P20 to P27, P150 to P156	$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH} 2=-100 \mu \mathrm{~A} \end{aligned}$	VDD - 0.5			V
Output voltage, low	VoL1	```P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147```	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=20.0 \mathrm{~mA} \end{aligned}$			1.3	V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOL} 1=8.5 \mathrm{~mA} \end{aligned}$			0.7	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{lol} 1=3.0 \mathrm{~mA} \end{aligned}$			0.6	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=1.5 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOL} 1=0.6 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOL} 1=0.3 \mathrm{~mA} \end{aligned}$			0.4	V
	Vol2	P20 to P27, P150 to P156	$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL2 }=400 \mu \mathrm{~A} \end{aligned}$			0.4	V
	Vol3	P60 to P63	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 3=15.0 \mathrm{~mA} \end{aligned}$			2.0	V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \text { IoL3 }=5.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 3=3.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOL} 3=2.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOL} 3=1.0 \mathrm{~mA} \end{aligned}$			0.4	V

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$
(5/5)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	VI = EVdDo				1	$\mu \mathrm{A}$
	ILIH2	$\frac{\mathrm{P} 20 \text { to P27, P137, P150 to P156, }}{\text { RESET }}$	V I $=\mathrm{V} D \mathrm{D}$				1	$\mu \mathrm{A}$
	ILIH3	$\begin{aligned} & \mathrm{P} 121 \text { to P124 } \\ & \text { (X1, X2, EXCLK, XT1, XT2, } \\ & \text { EXCLKS) } \end{aligned}$	V I $=\mathrm{V}$ DD	In input port or external clock input			1	$\mu \mathrm{A}$
				In resonator connection			10	$\mu \mathrm{A}$
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	$\mathrm{V}_{\mathrm{I}}=\mathrm{EV}$ Sso				-1	$\mu \mathrm{A}$
	ILIL2	$\frac{\text { P20 to P27, P137, P150 to P156, }}{\text { RESET }}$	V I $=\mathrm{Vss}$				-1	$\mu \mathrm{A}$
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	$\mathrm{V}_{\mathrm{I}}=\mathrm{Vss}$	In input port or external clock input			-1	$\mu \mathrm{A}$
				In resonator connection			-10	$\mu \mathrm{A}$
On-chip pull-up resistance	Ru	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	$\mathrm{V}_{\mathrm{I}}=\mathrm{EV}$ Ss	In input port	10	20	100	k Ω

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	Operating mode	HS (high-speed main) mode Note 5	$\begin{aligned} & \text { fHoco }=64 \mathrm{MHz}, \\ & \mathrm{fIH}=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Basic operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		2.4		mA
						VDD $=3.0 \mathrm{~V}$		2.4		
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Basic operation	VDD $=5.0 \mathrm{~V}$		2.1		
						$\mathrm{VDD}=3.0 \mathrm{~V}$		2.1		
			HS (high-speed main) mode Note 5	$\begin{aligned} & \text { fHoco }=64 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		5.1	8.7	mA
						Vdo $=3.0 \mathrm{~V}$		5.1	8.7	
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		4.8	8.1	
						V dD $=3.0 \mathrm{~V}$		4.8	8.1	
				fносо $=48 \mathrm{MHz}$, $\mathrm{fiH}=24 \mathrm{MHz}$ Note 3	Normal operation	VDD $=5.0 \mathrm{~V}$		4.0	6.9	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.0	6.9	
				$\begin{aligned} & \text { fHoco }=24 \mathrm{MHz}, \\ & \text { fiH }=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		3.8	6.3	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		3.8	6.3	
				$\begin{aligned} & \text { fHOCO }=16 \mathrm{MHz}, \\ & \mathrm{f} \mathrm{fH}=16 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		2.8	4.6	
						VDD $=3.0 \mathrm{~V}$		2.8	4.6	
			LS (low-speed main) mode Note 5	$\begin{aligned} & \mathrm{fHOco}=8 \mathrm{MHz}, \\ & \mathrm{fiH}=8 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=3.0 \mathrm{~V}$		1.3	2.0	mA
						VDD $=2.0 \mathrm{~V}$		1.3	2.0	
			LV (low-voltage main) mode Note 5	$\begin{aligned} & \mathrm{fHoco}=4 \mathrm{MHz}, \\ & \mathrm{fiH}=4 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=3.0 \mathrm{~V}$		1.3	1.8	mA
						VDD $=2.0 \mathrm{~V}$		1.3	1.8	
			HS (high-speed main) mode Note 5	$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.3	5.3	mA
						Resonator connection		3.4	5.5	
				$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VdD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.3	5.3	
						Resonator connection		3.4	5.5	
				$\begin{aligned} & \text { fmx }=10 \mathrm{MHz} \text { Note } 2, \\ & \text { VdD }=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.0	3.1	
						Resonator connection		2.1	3.2	
				$\begin{aligned} & f M x=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.0	3.1	
						Resonator connection		2.1	3.2	
			LS (low-speed main) mode Note 5	$\begin{aligned} & \mathrm{fmX}=8 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.2	1.9	mA
						Resonator connection		1.2	2.0	
				$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.2	1.9	
						Resonator connection		1.2	2.0	
			Subsystem clock operation	$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.7	6.1	$\mu \mathrm{A}$
						Resonator connection		4.7	6.1	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.7	6.1	
						Resonator connection		4.7	6.1	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.8	6.7	
						Resonator connection		4.8	6.7	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.8	7.5	
						Resonator connection		4.8	7.5	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.4	8.9	
						Resonator connection		5.4	8.9	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD and EVDDo, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $\quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz
$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode: $\quad 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz LV (low-voltage main) mode: $\quad 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fhoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency (32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq$ EVDDo $\leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $=0 \mathrm{~V}$)(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	$\begin{array}{\|l\|} \hline \text { IDD2 } \\ \text { Note } 2 \end{array}$	HALT mode	HS (high-speed main) mode Note 7	$\begin{aligned} & \text { fHoco = } 64 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.80	3.09	mA
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.80	3.09	
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \mathrm{fIH}=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	Vdo $=5.0 \mathrm{~V}$		0.49	2.40	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.49	2.40	
				$\begin{aligned} & \text { fHoco }=48 \mathrm{MHz}, \\ & \mathrm{fIH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		0.62	2.40	
					$\mathrm{VDD}=3.0 \mathrm{~V}$		0.62	2.40	
				$\begin{aligned} & \text { fHoco = } 24 \mathrm{MHz}, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VdD $=5.0 \mathrm{~V}$		0.4	1.83	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.4	1.83	
				$\begin{aligned} & \text { fHoco }=16 \mathrm{MHz}, \\ & \text { fiH }=16 \mathrm{MHz} \text { Note } 4 \end{aligned}$	Vdo $=5.0 \mathrm{~V}$		0.37	1.38	
					VDD $=3.0 \mathrm{~V}$		0.37	1.38	
			LS (low-speed main) mode Note 7	$\begin{aligned} & \text { fHoco }=8 \mathrm{MHz}, \\ & \mathrm{fIH}=8 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VDD $=3.0 \mathrm{~V}$		260	710	$\mu \mathrm{A}$
					$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		260	710	
			LV (low-voltage main) mode Note 7	$\begin{aligned} & \mathrm{fHOCO}=4 \mathrm{MHz}, \\ & \mathrm{fiH}=4 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VdD $=3.0 \mathrm{~V}$		420	700	$\mu \mathrm{A}$
					$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		420	700	
			HS (high-speed main) mode Note 7	$\begin{aligned} & \mathrm{fMx}=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.28	1.55	mA
					Resonator connection		0.40	1.74	
				$\begin{aligned} & \text { fMx }=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.28	1.55	
					Resonator connection		0.40	1.74	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{~V} \mathrm{~d}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.19	0.86	
					Resonator connection		0.25	0.93	
				$\begin{aligned} & \mathrm{fMx}=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.19	0.86	
					Resonator connection		0.25	0.93	
			LS (low-speed main) mode Note 7	$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		95	550	$\mu \mathrm{A}$
					Resonator connection		140	590	
				$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VdD}=2.0 \mathrm{~V} \end{aligned}$	Square wave input		95	550	
					Resonator connection		140	590	
			Subsystem clock operation	$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.25	0.57	$\mu \mathrm{A}$
					Resonator connection		0.44	0.76	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.30	0.57	
					Resonator connection		0.49	0.76	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.36	1.17	
					Resonator connection		0.59	1.36	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.49	1.97	
					Resonator connection		0.72	2.16	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.97	3.37	
					Resonator connection		1.16	3.56	
	IDD3 Note 6	STOP mode Note 8	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.18	0.51	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.24	0.51	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.29	1.10	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.41	1.90	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				0.90	3.30	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDd, EVDDo or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz
	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode:	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
LV (low-voltage main) mode:	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fmX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency (32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(2) Flash ROM: 96 to $\mathbf{2 5 6} \mathrm{KB}$ of $\mathbf{3 0}$ - to 100-pin products
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current Note 1	IdD1	Operating mode	HS (high-speed main) mode Note 5	$\begin{array}{\|l} \hline \begin{array}{l} \text { fHoco }=64 \mathrm{MHz}, \\ \text { fiH }=32 \mathrm{MHz} \text { Note } 3 \end{array} \\ \hline \begin{array}{l} \text { fHoco }=32 \mathrm{MHz}, \\ \text { fiH }=32 \mathrm{MHz} \text { Note } 3 \end{array} \end{array}$	Basic operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		2.6		mA
						VdD $=3.0 \mathrm{~V}$		2.6		
					Basic operation	VDD $=5.0 \mathrm{~V}$		2.3		
						V do $=3.0 \mathrm{~V}$		2.3		
			HS (high-speed main) mode Note 5	fHoco $=64 \mathrm{MHz}$, $\mathrm{fiH}=32 \mathrm{MHz}$ Note 3	Normal operation	VDD $=5.0 \mathrm{~V}$		5.4	10.2	mA
						VDD $=3.0 \mathrm{~V}$		5.4	10.2	
				$\begin{aligned} & \text { fHoco = } 32 \mathrm{MHz}, \\ & \mathrm{fIH}=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		5.0	9.6	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		5.0	9.6	
				froco $=48 \mathrm{MHz}$, fiH $=24 \mathrm{MHz}$ Note 3	Normal operation	$\mathrm{V} D=5.0 \mathrm{~V}$		4.2	7.8	
						VDD $=3.0 \mathrm{~V}$		4.2	7.8	
				$\begin{aligned} & \text { fHOco }=24 \mathrm{MHz}, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		4.0	7.4	
						VDD $=3.0 \mathrm{~V}$		4.0	7.4	
				$\begin{aligned} & \text { fHoco }=16 \mathrm{MHz}, \\ & \mathrm{fiH}=16 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VdD $=5.0 \mathrm{~V}$		3.0	5.3	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		3.0	5.3	
			LS (low-speed main) mode Note 5	$\begin{aligned} & \mathrm{fHOCO}=8 \mathrm{MHz}, \\ & \mathrm{fiH}=8 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=3.0 \mathrm{~V}$		1.4	2.3	mA
						$\mathrm{VDD}=2.0 \mathrm{~V}$		1.4	2.3	
			LV (low-voltage main) mode Note 5	$\begin{aligned} & \text { fHoco }=4 \mathrm{MHz}, \\ & \mathrm{fiH}=4 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=3.0 \mathrm{~V}$		1.3	1.9	mA
						Vdo $=2.0 \mathrm{~V}$		1.3	1.9	
			HS (high-speed main) mode Note 5	$\begin{aligned} & f M x=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.4	6.2	mA
						Resonator connection		3.6	6.4	
				$\begin{aligned} & \text { fMx }=20 \mathrm{MHz} \text { Note } 2, \\ & V D D=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.4	6.2	
						Resonator connection		3.6	6.4	
				$\begin{aligned} & f M x=10 \mathrm{MHz} \text { Note } 2, \\ & V D D=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.1	3.6	
						Resonator connection		2.2	3.7	
				$\begin{aligned} & f M x=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.1	3.6	
						Resonator connection		2.2	3.7	
			LS (low-speed main) mode Note 5	$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.2	2.2	mA
						Resonator connection		1.2	2.3	
				$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.2	2.2	
						Resonator connection		1.2	2.3	
			Subsystem clock operation	$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.9	7.1	$\mu \mathrm{A}$
						Resonator connection		4.9	7.1	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.9	7.1	
						Resonator connection		4.9	7.1	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.1	8.8	
						Resonator connection		5.1	8.8	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.5	10.5	
						Resonator connection		5.5	10.5	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		6.5	14.5	
						Resonator connection		6.5	14.5	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz
	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode:	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
LV (low-voltage main) mode:	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency (32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$
(2) Flash ROM: 96 to $\mathbf{2 5 6} \mathrm{KB}$ of $\mathbf{3 0}$ - to 100-pin products
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)
(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD2 Note 2	HALT mode	HS (high-speed main) mode Note 7	$\begin{aligned} & \text { fHoco }=64 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.79	3.32	mA
					VDD $=3.0 \mathrm{~V}$		0.79	3.32	
				$\begin{aligned} & \mathrm{fHoco}=32 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.49	2.63	
					VDD $=3.0 \mathrm{~V}$		0.49	2.63	
				$\begin{aligned} & \text { fHOco }=48 \mathrm{MHz}, \\ & \mathrm{fIH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VDD $=5.0 \mathrm{~V}$		0.62	2.57	
					$\mathrm{VDD}=3.0 \mathrm{~V}$		0.62	2.57	
				$\begin{aligned} & \text { fHOCO }=24 \mathrm{MHz}, \\ & \mathrm{fIH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.4	2.00	
					VDD $=3.0 \mathrm{~V}$		0.4	2.00	
				$\begin{aligned} & \text { fHOco = } 16 \mathrm{MHz}, \\ & \text { fiH }=16 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VDD $=5.0 \mathrm{~V}$		0.38	1.49	
					VDD $=3.0 \mathrm{~V}$		0.38	1.49	
			LS (low-speed main) mode Note 7	fносо $=8 \mathrm{MHz}$, $\mathrm{fiH}=8 \mathrm{MHz}$ Note 4	$\mathrm{VDD}=3.0 \mathrm{~V}$		250	800	$\mu \mathrm{A}$
					VDD $=2.0 \mathrm{~V}$		250	800	
			LV (low-voltage main) mode Note 7	$\begin{aligned} & \text { fHoco }=4 \mathrm{MHz}, \\ & \mathrm{fiH}=4 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VDD $=3.0 \mathrm{~V}$		420	755	$\mu \mathrm{A}$
					$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		420	755	
			HS (high-speed main) mode Note 7	$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.30	1.63	mA
					Resonator connection		0.40	1.85	
				$\begin{aligned} & \text { fMx }=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.30	1.63	
					Resonator connection		0.40	1.85	
				$\begin{aligned} & \text { fmx }=10 \mathrm{MHz} \text { Note } 3, \\ & \text { VdD }=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.20	0.89	
					Resonator connection		0.25	0.97	
				$\begin{aligned} & f M x=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.20	0.89	
					Resonator connection		0.25	0.97	
			LS (low-speed main) mode Note 7	$\begin{aligned} & \mathrm{fmX}=8 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		110	580	$\mu \mathrm{A}$
					Resonator connection		140	630	
				$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$	Square wave input		110	580	
					Resonator connection		140	630	
			Subsystem clock operation	$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.28	0.66	$\mu \mathrm{A}$
					Resonator connection		0.47	0.85	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.34	0.66	
					Resonator connection		0.53	0.85	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.37	2.35	
					Resonator connection		0.56	2.54	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.61	4.08	
					Resonator connection		0.80	4.27	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		1.55	8.09	
					Resonator connection		1.74	8.28	
	IDD3 Note 6	STOP mode Note 8	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.19	0.57	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.25	0.57	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.33	2.26	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.52	3.99	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				1.46	8.00	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz
	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode:	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
LV (low-voltage main) mode:	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fmX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency (32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current Note 1	IdD1	Operating mode	HS (high-speed main) mode Note 5	$\begin{array}{\|l} \hline \text { fHoco }=64 \mathrm{MHz}, \\ \text { fiH }=32 \mathrm{MHz} \text { Note } 3 \\ \hline \text { fHoco }=32 \mathrm{MHz}, \\ \text { fiH }=32 \mathrm{MHz} \text { Note } 3 \\ \hline \end{array}$	Basic operation	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		2.9		mA
						$\mathrm{VdD}=3.0 \mathrm{~V}$		2.9		
					Basic operation	VDD $=5.0 \mathrm{~V}$		2.5		
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		2.5		
			HS (high-speed main) mode Note 5	$\begin{aligned} & \text { fHoco }=64 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		6.0	11.2	mA
						VDD $=3.0 \mathrm{~V}$		6.0	11.2	
				$\begin{aligned} & \text { fHOCO }=32 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	$\mathrm{V} D=5.0 \mathrm{~V}$		5.5	10.6	
						V do $=3.0 \mathrm{~V}$		5.5	10.6	
				fносо $=48 \mathrm{MHz}$, $\mathrm{fiH}=24 \mathrm{MHz}$ Note 3	Normal operation	$\mathrm{V} D=5.0 \mathrm{~V}$		4.7	8.6	
						VDD $=3.0 \mathrm{~V}$		4.7	8.6	
				$\begin{aligned} & \text { fHoco }=24 \mathrm{MHz}, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VdD $=5.0 \mathrm{~V}$		4.4	8.2	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		4.4	8.2	
				fносо $=16 \mathrm{MHz}$, $\mathrm{fiH}=16 \mathrm{MHz}$ Note 3	Normal operation	Vdo $=5.0 \mathrm{~V}$		3.3	5.9	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		3.3	5.9	
			LS (low-speed main) mode Note 5	$\begin{aligned} & \text { fHoco }=8 \mathrm{MHz}, \\ & \mathrm{fiH}=8 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VdD $=3.0 \mathrm{~V}$		1.5	2.5	mA
						VDD $=2.0 \mathrm{~V}$		1.5	2.5	
			LV (low-voltage main) mode Note 5	$\begin{aligned} & \mathrm{fHOCO}=4 \mathrm{MHz}, \\ & \mathrm{fiH}=4 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VdD $=3.0 \mathrm{~V}$		1.5	2.1	mA
						$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		1.5	2.1	
			HS (high-speed main) mode Note 5	$\begin{aligned} & f M x=20 \mathrm{MHz} \text { Note } 2, \\ & V D D=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.7	6.8	mA
						Resonator connection		3.9	7.0	
				$\begin{aligned} & \text { fMx }=20 \mathrm{MHz} \text { Note } 2, \\ & \text { VDD }=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.7	6.8	
						Resonator connection		3.9	7.0	
				$\begin{aligned} & \text { fMx }=10 \mathrm{MHz} \text { Note } 2, \\ & V D D=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.3	4.1	
						Resonator connection		2.3	4.2	
				$\begin{aligned} & \text { fMX }=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.3	4.1	
						Resonator connection		2.3	4.2	
			LS (low-speed main) mode Note 5	$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.4	2.4	mA
						Resonator connection		1.4	2.5	
				$\begin{aligned} & \mathrm{fmX}=8 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{~V} \mathrm{DD}=2.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.4	2.4	
						Resonator connection		1.4	2.5	
			Subsystem clock operation	$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.2		$\mu \mathrm{A}$
						Resonator connection		5.2		
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.3	7.7	
						Resonator connection		5.3	7.7	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.5	10.6	
						Resonator connection		5.5	10.6	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.9	13.2	
						Resonator connection		6.0	13.2	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		6.8	17.5	
						Resonator connection		6.9	17.5	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz
	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode:	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
LV (low-voltage main) mode:	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency (32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$
(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)
(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD2 Note 2	HALT mode	HS (high-speed main) mode Note 7	$\begin{aligned} & \text { fHoco }=64 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.93	3.32	mA
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.93	3.32	
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		0.5	2.63	
					V dD $=3.0 \mathrm{~V}$		0.5	2.63	
				fносо $=48 \mathrm{MHz}$, fiH $=24 \mathrm{MHz}$ Note 4	V D $=5.0 \mathrm{~V}$		0.72	2.60	
					$\mathrm{VDD}=3.0 \mathrm{~V}$		0.72	2.60	
				$\begin{aligned} & \text { fHoco }=24 \mathrm{MHz}, \\ & \text { fiH }=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.42	2.03	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.42	2.03	
				fносо $=16 \mathrm{MHz}$, fif $=16 \mathrm{MHz}$ Note 4	Vdo $=5.0 \mathrm{~V}$		0.39	1.50	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.39	1.50	
			LS (low-speed main) mode Note 7	$\begin{aligned} & \mathrm{fHoco}=8 \mathrm{MHz}, \\ & \mathrm{fiH}=8 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VDD $=3.0 \mathrm{~V}$		270	800	$\mu \mathrm{A}$
					VDD $=2.0 \mathrm{~V}$		270	800	
			LV (low-voltage main) mode Note 7	$\begin{aligned} & \mathrm{fHoco}=4 \mathrm{MHz}, \\ & \mathrm{fiH}=4 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VdD $=3.0 \mathrm{~V}$		450	755	$\mu \mathrm{A}$
					$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		450	755	
			HS (high-speed main) mode Note 7	$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.31	1.69	mA
					Resonator connection		0.41	1.91	
				$\begin{aligned} & \text { fMx }=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.31	1.69	
					Resonator connection		0.41	1.91	
				$\begin{aligned} & \text { fMX }=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.21	0.94	
					Resonator connection		0.26	1.02	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.21	0.94	
					Resonator connection		0.26	1.02	
			LS (low-speed main) mode Note 7	$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		110	610	$\mu \mathrm{A}$
					Resonator connection		150	660	
				$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$	Square wave input		110	610	
					Resonator connection		150	660	
			Subsystem clock operation	$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.31		$\mu \mathrm{A}$
					Resonator connection		0.50		
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.38	0.76	
					Resonator connection		0.57	0.95	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.47	3.59	
					Resonator connection		0.70	3.78	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.80	6.20	
					Resonator connection		1.00	6.39	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		1.65	10.56	
					Resonator connection		1.84	10.75	
	IdD3 Note 6	STOP mode Note 8	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.19		$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.30	0.59	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.41	3.42	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.80	6.03	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				1.53	10.39	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz
	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode:	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
LV (low-voltage main) mode:	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fmX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency (32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

(4) Peripheral Functions (Common to all products)

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	IFIL Note 1				0.20		$\mu \mathrm{A}$
RTC operating current	IRTC Notes 1, 2, 3				0.02		$\mu \mathrm{A}$
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		$\mu \mathrm{A}$
Watchdog timer operating current	IWDT Notes 1, 2, 5	$\mathrm{fiL}=15 \mathrm{kHz}$			0.22		$\mu \mathrm{A}$
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed	Normal mode, $A V_{\text {REFP }}=\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		1.3	1.7	mA
			Low voltage mode, $\mathrm{A} V_{\text {REFP }}=\mathrm{VDD}=3.0 \mathrm{~V}$		0.5	0.7	mA
A/D converter reference voltage current	IAdREF Note 1				75.0		$\mu \mathrm{A}$
Temperature sensor operating current	ITmps Note 1				75.0		$\mu \mathrm{A}$
D/A converter operating current	Idac Notes 1, 11, 13	Per D/A converter channel				1.5	mA
Comparator operating current	Icmp Notes 1, 12, 13	$\begin{aligned} & \text { VDD }=5.0 \mathrm{~V}, \\ & \text { Regulator output voltage }=2.1 \mathrm{~V} \end{aligned}$	Window mode		12.5		$\mu \mathrm{A}$
			Comparator high-speed mode		6.5		$\mu \mathrm{A}$
			Comparator low-speed mode		1.7		$\mu \mathrm{A}$
		$\begin{aligned} & \text { VDD }=5.0 \mathrm{~V}, \\ & \text { Regulator output voltage }=1.8 \mathrm{~V} \end{aligned}$	Window mode		8.0		$\mu \mathrm{A}$
			Comparator high-speed mode		4.0		$\mu \mathrm{A}$
			Comparator low-speed mode		1.3		$\mu \mathrm{A}$
LVD operating current	ILvD Notes 1, 7				0.08		$\mu \mathrm{A}$
Self-programming operating current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	Ibgo Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	ISNoz Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
			The A/D conversion operations are performed, Low voltage mode, $A V_{\text {REFP }}=\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		1.20	1.44	
		CSI/UART operation			0.70	0.84	
		DTC operation			3.10		

Note 1. Current flowing to VdD.
Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IdD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.

Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).
The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IdD2 or IDD3 and ILVD when the LVD circuit is in operation.
Note 8. Current flowing during programming of the data flash.
Note 9. Current flowing during self-programming.
Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G14 User's Manual.
Note 11. Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
Note 12. Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.

Remark 1. fiL: Low-speed on-chip oscillator clock frequency
Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 3. fcLk: CPU/peripheral hardware clock frequency
Remark 4. Temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$

2.4 AC Characteristics

$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fmain) operation	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.03125		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
			LS (low-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.125		1	$\mu \mathrm{s}$
			LV (low-voltage main) mode	$1.6 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}$	0.25		1	$\mu \mathrm{s}$
		Subsystem clock (fsub) operation		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	28.5	30.5	31.3	$\mu \mathrm{s}$
		In the self-programming mode	HS (high-speed main)	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.03125		1	$\mu \mathrm{s}$
			mode	$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
			LS (low-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.125		1	$\mu \mathrm{s}$
			LV (low-voltage main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.25		1	$\mu \mathrm{s}$
External system clock frequency	fex	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1.0		20.0	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 2.7 \mathrm{~V}$			1.0		16.0	MHz
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$			1.0		8.0	MHz
		$1.6 \mathrm{~V} \leq \mathrm{V} D \mathrm{~L}$ < 1.8 V			1.0		4.0	MHz
	fExs				32		35	kHz
External system clock input high-level width, low-level width	$\begin{aligned} & \text { texh, } \\ & \text { tEXL } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			24			ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 2.7 \mathrm{~V}$			30			ns
		$1.8 \mathrm{~V} \leq \mathrm{VdD}<2.4 \mathrm{~V}$			60			ns
		$1.6 \mathrm{~V} \leq \mathrm{VdD}<1.8 \mathrm{~V}$			120			ns
	tEXHS, teXLS				13.7			$\mu \mathrm{s}$
TIOO to TI03, TI10 to TI13 input high-level width, low-level width	ttin, ttil				$\begin{gathered} \hline \text { 1/fmCK }+10 \\ \text { Note } \end{gathered}$			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$	100			ns
				1.8 V [EVDDo < 2.7 V	300			ns
				1.6 V [EVddo < 1.8 V	500			ns
Timer RJ input highlevel width, low-level width	tTJIH, tTJIL	TRJIO		$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	40			ns
				$1.8 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$	120			ns
				$1.6 \mathrm{~V} \leq$ EVDDo < 1.8 V	200			ns

Note The following conditions are required for low voltage interface when EVDDO < VDD
$1.8 \mathrm{~V} \leq$ EVdDo $<2.7 \mathrm{~V}$: MIN. 125 ns
$1.6 \mathrm{~V} \leq$ EVDDo < 1.8 V : MIN. 250 ns

Remark fМск: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number $(m=0,1), n$: Channel number ($\mathrm{n}=0$ to 3))
$\left(\mathrm{TA}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$
(2/2)

Minimum Instruction Execution Time during Main System Clock Operation

Tcy vs VDD (HS (high-speed main) mode)

- - - During self-programming
-.-.-.. When high-speed system clock is selected

Supply voltage VdD [V]

Tcy vs VDD (LS (low-speed main) mode)

TCY vs VDD (LV (low-voltage main) mode)

AC Timing Test Points

External System Clock Timing

TI/TO Timing

TIOO to TI03, TI10 to TI13

TO00 to TO03, TO10 to TO13,
TRJIOO, TRJOO,
TRDIOA0, TRDIOA1,
TRDIOB0, TRDIOB1,
TRDIOC0, TRDIOC1,
TRDIODO, TRDIOD1,
TRGIOA, TRGIOB

TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1,
 TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1

TRGIOA, TRGIOB

Interrupt Request Input Timing

Key Interrupt Input Timing

$\overline{\text { RESET }}$ Input Timing

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVdD1} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		$\begin{aligned} & \text { 2.4 } \mathrm{V} \leq \text { EVDDO } \leq 5.5 \mathrm{~V} \\ & \begin{array}{l} \text { Theoretical value of the } \\ \text { maximum transfer rate } \\ \text { fMCK }=\text { fCLK Note } 3 \end{array} \end{aligned}$		fmCK/6 Note 2		fмск/6		fмск/6	bps
				5.3		1.3		0.6	Mbps
		$\begin{aligned} & \text { 1.8 } \mathrm{V} \leq \text { EVDDO } \leq 5.5 \mathrm{~V} \\ & \text { Theoretical value of the } \\ & \text { maximum transfer rate } \\ & \text { fMCK }=\text { fcLK Note } 3 \end{aligned}$		fMCK/6 Note 2		fмск/6		fмck/6	bps
				5.3		1.3		0.6	Mbps
		$\begin{aligned} & \text { 1.7 } \mathrm{V} \leq \text { EVDDO } \leq 5.5 \mathrm{~V} \\ & \hline \text { Theoretical value of the } \\ & \text { maximum transfer rate } \\ & \text { fMCK }=\text { fcLK Note } 3 \end{aligned}$		fMCK/6 Note 2		fmCK/6 Note 2		fmck/6	bps
				5.3		1.3		0.6	Mbps
		$\begin{aligned} & \text { 1.6 } \mathrm{V} \leq \text { EVDDO } \leq 5.5 \mathrm{~V} \\ & \text { Theoretical value of the } \\ & \text { maximum transfer rate } \\ & \text { fMCK }=\text { fcLK Note } 3 \end{aligned}$		-		fmCK/6 Note 2		fмск/6	bps
				-		1.3		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
However, the SNOOZE mode cannot be used when FRQSEL4 $=1$.
Note 2. The following conditions are required for low voltage interface when EVDDO < VDD.
$2.4 \mathrm{~V} \leq \mathrm{EVDDO}<2.7 \mathrm{~V}$: MAX. 2.6 Mbps
$1.8 \mathrm{~V} \leq$ EVdDo < 2.4 V: MAX. 1.3 Mbps
$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$: MAX. 0.6 Mbps
Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:
HS (high-speed main) mode: $32 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
LS (low-speed main) mode: $\quad 8 \mathrm{MHz}(1.8 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V})$
LV (low-voltage main) mode: $\quad 4 \mathrm{MHz}(1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register \mathbf{g} (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. $\mathrm{q}: ~$ UART number ($\mathrm{q}=0$ to 3), g : PIM and POM number ($\mathrm{g}=0,1,5,14$)
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSIOO only)
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tKCY1 $\geq 2 /$ fcLk	$4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}$	62.5		250		500		ns
			$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDD} \leq 5.5 \mathrm{~V}$	83.3		250		500		ns
SCKp high-/low-level width	tkH1,\|tKL1	$4.0 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		tксү1/2-7		tкcrı1/2-50		tкç1/2-50		ns
		$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		tKcy1/2-10		tксу1/2-50		tкç1/2-50		ns
Slp setup time (to SCKp \uparrow) Note 1	tsik1	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		23		110		110		ns
		$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		33		110		110		ns
SIp hold time (from SCKp \uparrow) Note 2	tks 11	$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		10		10		10		ns
Delay time from SCKp \downarrow to SOp output Note 3	tKsO1	$\mathrm{C}=20 \mathrm{pF}$ Note 4			10		10		10	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp ${ }^{\prime \prime}$ when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. C is the load capacitance of the SCKp and SOp output lines.
Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. This value is valid only when CSIOO's peripheral I/O redirect function is not used.
Remark 2. p : CSI number $(p=00)$, m : Unit number $(m=0)$, n : Channel number $(n=0)$, $\mathrm{g}: ~ \mathrm{PIM}$ and POM numbers ($\mathrm{g}=1$)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$)
(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tKCY1 $\geq 4 / \mathrm{fcLK}$	$2.7 \mathrm{~V} \leq$ EvDDo $\leq 5.5 \mathrm{~V}$	125		500		1000		ns
			$2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	250		500		1000		ns
			$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	500		500		1000		ns
			$1.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	1000		1000		1000		ns
			$1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	-		1000		1000		ns
SCKp high-llow-level width	$\begin{aligned} & \hline \text { tкH1, } \\ & \text { tkL1 } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		tкCr1/2-12		tксү1/2-50		tксү1/2-50		ns
		$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$		tkcrı/2-18		tксү1/2-50		tксү1/2-50		ns
		$2.4 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		tkcri/2-38		tксү1/2-50		tкç1/2-50		ns
		$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		tkcri/2-50		tKCy1/2-50		tкç1/2-50		ns
		$1.7 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		tк¢¢1/2-100		tkcy1/2-100		tк¢¢1/2-100		ns
		$1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		-		tк¢ү $1 / 2$ - 100		tк¢¢1/2-100		ns
Slp setup time (to SCKp \uparrow) Note 1	tsik1	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		44		110		110		ns
		$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		44		110		110		ns
		$2.4 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		75		110		110		ns
		$1.8 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		110		110		110		ns
		$1.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		220		220		220		ns
		$1.6 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		-		220		220		ns
Slp hold time (from SCKp \uparrow) Note 2	tks 11	$1.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$		19		19		19		ns
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$		-		19		19		ns
Delay time from SCKp \downarrow to SOp output Note 3	tksO1	$\begin{aligned} & 1.7 \mathrm{~V} \leq \text { EVDDo } \leq 5.5 \mathrm{~V} \\ & \mathrm{C}=30 \mathrm{pF} \text { Note } 4 \end{aligned}$			25		25		25	ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \text { EVDDo } \leq 5.5 \mathrm{~V} \\ & \mathrm{C}=30 \mathrm{pF} \text { Note } 4 \end{aligned}$			-		25		25	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad \mathrm{C}$ is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. $\mathrm{p}:$ CSI number $(p=00,01,10,11,20,21,30,31)$, m : Unit number $(m=0,1), n$: Channel number $(n=0$ to 3$)$, $\mathrm{g}:$ PIM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))
(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 5	tkcy2	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	20 MHz < fmck	8/fмск		-		-		ns
			fмck $\leq 20 \mathrm{MHz}$	6/fмск		6/fmск		6/fmск		ns
		$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	16 MHz < fmск	8/fмск		-		-		ns
			fмск $\leq 16 \mathrm{MHz}$	6/fмск		6/fmск		6/fmск		ns
		$2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}$		6/fmск and 500		6/fмск and 500		6/fмск and 500		ns
		$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		6/fмск and 750		6/fмск and 750		6/fmск and 750		ns
		$1.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		6/fмск and 1500		6/fmск and 1500		6/fmск and 1500		ns
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		-		6/fmск and 1500		6/fmск and 1500		ns
SCKp high-/ low-level width	$\begin{array}{\|l\|l\|} \hline \text { tkH2, } \\ \text { tkLL2 } \end{array}$	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		tксү2/2-7		tксү2/2-7		tксү2/2-7		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{5} 5.5 \mathrm{~V}$		tkcy2/2-8		tкč2/2-8		tксү2/2-8		ns
		$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		tксү2/2-18		tксү2/2-18		tксү2/2-18		ns
		$1.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		tкç2/2-66		tксү2/2-66		tксү2/2-66		ns
		$1.6 \mathrm{~V} \leq \mathrm{EVDD} 0 \leq 5.5 \mathrm{~V}$		-		tксү2/2-66		tkcy2/2-66		ns
Slp setup time (to SCKp \uparrow) Note 1	tsik2	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		1/fmск + 20		1/fıск + 30		1/fмск + 30		ns
		$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		1/fмск + 30		1/fmск + 30		1/fмск + 30		ns
		$1.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		1/fмск + 40		1/fmск +40		1/fмск +40		ns
		$1.6 \mathrm{~V} \leq \mathrm{EVdDo} \leq 5.5 \mathrm{~V}$		-		1/fmск +40		1/fмск +40		ns
Slp hold time (from SCKp \uparrow) Note 2	tksı2	$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		1/fмск + 31		1/fmск + 31		1/fмск + 31		ns
		$1.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		1/fмск + 250		1/fмск + 250		1/fмск + 250		ns
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$		-		1/fмск + 250		1/fмск + 250		ns
Delay time from SCKp \downarrow to SOp output Note 3	tkso2	$\mathrm{C}=30 \mathrm{pF}$ Note 4	$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDD} 055.5 \mathrm{~V}$		$\begin{gathered} 2 / f \mathrm{fmck} \\ +44 \end{gathered}$		$\begin{aligned} & 2 / f \mathrm{fmck} \\ & +110 \end{aligned}$		$\begin{aligned} & \text { 2/fmск } \\ & +110 \end{aligned}$	ns
			$2.4 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$		$\begin{gathered} 2 / f \mathrm{fmck} \\ +75 \end{gathered}$		$\begin{aligned} & 2 / f м с к \\ & +110 \end{aligned}$		$\begin{aligned} & 2 / f \mathrm{fmck} \\ & +110 \end{aligned}$	ns
			$1.8 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		$\begin{aligned} & \text { 2/fмск } \\ & +100 \end{aligned}$		$\begin{aligned} & 2 / f м с к \\ & +110 \end{aligned}$		$\begin{gathered} 2 / \mathrm{fmck} \\ +110 \end{gathered}$	ns
			$1.7 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		$\begin{aligned} & \text { 2/fmck } \\ & +220 \end{aligned}$		$\begin{aligned} & \text { 2/fmск } \\ & +220 \end{aligned}$		$\begin{aligned} & 2 / \mathrm{fmck} \\ & +220 \end{aligned}$	ns
			$1.6 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		-		$\begin{aligned} & \text { 2/fмск } \\ & +220 \end{aligned}$		$\begin{aligned} & \text { 2/fmck } \\ & +220 \end{aligned}$	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. \quad C is the load capacitance of the SOp output lines.
Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps .

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. $\mathrm{p}: \mathrm{CSI}$ number $(\mathrm{p}=00,01,10,11,20,21,30,31)$, m : Unit number $(\mathrm{m}=0,1)$,
n : Channel number ($\mathrm{n}=0$ to 3), g : PIM number ($\mathrm{g}=0,1$, 3 to 5,14)
Remark 2. fМск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))
(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN .	MAX.	
$\overline{\text { SSIOO }}$ setup time	tSSIK	DAPmn $=0$	$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	120		120		120		ns
			$1.8 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	200		200		200		ns
			$1.7 \mathrm{~V} \leq \mathrm{EVDDO}^{5} 5.5 \mathrm{~V}$	400		400		400		ns
			$1.6 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	-		400		400		ns
		DAPmn $=1$	$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	1/fмск + 120		1/fmсK + 120		1/fмСК +120		ns
			$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	1/fMCK + 200		1/fмск + 200		1/fмск + 200		ns
			$1.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	1/fmск + 400		1/fmск +400		1/fmск + 400		ns
			$1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	-		1/fmск +400		1/fмск +400		ns
$\overline{\mathrm{SSIOO}}$ hold time	tKSSI	DAPmn $=0$	$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$	1/fмск + 120		1/fмск +120		1/fмск + 120		ns
			$1.8 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	1/fMCK + 200		1/fmск +200		1/fMCK + 200		ns
			$1.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	1/fMCK +400		1/fMCK + 400		1/fMCK + 400		ns
			$1.6 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	-		1/fMCK + 400		1/fmCK +400		ns
		DAPmn $=1$	$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	120		120		120		ns
			$1.8 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	200		200		200		ns
			$1.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	400		400		400		ns
			$1.6 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	-		400		400		ns

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p : CSI number $(p=00)$, m : Unit number $(m=0)$, n : Channel number $(n=0), g$: PIM number $(g=3,5)$

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential)
(Slave Transmission of slave select input function (CSIOO))

SCK00	
SIOO	SCK
RL78 microcontroller	SOO
SOO	
SSIOO	User's device

Remark 1. $p:$ CSI number ($p=00,01,10,11,20,21,30,31$)
Remark 2. m: Unit number, n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13)

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn =0.)

Remark 1. p : CSI number ($\mathrm{p}=00,01,10,11,20,21,30,31$)
Remark 2. m: Unit number, n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13)
(5) During communication at same potential (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}^{5} 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$		400 Note 1		400 Note 1		400 Note 1	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$		300 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}<1.8 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$		250 Note 1		250 Note 1		250 Note 1	kHz
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$		-		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{5} 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1150		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}^{\leq} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	1150		1150		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	1550		1550		1550		ns
		$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	1850		1850		1850		ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	-		1850		1850		ns
Hold time when SCLr = " H "	thigh	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{5} 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1150		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	1150		1150		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	1550		1550		1550		ns
		$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{EV} \text { DDo }<1.8 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	1850		1850		1850		ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	-		1850		1850		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)
(5) During communication at same potential (simplified ${ }^{2} \mathrm{C}$ mode)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	$1 /$ fmск +85 Note 2		1/fmck + 145 Note 2		1/fmck + 145 Note 2		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	$1 / \mathrm{fmck}+145$ Note 2		1/fmck + 145 Note 2		1/fmCK + 145 Note 2		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	$1 /$ fmck +230 Note 2		1/fmck + 230 Note 2		1/fmCK + 230 Note 2		ns
		$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{EV} \text { DDO }<1.8 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	$1 /$ fmck + 290 Note 2		1/fmck + 290 Note 2		1/fmck + 290 Note 2		ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	-		1/fmck + 290 Note 2		1/fmCK + 290 Note 2		ns
Data hold time (transmission)	thD: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	0	305	0	305	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	0	355	0	355	0	355	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDDO}^{<} 2.7 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	0	405	0	405	0	405	ns
		$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	0	405	0	405	0	405	ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	-		0	405	0	405	ns

Note 1. The value must also be equal to or less than fmck/4.
Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VdD tolerance (for the 30- to 52-pin products)/EVdD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).
(Remarks are listed on the next page.)

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode connection diagram (during communication at same potential)

Simplified $I^{2} \mathrm{C}$ mode serial transfer timing (during communication at same potential)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SDAr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SDAr, SCLr) load capacitance
Remark 2. r: IIC number ($r=00,01,10,11,20,21,30,31$), g : PIM number ($g=0,1,3$ to 5,14),
h: POM number ($\mathrm{h}=0,1,3$ to $5,7,14$)
Remark 3. fмСК: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ($m=0,1$), n : Channel number ($\mathrm{n}=0$ to 3), $\mathrm{mn}=00$ to 03,10 to 13)
(6) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$) (UART mode)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		reception	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$		fmck/6 Note 1		$\mathrm{fmck}^{\prime} 6$ Note 1		fmck/6 Note 1	bps
			Theoretical value of the maximum transfer rate fmck $=$ fclk Note 4		5.3		1.3		0.6	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V} \end{aligned}$		fmCk/6 Note 1		fmck/6 Note 1		fmck/6 Note 1	bps
			Theoretical value of the maximum transfer rate fmck $=$ fcLk Note 4		5.3		1.3		0.6	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \mathrm{fmck} / 6 \\ \text { Notes 1, 2, } 3 \end{gathered}$		$\begin{gathered} \text { fмск/6 } \\ \text { Notes 1, } 2 \end{gathered}$		$\begin{gathered} \text { fмск/6 } \\ \text { Notes 1, } 2 \end{gathered}$	bps
			Theoretical value of the maximum transfer rate fmck $=$ fcLk Note 4		5.3		1.3		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
However, the SNOOZE mode cannot be used when FRQSEL4 $=1$.
Note 2. Use it with EVdDo $\geq \mathrm{Vb}$.
Note 3. The following conditions are required for low voltage interface when EVDDO < VDD.
$2.4 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$: MAX. 2.6 Mbps
$1.8 \mathrm{~V} \leq$ EVDDo $<2.4 \mathrm{~V}$: MAX. 1.3 Mbps
Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode: $32 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V})$
LS (low-speed main) mode: $\quad 8 \mathrm{MHz}(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
LV (low-voltage main) mode: $\quad 4 \mathrm{MHz}(1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vdd tolerance (for the 30- to 52-pin products)/EVdd tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For Vıн and ViL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb [V]: Communication line voltage
Remark 2. q : UART number ($q=0$ to 3), g : PIM and POM number ($g=0,1,5,14$)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13)
Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIORO) is 1.

(6) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$) (UART mode)										
Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		$\begin{aligned} & (2 / 2) \\ & \hline \text { Unit } \end{aligned}$
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		transmission	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \\ & \mathrm{~V}=2.7 \mathrm{~V} \end{aligned}$		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega, \\ & \mathrm{~V}=2.3 \mathrm{~V} \end{aligned}$		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{b}}=1.6 \mathrm{~V} \end{aligned}$		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

Note 1. The smaller maximum transfer rate derived by using $\mathrm{fMCK} / 6$ or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$ and $2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{2.2}{\mathrm{~V}_{\mathrm{b}}}\right)\right\} \times 3}[\mathrm{bps}]$
Baud rate error (theoretical value) $=\longrightarrow \frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-C b \times R b \times \ln \left(1-\frac{2.2}{V_{b}}\right)\right\}}{} \times 100[\%]$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer
Note 3. The smaller maximum transfer rate derived by using $\mathrm{fMCK} / 6$ or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq$ EVDDo $<4.0 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-\mathrm{Cb} \times \mathrm{Rb}^{2} \times \ln \left(1-\frac{2.0}{\mathrm{~V}_{\mathrm{b}}}\right)\right\} \times 3}[\mathrm{bps}]$
Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \operatorname{Rb} \times \ln \left(1-\frac{2.0}{\mathrm{~V}_{b}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} \times 100$ [\%]

[^0]Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
Note 5. Use it with EVddo $\geq \mathrm{V}_{\mathrm{b}}$.
Note 6. The smaller maximum transfer rate derived by using $f M C K / 6$ or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}$ and $1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$
1
Maximum transfer rate $=\square[\mathrm{bps}]$
$\left\{-C b \times R b \times \ln \left(1-\frac{1.5}{V_{b}}\right)\right\} \times 3$

Baud rate error (theoretical value) $=\left[\begin{array}{l}\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \operatorname{Rb} \times \ln \left(1-\frac{1.5}{\mathrm{~V}_{\mathrm{b}}}\right)\right\} \\ \times 100[\%]\end{array}\right.$
($\left.\frac{1}{\text { Transfer rate }}\right) \times$ Number of transferred bits

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register $g(P O M g)$. For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (TxDq) pull-up resistance,
$\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line (TxDq) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. q : UART number ($q=0$ to 3), g : PIM and POM number ($g=0,1,5,14$)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m: Unit number, n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))
Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIORO) is 1.
(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSIOO only)
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tKCY1 $\geq 2 / f \mathrm{fcLK}$	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	200		1150		1150		ns
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	300		1150		1150		ns
SCKp high-level width	tkH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tKCY1/2-50		tксү1/2-50		tkç1/2-50		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tkcy $1 / 2$-120		tксү1/2-120		tк¢¢1/2-120		ns
SCKp low-level width	tkL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tксү1/2-7		tксү1/2-50		tксү1/2-50		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tKCy1/2-10		tксү1/2-50		tkcrı/2-50		ns
Slp setup time (to SCKp \uparrow) Note 1	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		58		479		479		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		121		479		479		ns
Slp hold time (from SCKp \uparrow) Note 1	tksI1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		10		10		10		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		10		10		10		ns
Delay time from SCKp \downarrow to SOp output Note 1	tksO1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			60		60		60	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			130		130		130	ns

(Notes, Caution, and Remarks are listed on the next page.)
(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSIOO only)
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Slp setup time (to SCKp \downarrow) Note 2	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	23		110		110		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDo}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	33		110		110		ns
Slp hold time (from SCKp \downarrow) Note 2	tks11	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	10		10		10		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	10		10		10		ns
Delay time from SCKp \uparrow to SOp output Note 2	tksO1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		10		10		10	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		10		10		10	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the Slp pin and the N-ch open drain output (Vdd tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register $g(\mathrm{PIMg})$ and port output mode register $g(\mathrm{POMg})$. For $\mathrm{VIH}_{\mathrm{IH}}$ and VIL , see the DC characteristics with TTL input buffer selected.

Remark 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SCKp, SOp) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. p : CSI number $(p=00)$, m: Unit number $(m=0)$, n : Channel number $(n=0), g$: PIM and POM number $(g=3,5)$
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number (mn = 00))
Remark 4. This value is valid only when CSIOO's peripheral I/O redirect function is not used.
(8) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$) (CSI mode) (master mode, SCKp... internal clock output)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkCY1 \geq 4/ffLk	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	300		1150		1150		ns
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	500		1150		1150		ns
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note, } \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1150		1150		1150		ns
SCKp high-level width	tkH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tkcrı/2-75		tkcy1/2-75		tк¢ү1/2-75		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tkcy1/2-170		tк¢ү1/2-170		tkç1/2-170		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note, } \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		tkcy1/2-458		tк¢Y1/2-458		tkç1/2-458		ns
SCKp low-level width	tKL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \\ & \hline \end{aligned}$		tkcrı/2-12		tкCY1/2-50		tк¢¢1/2-50		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tкcrı1/2-18		tксү1/2-50		tк¢¢1/2-50		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note, } \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		tkcrı/2-50		tкç1/2-50		tкcrı1/2-50		ns

Note Use it with EVDDO $\geq \mathrm{V}_{\mathrm{b}}$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vdd tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register $g(P I M g)$ and port output mode register $g(P O M g)$. For Vif and Vis, see the DC characteristics with TTL input buffer selected.
(Remarks are listed two pages after the next page.)
(8) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$) (CSI mode) (master mode, SCKp... internal clock output)

$$
\begin{equation*}
\left(\mathrm{TA}=-40 \text { to }+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} \text {, Vss }=\mathrm{EVSS} 0=\mathrm{EVSS} 1=0 \mathrm{~V}\right) \tag{2/3}
\end{equation*}
$$

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Slp setup time (to SCKp \uparrow) Note 1	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	81		479		479		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	177		479		479		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \vee \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	479		479		479		ns
Slp hold time (from SCKp \uparrow) Note 1	tksı11	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
		$\begin{aligned} & \hline 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
Delay time from SCKp \downarrow to SOp output Note 1	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		100		100		100	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		195		195		195	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		483		483		483	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 2. Use it with EVDDo $\geq \mathrm{V}_{\mathrm{b}}$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VdD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register $g(P I M g)$ and port output mode register $g(P O M g)$. For $V_{I H}$ and $V_{I L}$, see the DC characteristics with TTL input buffer selected.

[^1](8) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$) (CSI mode) (master mode, SCKp... internal clock output)
\[

$$
\begin{equation*}
\left(\mathrm{TA}=-40 \text { to }+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} \text {, Vss }=\mathrm{EVSS} 0=\mathrm{EVSS} 1=0 \mathrm{~V}\right) \tag{3/3}
\end{equation*}
$$

\]

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp \downarrow) Note 1	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	44		110		110		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	44		110		110		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}^{2}=5.5 \mathrm{k} \Omega \end{aligned}$	110		110		110		ns
Slp hold time (from SCKp \downarrow) Note 1	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
Delay time from SCKp \uparrow to SOp output Note 1	tksO1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		25		25		25	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \text { DDo }<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		25		25		25	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}^{2}=5.5 \mathrm{k} \Omega \end{aligned}$		25		25		25	ns

Note 1. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. Use it with EVDDo $\geq \mathrm{V}$ b.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VdD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register $g(P I M g)$ and port output mode register $g(P O M g)$. For $V_{I H}$ and $V_{I L}$, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, $\mathrm{Cb}[F]$: Communication line (SCKp, SOp) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. p : CSI number $(p=00,01,10,20,30,31)$, m : Unit number $(m=0,1), n$: Channel number $(n=0$ to 3$)$, $\mathrm{g}:$ PIM and POM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 3. fМСК: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$))
Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn =0.)

Remark 1. p : CSI number $(\mathrm{p}=00,01,10,20,30,31)$, m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3$)$,
$\mathrm{g}: \mathrm{PIM}$ and POM number $(\mathrm{g}=0,1,3$ to 5,14$)$
Remark 2. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
(9) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$) (CSI mode) (slave mode, SCKp... external clock input)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}_{\mathrm{D}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$	24 MHz < fmск	14/ғмск		-		-		ns
			$20 \mathrm{MHz}<$ fmck $\leq 24 \mathrm{MHz}$	12/ғмск		-		-		ns
			$8 \mathrm{MHz}<$ fmck $\leq 20 \mathrm{MHz}$	10/fмск		-		-		ns
			$4 \mathrm{MHz}<$ fмck $\leq 8 \mathrm{MHz}$	8/fмск		16/ғмск		-		ns
			fmCk $\leq 4 \mathrm{MHz}$	6/fмск		10/fмск		10/fıск		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{D} D<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V} \end{aligned}$	24 MHz < fmck	20/fмск		-		-		ns
			20 MHz < fmck $\leq 24 \mathrm{MHz}$	16/ғмск		-		-		ns
			16 MHz < fmck $\leq 20 \mathrm{MHz}$	14/ғмск		-		-		ns
			$8 \mathrm{MHz}<$ fmck $\leq 16 \mathrm{MHz}$	12/fмск		-		-		ns
			4 MHz < fmCK $\leq 8 \mathrm{MHz}$	8/fmск		16/fмск		-		ns
			fmck $\leq 4 \mathrm{MHz}$	6/fмск		10/fмск		10/fмск		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \\ & \text { Note } 2 \end{aligned}$	24 MHz < fmck	48/fмск		-		-		ns
			$20 \mathrm{MHz}<\mathrm{fmCk}^{5} \leq 24 \mathrm{MHz}$	36/fмск		-		-		ns
			16 MHz < fmCk $\leq 20 \mathrm{MHz}$	32/fмск		-		-		ns
			$8 \mathrm{MHz}<$ fmck $\leq 16 \mathrm{MHz}$	26/ғмск		-		-		ns
			4 MHz < fmCK $\leq 8 \mathrm{MHz}$	16/fмск		16/fмск		-		ns
			fmck $\leq 4 \mathrm{MHz}$	10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level width	$\begin{aligned} & \text { tkH2, } \\ & \text { tKL2 } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD} 0 \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$		$\begin{gathered} \text { tкCY2/2 } \\ -12 \end{gathered}$		$\begin{gathered} \text { tкCY2/2 } \\ -50 \end{gathered}$		$\begin{gathered} \text { tкCY2/2 } \\ -50 \end{gathered}$		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV}$ DDo $<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{t} \mathrm{~K} \subset \mathrm{Y} 2 / 2 \\ -18 \end{gathered}$		$\begin{gathered} \text { tкCү } 2 / 2 \\ -50 \end{gathered}$		$\begin{gathered} \mathrm{tkCr} 2 / 2 \\ -50 \end{gathered}$		ns
		$1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note 2		$\begin{gathered} \text { tксү2/2 } \\ -50 \end{gathered}$		$\begin{gathered} \text { tксүү } / 2 \\ -50 \end{gathered}$		$\begin{gathered} \text { tксү2/2 } \\ -50 \end{gathered}$		ns
Slp setup time (to SCKp \uparrow) Note 3	tsik2	$4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$		$\begin{gathered} 1 / \mathrm{fmck} \\ +20 \end{gathered}$		$\begin{gathered} 1 / \mathrm{fmck} \\ +30 \end{gathered}$		$\begin{gathered} 1 / \mathrm{fmck} \\ +30 \end{gathered}$		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		$\begin{gathered} 1 / \mathrm{fmck} \\ +20 \end{gathered}$		$\begin{gathered} \hline \text { 1/fмск } \\ +30 \end{gathered}$		$\begin{aligned} & 1 / \mathrm{fmck} \\ & +30 \end{aligned}$		ns
		$1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note 2		$\begin{aligned} & 1 / \mathrm{fmck} \\ & +30 \end{aligned}$		$\begin{aligned} & 1 / \mathrm{fmск} \\ & +30 \end{aligned}$		$\begin{aligned} & \text { 1/fмск } \\ & +30 \end{aligned}$		ns
Slp hold time (from SCKp \uparrow) Note 4	tkS 12			$\begin{gathered} \text { 1/fmск } \\ +31 \end{gathered}$		$\begin{gathered} 1 / \mathrm{fmck} \\ +31 \end{gathered}$		$\begin{gathered} 1 / \mathrm{fmск} \\ +31 \end{gathered}$		ns
Delay time from SCKp \downarrow to SOp output Note 5	tkso2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			$\begin{aligned} & 2 / f м с к \\ & +120 \end{aligned}$		$\begin{aligned} & 2 / \mathrm{fmck} \\ & +573 \end{aligned}$		$\begin{aligned} & 2 / f м с к \\ & +573 \end{aligned}$	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVdDo}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			$\begin{aligned} & \text { 2/fмск } \\ & +214 \end{aligned}$		$\begin{aligned} & 2 / f \mathrm{fmck} \\ & +573 \end{aligned}$		$\begin{aligned} & \text { 2/fмск } \\ & +573 \end{aligned}$	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDo}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rv}_{\mathrm{V}}=5.5 \mathrm{k} \Omega \end{aligned}$			$\begin{aligned} & 2 / f m с к \\ & +573 \end{aligned}$		$\begin{aligned} & 2 / f m с к \\ & +573 \end{aligned}$		$\begin{aligned} & 2 / f m с к \\ & +573 \end{aligned}$	ns

(Notes, Caution, and Remarks are listed on the next page.)

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
Note 2. Use it with EVDDO $\geq \mathrm{V}_{\mathrm{b}}$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 5. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VdD tolerance (for the 30- to 52-pin products)/EVdd tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register $g(\mathrm{POMg})$. For $\mathrm{VIH}_{\mathrm{I}}$ and VIL , see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

Remark 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$: Communication line (SOp) pull-up resistance, $\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SOp) load capacitance,
$\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. p : CSI number $(\mathrm{p}=00,01,10,20,30,31)$, m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3$)$, $\mathrm{g}: \mathrm{PIM}$ and POM number $(\mathrm{g}=0,1,3$ to 5,14$)$
Remark 3. fМСк: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number ($\mathrm{mn}=00,01,02,10,12,13$) $)$
Remark 4. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p : CSI number $(\mathrm{p}=00,01,10,20,30,31)$, m : Unit number $(\mathrm{m}=0,1), \mathrm{n}$: Channel number ($\mathrm{n}=0$ to 3),
$\mathrm{g}: \mathrm{PIM}$ and POM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 2. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.
(10) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \text { DDo }<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, R_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \text { doo }<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, R_{b}=2.7 \mathrm{k} \Omega \end{aligned}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \text { DDo } \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1550		1550		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1550		1550		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	1150		1550		1550		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \text { doo }<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, R_{b}=2.7 \mathrm{k} \Omega \end{aligned}$	1150		1550		1550		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \text { VDo }<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, R_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1550		1550		1550		ns
Hold time when SCLr = "H"	thigh	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \text { DDo } \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	245		610		610		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \text { DDo }<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	200		610		610		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	675		610		610		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	600		610		610		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	610		610		610		ns

(10) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:DAT	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmCK + 135 Note 3		1/fmCK + 190 Note 3		1/fmCK +190 Note 3		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmCK +135 Note 3		1/fmCK + 190 Note 3		1/fmCK +190 Note 3		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	1/fmCK + 190 Note 3		1/fmCK + 190 Note 3		$1 /$ fMCK +190 Note 3		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmCK + 190 Note 3		1/fmCK + 190 Note 3		1/fmCK +190 Note 3		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \text { DDo }<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1/fmck + 190 Note 3		1/fmck + 190 Note 3		1/fmск +190 Note 3		ns
Data hold time (transmission)	thD:DAT	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V} \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	0	305	0	305	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	0	305	0	305	ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	0	355	0	355	0	355	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	355	0	355	0	355	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	0	405	0	405	0	405	ns

Note 1. The value must also be equal to or less than fmck/4.
Note 2. Use it with EVDDo $\geq \mathrm{V}_{\mathrm{b}}$.
Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (Vdd tolerance (for the 30- to 52-pin products)/EVdd tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VdD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

Simplified ${ }^{12} \mathrm{C}$ mode connection diagram (during communication at different potential)

Simplified ${ }^{2}{ }^{2} \mathrm{C}$ mode serial transfer timing (during communication at different potential)

Remark 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{Cb}[F]$: Communication line (SDAr, SCLr) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. r: IIC number ($r=00,01,10,11,20,30,31$), g : PIM, POM number ($g=0,1,3$ to 5,14)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ($m=0,1$), n : Channel number $(\mathrm{n}=0,2), \mathrm{mn}=00,01,02,10,12,13$)

2.5.2 Serial interface IICA

(1) $\mathrm{I}^{2} \mathrm{C}$ standard mode
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLAO clock frequency	fscl	Standard mode:$\text { fcLk } \geq 1 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	0	100	0	100	0	100	kHz
			$1.8 \mathrm{~V} \leq \mathrm{EV}$ dod $\leq 5.5 \mathrm{~V}$	0	100	0	100	0	100	kHz
			$1.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	0	100	0	100	0	100	kHz
			$1.6 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	-		0	100	0	100	kHz
Setup time of restart condition	tsu: STA	$2.7 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDdo} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		-		4.7		4.7		$\mu \mathrm{s}$
Hold time Note 1	thD: STA	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EV}$ Doo $\leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		-		4.0		4.0		$\mu \mathrm{s}$
Hold time when SCLA0 = "L"	tıow	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVddo} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq$ EVddo $\leq 5.5 \mathrm{~V}$		-		4.7		4.7		$\mu \mathrm{s}$
Hold time when SCLAO = "H"	thigh	$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDD}_{0} \leq 5.5 \mathrm{~V}$		$-$		4.0		4.0		$\mu \mathrm{s}$

(Notes, Caution, and Remark are listed on the next page.)
(1) $\mathrm{I}^{2} \mathrm{C}$ standard mode
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: DAT	$2.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	250		250		250		ns
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	250		250		250		ns
		$1.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	250		250		250		ns
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	-		250		250		ns
Data hold time (transmission) Note 2	thD: DAT	$2.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	0	3.45	0	3.45	0	3.45	$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	0	3.45	0	3.45	0	3.45	$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	0	3.45	0	3.45	0	3.45	$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	-		0	3.45	0	3.45	$\mu \mathrm{s}$
Setup time of stop condition	tsu: sto	$2.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$	-		4.0		4.0		$\mu \mathrm{s}$
Bus-free time	tbuF	$2.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq$ EVdoo $\leq 5.5 \mathrm{~V}$			4.7		4.7		$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIORO2) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (Іон1, Іоц1, Vон1, Voli) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $\mathrm{Cb}=400 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$
(2) $\mathrm{I}^{2} \mathrm{C}$ fast mode
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:$\text { fcLk } \geq 3.5 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	0	400	0	400	0	400	kHz
			$1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$	0	400	0	400	0	400	kHz
Setup time of restart condition	tsu: STA	$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
Hold time Note 1	thD: STA	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq$ EVddo $\leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
Hold time when SCLAO = "L"	tLow	$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		1.3		1.3		1.3		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq$ EVddo $\leq 5.5 \mathrm{~V}$		1.3		1.3		1.3		$\mu \mathrm{s}$
Hold time when SCLA0 = "H"	thigh	$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
Data setup time (reception)	tsu: DAT	$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$		100		100		100		ns
		$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		100		100		100		ns
Data hold time (transmission) Note 2	thD: DAT	$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		0	0.9	0	0.9	0	0.9	$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}$		0	0.9	0	0.9	0	0.9	$\mu \mathrm{s}$
Setup time of stop condition	tsu: sto	$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}_{0} \leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
Bus-free time	tBuF	$2.7 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		1.3		1.3		1.3		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		1.3		1.3		1.3		$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIORO2) in the peripheral I/O redirection register 0 (PIORO) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, Voli) must satisfy the values in the redirect destination.

Remark The maximum value of Cb_{b} (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $\mathrm{Cb}=320 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$
(3) $1^{2} \mathrm{C}$ fast mode plus
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fcLk $\geq 10 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$	0	1000					kHz
Setup time of restart condition	tsu: STA	$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		0.26						$\mu \mathrm{s}$
Hold time Note 1	thD: STA	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		0.26						$\mu \mathrm{s}$
Hold time when SCLAO $=$ " L "	tLow	$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		0.5						$\mu \mathrm{s}$
Hold time when SCLA0 $=$ " H "	thigh	$2.7 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		0.26						$\mu \mathrm{s}$
Data setup time (reception)	tsu: DAT	$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		50						ns
Data hold time (transmission) Note 2	thD: DAT	$2.7 \mathrm{~V} \leq \mathrm{EV}$ do $\leq 5.5 \mathrm{~V}$		0	0.45		-			$\mu \mathrm{s}$
Setup time of stop condition	tsu: sto	$2.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$		0.26			-			$\mu \mathrm{s}$
Bus-free time	tbuF	$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		0.5			-			$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIORO) is 1. At this time, the pin characteristics (ІОн1, IOL1, Voh1, Vol1) must satisfy the values in the redirect destination.

Note 3. The maximum value of Cb (communication line capacitance) and the value of Rb_{b} (communication line pull-up resistor) at that time in each mode are as follows.
Fast mode plus: $\mathrm{Cb}=120 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$

IICA serial transfer timing

Remark $\quad n=0,1$

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) $=$ VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-)=AVREFm
ANIO to ANI14	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).
ANI16 to ANI20	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6 .1 (1).		-

(1) When reference voltage (+) $=$ AVREFP/ANIO (ADREFP1 $=0$, ADREFPO $=1$), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, Reference voltage (+) = AVREFP, Reference voltage (-) $=A V_{\text {Refm }}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution AVREFP $=$ VDD $^{\text {Note }} 3$	$1.8 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$		1.2	± 3.5	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$ Note 4		1.2	± 7.0	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI2 to ANI14	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	57		95	$\mu \mathrm{s}$
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution AVrefp $=$ VdD Note 3	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{REFP}} \leq 5.5 \mathrm{~V}$			± 0.25	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$ Note 4			± 0.50	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution AVREFP $=$ VDD Note 3	$1.8 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$			± 0.25	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$ Note 4			± 0.50	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP $=$ VDD Note 3	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$ Note 4			± 5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP $=$ VDD Note 3	$1.8 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$			± 1.5	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$ Note 4			± 2.0	LSB
Analog input voltage	Vain	ANI2 to ANI14		0		AV Refp	V
		Internal reference voltage ($2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		Vbgr Note 5			V
		Temperature sensor output voltage (2.4 V $\leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		VTMPS25 Note 5			V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. When AVREFP < VDD, the MAX. values are as follows.

Overall error:
Zero-scale error/Full-scale error: Add $\pm 0.05 \%$ FSR to the MAX. value when AVREFP $=$ VDd.
Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AVREFP $=$ VDD.
Note 4. Values when the conversion time is set to $57 \mu \mathrm{~s}$ (min.) and $95 \mu \mathrm{~s}$ (max.).
Note 5. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.
(2) When reference voltage (+) $=$ AVREFP/ANIO (ADREFP1 $=0$, ADREFP0 $=1$), reference voltage (-) $=$ AVrefmlANI1 (ADREFM = 1), target pin: ANI16 to ANI20
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V, Reference voltage (+) = AVrefp, Reference voltage (-) = AVrefm $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution EVDDO $\leq A V_{\text {REFP }}=$ VDD Notes 3, 4	$1.8 \mathrm{~V} \leq \mathrm{AV}$ Refp $\leq 5.5 \mathrm{~V}$		1.2	± 5.0	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$ Note 5		1.2	± 8.5	LSB
Conversion time	tconv	10-bit resolution Target ANI pin: ANI16 to ANI20	$3.6 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{VD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	57		95	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution $E V_{D D O} \leq A V_{\text {REFP }}=$ VdD Notes 3,4	$1.8 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$			± 0.35	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$ Note 5			± 0.60	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution EVdDo \leq AVREFP $=$ VdD Notes 3,4	$1.8 \mathrm{~V} \leq \mathrm{AV}$ Refp $\leq 5.5 \mathrm{~V}$			± 0.35	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$ Note 5			± 0.60	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution EVDDO $\leq A V_{\text {REFP }}=$ VDD Notes 3, 4	$1.8 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$			± 3.5	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$ Note 5			± 6.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution EVDDO $\leq A V_{\text {Refp }}=$ VDD Notes 3, 4	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			± 2.0	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$ Note 5			± 2.5	LSB
Analog input voltage	VAIN	ANI16 to ANI20		0		AVREFP and EVddo	V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. When EVddo $\leq \operatorname{AVREFP} \leq$ Vdd, the MAX. values are as follows.
Overall error: Add ± 1.0 LSB to the MAX. value when $\operatorname{AVREFP}=\operatorname{VDD}$.
Zero-scale error/Full-scale error: Add $\pm 0.05 \%$ FSR to the MAX. value when AVREFP = Vdd.
Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AVREFP $=$ Vdd.
Note 4. When AVrefp < EVDDo \leq Vdd, the MAX. values are as follows.

$$
\begin{array}{ll}
\text { Overall error: } & \text { Add } \pm 4.0 \text { LSB to the MAX. value when } A V R E F P=\text { VDD. } \\
\text { Zero-scale error/Full-scale error: } & \text { Add } \pm 0.20 \% \text { FSR to the MAX. value when AVREFP }=\text { VDD. } \\
\text { Integral linearity error/ Differential linearity error: } & \text { Add } \pm 2.0 \text { LSB to the MAX. value when AVREFP }=\text { VDD. }
\end{array}
$$

Note 5. When the conversion time is set to $57 \mu \mathrm{~s}$ (min.) and $95 \mu \mathrm{~s}$ (max.).
(3) When reference voltage $(+)=\operatorname{VDD}(\operatorname{ADREFP} 1=0$, ADREFPO $=0)$, reference voltage $(-)=\operatorname{Vss}$ (ADREFM $=0$), target pin: ANIO to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V , Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1.2	± 7.0	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Note 3		1.2	± 10.5	LSB
Conversion time	tconv	10-bit resolution Target pin: ANIO to ANI14, ANI16 to ANI20	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	57		95	$\mu \mathrm{s}$
		10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.60	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Note 3			± 0.85	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$			± 0.60	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Note 3			± 0.85	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$			± 4.0	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Note 3			± 6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$			± 2.0	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Note 3			± 2.5	LSB
Analog input voltage	VAIN	ANIO to ANI14		0		VDD	V
		ANI16 to ANI20		0		EVdDo	V
		Internal reference voltage ($2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		VBGR Note 4			V
		Temperature sensor output voltage ($2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		VTMPS25 Note 4			V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.
Note 3. When the conversion time is set to $57 \mu \mathrm{~s}$ (min.) and $95 \mu \mathrm{~s}$ (max.).
Note 4. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.
(4) When reference voltage (+) = Internal reference voltage (ADREFP1 $=1$, ADREFP0 $=0$), reference voltage (-) = AVrefm/ANI1 (ADREFM = 1), target pin: ANIO, ANI2 to ANI14, ANI16 to ANI20
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{EVDD}=\mathrm{EVDD1} \leq \mathrm{VdD}$, Vss $=\mathrm{EVsso}=\mathrm{EVss} 1=0 \mathrm{~V}$, Reference voltage
$(+)=$ Vbgr Note 3, Reference voltage (-) = AVrefm $=0$ V Note 4, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8			bit
Conversion time	tconv	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.60	\% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 1.0	LSB
Analog input voltage	VAIN			0		VbGR Note 3	V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.
Note 3. Refer to 2.6.2 Temperature sensor characteristicslinternal reference voltage characteristic.
Note 4. When reference voltage $(-)=$ Vss, the MAX. values are as follows.

Zero-scale error:	Add $\pm 0.35 \%$ FSR to the MAX. value when reference voltage $(-)=$ AVREFM.
Integral linearity error:	Add ± 0.5 LSB to the MAX. value when reference voltage $(-)=$ AVREFM.
Differential linearity error:	Add ± 0.2 LSB to the MAX. value when reference voltage $(-)=A V R E F M$.

2.6.2 Temperature sensor characteristics/internal reference voltage characteristic

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $=\mathrm{EVSS1}=0 \mathrm{~V}$, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register $=80 \mathrm{H}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.05		V
Internal reference voltage	VBGR	Setting ADS register $=81 \mathrm{H}$	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Operation stabilization wait time	tAMP		5			$\mu \mathrm{~s}$

2.6.3 D/A converter characteristics

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVSs} 0=\mathrm{EVSS} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVSs} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES					8	bit
Overall error	AINL	Rload $=4 \mathrm{M} \Omega$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
		Rload $=8 \mathrm{M} \Omega$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
Settling time	tset	Cload $=20 \mathrm{pF}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			3	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			6	$\mu \mathrm{s}$

2.6.4 Comparator

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		EVdDo-1.4	V
	Ivcmp			-0.3		EVdDo + 0.3	V
Output delay	td	$\begin{aligned} & \text { VDD }=3.0 \mathrm{~V} \\ & \text { Input slew rate }>50 \mathrm{mV} / \mu \mathrm{s} \end{aligned}$	Comparator high-speed mode, standard mode			1.2	$\mu \mathrm{s}$
			Comparator high-speed mode, window mode			2.0	$\mu \mathrm{s}$
			Comparator low-speed mode, standard mode		3.0	5.0	$\mu \mathrm{s}$
High-electric-potential reference voltage	VTW+	Comparator high-speed m	window mode		0.76 VDD		V
Low-electric-potential reference voltage	VTW-	Comparator high-speed mo	window mode		0.24 VDD		V
Operation stabilization wait time	tcmp			100			$\mu \mathrm{s}$
Internal reference voltage Note	VBGR	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, HS	igh-speed main) mode	1.38	1.45	1.50	V

Note Not usable in LS (low-speed main) mode, LV (low-voltage main) mode, sub-clock operation, or STOP mode.

2.6.5 POR circuit characteristics

($\mathrm{T} \mathrm{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power on/down reset threshold	VPOR	Voltage threshold on VDD rising	1.47	1.51	1.55	V
	VPDR	Voltage threshold on VDD falling Note 1	1.46	1.50	1.54	V
Minimum pulse width Note 2	TPW		300			$\mu \mathrm{~s}$

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 2.4 AC Characteristics.
Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDd exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.6 LVD circuit characteristics

(1) Reset Mode and Interrupt Mode

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage detection threshold	Supply voltage level	VLVDo	Rising edge	3.98	4.06	4.14	V
			Falling edge	3.90	3.98	4.06	V
		VLVD1	Rising edge	3.68	3.75	3.82	V
			Falling edge	3.60	3.67	3.74	V
		VLVD2	Rising edge	3.07	3.13	3.19	V
			Falling edge	3.00	3.06	3.12	V
		VLVD3	Rising edge	2.96	3.02	3.08	V
			Falling edge	2.90	2.96	3.02	V
		VLVD4	Rising edge	2.86	2.92	2.97	V
			Falling edge	2.80	2.86	2.91	V
		VLVD5	Rising edge	2.76	2.81	2.87	V
			Falling edge	2.70	2.75	2.81	V
		VLVD6	Rising edge	2.66	2.71	2.76	V
			Falling edge	2.60	2.65	2.70	V
		VLVD7	Rising edge	2.56	2.61	2.66	V
			Falling edge	2.50	2.55	2.60	V
		VLVD8	Rising edge	2.45	2.50	2.55	V
			Falling edge	2.40	2.45	2.50	V
		VLVD9	Rising edge	2.05	2.09	2.13	V
			Falling edge	2.00	2.04	2.08	V
		VLVD10	Rising edge	1.94	1.98	2.02	V
			Falling edge	1.90	1.94	1.98	V
		VLVD11	Rising edge	1.84	1.88	1.91	V
			Falling edge	1.80	1.84	1.87	V
		VLVD12	Rising edge	1.74	1.77	1.81	V
			Falling edge	1.70	1.73	1.77	V
		VLVD13	Rising edge	1.64	1.67	1.70	V
			Falling edge	1.60	1.63	1.66	V
Minimum pulse width		tLw		300			$\mu \mathrm{s}$
Detection delay time						300	$\mu \mathrm{s}$

(2) Interrupt \& Reset Mode
($\mathrm{TA}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Voltage detection threshold	Vlvdao	VPOC2, VPOC1, VPOC0 $=0,0,0$, falling reset voltage		1.60	1.63	1.66	V
	VLVDA1	LVIS1, LVIS0 $=1,0$	Rising release reset voltage	1.74	1.77	1.81	V
			Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
			Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	Vlvdbo	VPOC2, VPOC1, VPOC0 $=0,0,1$, falling reset voltage		1.80	1.84	1.87	V
	VLVDB1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
			Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
			Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3	LVIS1, LVIS0 $=0,0$	Rising release reset voltage	3.07	3.13	3.19	V
			Falling interrupt voltage	3.00	3.06	3.12	V
	Vlvdco	VPOC2, VPOC1, VPOC0 $=0,1,0$, falling reset voltage		2.40	2.45	2.50	V
	VLVDC1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
			Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
			Falling interrupt voltage	2.60	2.65	2.70	V
	Vlvdc3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
			Falling interrupt voltage	3.60	3.67	3.74	V
	Vlvddo	VPOC2, VPOC1, VPOC0 $=0,1$, 1, falling reset voltage		2.70	2.75	2.81	V
	VLVDD1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3	LVIS1, LVIS0 $=0,0$	Rising release reset voltage	3.98	4.06	4.14	V
			Falling interrupt voltage	3.90	3.98	4.06	V

2.6.7 Power supply voltage rising slope characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SvDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 RAM Data Retention Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

2.8 Flash Memory Programming Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fCLK	$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years $\mathrm{TA}=85^{\circ} \mathrm{C}$	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year $\mathrm{TA}=25^{\circ} \mathrm{C}$		1,000,000		
		Retained for 5 years $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	100,000			
		Retained for 20 years $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	10,000			

Note 1. 1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
Note 2. When using flash memory programmer and Renesas Electronics self-programming library
Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)

$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		$1,000,000$	bps

2.10 Timing of Entry to Flash Memory Programming Modes

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDDD}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOLO pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			$\mu \mathrm{s}$
How long the TOOLO pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	tHD	POR and LVD reset must end before the external reset ends.	1			ms

$<1>$ The low level is input to the TOOL0 pin.
$<2>$ The external reset ends (POR and LVD reset must end before the external reset ends).
$<3>$ The TOOLO pin is set to the high level.
$<4>$ Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.
tsu: How long from when the TOOLO pin is placed at the low level until a pin reset ends
thD: How long to keep the TOOLO pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to $+105^{\circ} \mathrm{C}$)

This chapter describes the following electrical specifications.
Target products G: Industrial applications $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$
R5F104xxGxx

Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
Caution 2. With products not provided with an EVdDo, EVDD1, EVsso, or EVss1 pin, replace EVdDo and EVdD1 with VdD, or replace EVsso and EVss1 with Vss.
Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.
Caution 4. Please contact Renesas Electronics sales office for derating of operation under $\mathrm{TA}_{\mathrm{A}}=+85$ to $+105^{\circ} \mathrm{C}$. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When RL78/G14 is used in the range of $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$, see 2. ELECTRICAL SPECIFICATIONS $\left(T_{A}=-\right.$
40 to $+85^{\circ} \mathrm{C}$).

Operation of products rated "G: Industrial applications ($T_{A}=-40$ to $+105^{\circ} \mathrm{C}$)" at ambient operating temperatures above $85^{\circ} \mathrm{C}$ differs from that of products rated "A: Consumer applications" and "D: Industrial applications" in the ways listed below.

Parameter	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	$\mathrm{TA}^{\prime}=-40$ to $+85^{\circ} \mathrm{C}$	$\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$
Operating mode Operating voltage range	HS (high-speed main) mode: $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz LS (low-speed main) mode: $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz	HS (high-speed main) mode only: $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 32 \mathrm{MHz} \\ & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 16 \mathrm{MHz} \end{aligned}$
High-speed on-chip oscillator clock accuracy	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}: \\ & \pm 1.0 \% @ T_{A}=-20 \text { to }+85^{\circ} \mathrm{C} \\ & \pm 1.5 \% @ T_{\mathrm{A}}=-40 \text { to }-20^{\circ} \mathrm{C} \\ & 1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V} \text { : } \\ & \pm 5.0 \% @ T_{A}=-20 \text { to }+85^{\circ} \mathrm{C} \\ & \pm 5.5 \% @ T_{A}=-40 \text { to }-20^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}: \\ \pm 2.0 \% @ T_{A}=+85 \text { to }+105^{\circ} \mathrm{C} \\ \pm 1.0 \% @ T_{A}=-20 \text { to }+85^{\circ} \mathrm{C} \\ \pm 1.5 \% @ T_{A}=-40 \text { to }-20^{\circ} \mathrm{C} \end{aligned}$
Serial array unit	UART CSI: fcLk/2 (16 Mbps supported), fclk/4 Simplified ${ }^{2} \mathrm{C}$ communication	UART CSI: fcLk/4 Simplified ${ }^{2} \mathrm{C}$ communication
IICA	Standard mode Fast mode Fast mode plus	Standard mode Fast mode
Voltage detector	- Rising: 1.67 V to 4.06 V (14 stages) - Falling: 1.63 V to 3.98 V (14 stages)	- Rising: 2.61 V to 4.06 V (8 stages) - Falling: 2.55 V to 3.98 V (8 stages)

Remark The electrical characteristics of products rated " G : Industrial applications ($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}$)" at ambient operating temperatures above $85^{\circ} \mathrm{C}$ differ from those of products rated "A: Consumer applications" and " D : Industrial applications". For details, refer to 3.1 to $\mathbf{3 . 1 0}$.

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings

(1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVddo, EVdD1	EVddo = EVdD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	Viregc	REGC	$\begin{gathered} -0.3 \text { to }+2.8 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 1 \end{gathered}$	V
Input voltage	V11	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	-0.3 to EVDDD +0.3 and -0.3 to VdD +0.3 Note 2	V
	V12	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	V13	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, $\overline{\text { RESET }}$	-0.3 to VDD +0.3 Note 2	V
Output voltage	Vo1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-0.3 to EVDDo +0.3 and -0.3 to VDD +0.3 Note 2	V
	Vo2	P20 to P27, P150 to P156	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAl1	ANI16 to ANI20	$\begin{gathered} -0.3 \text { to EVDDO }+0.3 \\ \text { and }-0.3 \text { to } \operatorname{AVREF}(+)+0.3 \text { Notes } 2,3 \end{gathered}$	V
	VAI2	ANI0 to ANI14	$\begin{gathered} -0.3 \text { to } \operatorname{VDD}+0.3 \\ \text { and }-0.3 \text { to } \operatorname{AVREF}(+)+0.3 \text { Notes } 2,3 \end{gathered}$	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
Note 2. Must be 6.5 V or lower.
Note 3. Do not exceed $\operatorname{AVref}(+)+0.3 \mathrm{~V}$ in case of A / D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
Remark 2. $A V R E F(+):+$ side reference voltage of the A/D converter.
Remark 3. Vss: Reference voltage

Absolute Maximum Ratings
(2/2)

Parameter	Symbols	Conditions		Ratings	Unit
Output current, high	$\mathrm{IOH1}$	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-40	mA
		Total of all pins$-170 \mathrm{~mA}$	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA
	IOH 2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IoL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA
	Iol2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient temperature	TA	In normal operation mode		-40 to +105	${ }^{\circ} \mathrm{C}$
		In flash memory programming mode			
Storage temperature	Tstg			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution

Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.2 Oscillator Characteristics

3.2.1 X1, XT1 characteristics

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = 0 V)

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/ crystal resonator	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1.0		20.0	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1.0		16.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.
Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

3.2.2 On-chip oscillator characteristics

($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fir			1		32	MHz
High-speed on-chip oscillator clock frequency		-20 to $+85^{\circ} \mathrm{C}$	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	-1.0		+1.0	\%
accuracy		-40 to $-20^{\circ} \mathrm{C}$	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	-1.5		+1.5	\%
		+85 to $+105^{\circ} \mathrm{C}$	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	-2.0		+2.0	\%
Low-speed on-chip oscillator clock frequency	fil				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	\%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte $(000 \mathrm{C} 2 \mathrm{H})$ and bits 0 to 2 of the HOCODIV register.
Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

(TA = -40 to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	IOH1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$2.4 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			$\begin{gathered} -3.0 \\ \text { Note } 2 \end{gathered}$	mA
		$\begin{aligned} & \text { Total of P00 to P04, P40 to P47, } \\ & \text { P102, P120, P130, P140 to P145 } \\ & \text { (When duty } \leq 70 \% \text { Note } 3 \text {) } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$			-30.0	mA
			$2.7 \mathrm{~V} \leq$ EVDDo $<4.0 \mathrm{~V}$			-10.0	mA
			$2.4 \mathrm{~V} \leq$ EVdDo $<2.7 \mathrm{~V}$			-5.0	mA
		```Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty \leq 70% Note 3)```	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			-30.0	mA
			$2.7 \mathrm{~V} \leq$ EVDDo $<4.0 \mathrm{~V}$			-19.0	mA
			$2.4 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$			-10.0	mA
		Total of all pins   (When duty $\leq 70 \%$ Note 3 )	$2.4 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			-60.0	mA
	IOH 2	Per pin for P20 to P27, P150 to P156	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$-0.1$   Note 2	mA
		Total of all pins   (When duty $\leq 70 \%$ Note 3 )	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVdDo, EVdD1, Vdd pins to an output pin.
Note 2. Do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from $70 \%$ to $n \%$ ).

- Total output current of pins $=(\mathrm{IOH} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOH}=-10.0 \mathrm{~mA}$
Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \approx-8.7 \mathrm{~mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

## Caution

P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(T A=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 $\left.=0 \mathrm{~V}\right)$
(2/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00 to P06, P10 to P17, P30, P31,   P40 to P47, P50 to P57,   P64 to P67, P70 to P77,   P80 to P87, P100 to P102, P110,   P111, P120, P130, P140 to P147				$\begin{gathered} 8.5 \\ \text { Note } 2 \end{gathered}$	mA
		Per pin for P60 to P63				$\begin{gathered} 15.0 \\ \text { Note } 2 \end{gathered}$	mA
		Total of P00 to P04, P40 to P47,	$4.0 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$			40.0	mA
		02, P120, P130, P140 to P145	$2.7 \mathrm{~V} \leq$ EVDDo $<4.0 \mathrm{~V}$			15.0	mA
		ty	$2.4 \mathrm{~V} \leq \mathrm{EV}$ DDo < 2.7 V			9.0	mA
		Total of P05, P06, P10 to P17,	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			40.0	mA
		P30, P31, P50 to P57,	$2.7 \mathrm{~V} \leq \mathrm{EV}$ DDo $<4.0 \mathrm{~V}$			35.0	mA
		P80 to P87, P100, P101, P110, P111, P146, P147   (When duty $\leq 70 \%$ Note 3 )	$2.4 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$			20.0	mA
		Total of all pins   (When duty $\leq 70 \%$ Note 3 )				80.0	mA
	IOL2	Per pin for P20 to P27, P150 to P156				$0.4$   Note 2	mA
		Total of all pins   (When duty $\leq 70 \%$ Note 3 )	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			5.0	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.
Note 2. Do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from $70 \%$ to $n \%$ ).

- Total output current of pins $=(\operatorname{loL} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IoL}=10.0 \mathrm{~mA}$
Total output current of pins $=(10.0 \times 0.7) /(80 \times 0.01) \approx 8.7 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor.
A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$
(3/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30,   P31, P40 to P47, P50 to P57,   P64 to P67, P70 to P77,   P80 to P87, P100 to P102, P110,   P111, P120, P140 to P147	Normal input buffer	0.8 EVddo		EVddo	V
	VIH2	$\begin{aligned} & \text { P01, P03, P04, P10, P14 to P17, } \\ & \text { P30, P43, P44, P50, P53 to P55, } \\ & \text { P80, P81, P142, P143 } \end{aligned}$	TTL input buffer $4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	2.2		EVddo	V
			TTL input buffer $3.3 \mathrm{~V} \leq \text { EVDDo }<4.0 \mathrm{~V}$	2.0		EVDDo	V
			TTL input buffer $2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}$	1.5		EVddo	V
	VıH3	P20 to P27, P150 to P156		0.7 Vdd		VDD	V
	VIH4	P60 to P63		0.7 EVddo		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0.8 VDD		VDD	V
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30,   P31, P40 to P47, P50 to P57,   P64 to P67, P70 to P77,   P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		0.2 EVddo	V
	VIL2	$\begin{aligned} & \text { P01, P03, P04, P10, P14 to P17, } \\ & \text { P30, P43, P44, P50, P53 to P55, } \\ & \text { P80, P81, P142, P143 } \end{aligned}$	TTL input buffer $4.0 \mathrm{~V} \leq$ EVddo $\leq 5.5 \mathrm{~V}$	0		0.8	V
			TTL input buffer $3.3 \mathrm{~V} \leq \text { EVDDO }<4.0 \mathrm{~V}$	0		0.5	V
			TTL input buffer $2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}$	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3 VDD	V
	VIL4	P60 to P63		0		0.3 EVddo	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0		0.2 Vdd	V

Caution The maximum value of Viн of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVdDo, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{VsS}=\mathrm{EVss} 0=\mathrm{EVsS} 1=0 \mathrm{~V}\right)$
(4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH} 1=-3.0 \mathrm{~mA} \end{aligned}$	EVddo - 0.7			V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH} 1=-2.0 \mathrm{~mA} \end{aligned}$	EVDDO - 0.6			V
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH} 1=-1.5 \mathrm{~mA} \end{aligned}$	EVddo - 0.5			V
	Vон2	P20 to P27, P150 to P156	$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH} 2=-100 \mu \mathrm{~A} \end{aligned}$	VDD - 0.5			V
Output voltage, low	Vol1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77,   P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=8.5 \mathrm{~mA} \end{aligned}$			0.7	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=3.0 \mathrm{~mA} \end{aligned}$			0.6	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=1.5 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=0.6 \mathrm{~mA} \end{aligned}$			0.4	V
	VoL2	P20 to P27, P150 to P156	$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL2}=400 \mu \mathrm{~A} \end{aligned}$			0.4	V
	VoL3	P60 to P63	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 3=15.0 \mathrm{~mA} \end{aligned}$			2.0	V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 3=5.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 3=3.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 3=2.0 \mathrm{~mA} \end{aligned}$			0.4	V

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss $\left.0=\mathrm{EVsS} 1=0 \mathrm{~V}\right)$
(5/5)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	V I $=$ EVDDo				1	$\mu \mathrm{A}$
	ILIH2	$\frac{\mathrm{P} 20 \text { to P27, P137, P150 to P156, }}{\frac{\text { RESET }}{}}$	V I $=\mathrm{V}$ DD				1	$\mu \mathrm{A}$
	ІІІнз	$\begin{array}{\|l\|} \hline \text { P121 to P124 } \\ \text { (X1, X2, EXCLK, XT1, XT2, } \\ \text { EXCLKS) } \end{array}$	V I $=\mathrm{V} D \mathrm{D}$	In input port or external clock input			1	$\mu \mathrm{A}$
				In resonator connection			10	$\mu \mathrm{A}$
Input leakage current, low	ILLL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	$\mathrm{V}_{\mathrm{I}}=\mathrm{EV} \mathrm{Vss}^{0}$				-1	$\mu \mathrm{A}$
	ILIL2		V I $=\mathrm{Vss}$				-1	$\mu \mathrm{A}$
	ILLL3	$\begin{array}{\|l\|} \hline \text { P121 to P124 } \\ \text { (X1, X2, EXCLK, XT1, XT2, } \\ \text { EXCLKS) } \end{array}$	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\text {ss }}$	In input port or external clock input			-1	$\mu \mathrm{A}$
				In resonator connection			-10	$\mu \mathrm{A}$
On-chip pull-up resistance	Ru	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	VI = EVsso, In input port		10	20	100	k $\Omega$

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

### 3.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = 0 V )

Parameter	Symbol	Conditions					MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	Operating mode	HS (high-speed main) mode Note 5	fносо $=64 \mathrm{MHz}$, $\mathrm{fiH}^{\mathrm{f}}=32 \mathrm{MHz}$ Note 3	Basic operation	VDD $=5.0 \mathrm{~V}$		2.4		mA
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		2.4		
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Basic operation	VDD $=5.0 \mathrm{~V}$		2.1		
						VdD $=3.0 \mathrm{~V}$		2.1		
			HS (high-speed main) mode Note 5	$\begin{aligned} & \text { fHoco }=64 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VdD $=5.0 \mathrm{~V}$		5.1	9.3	mA
						VdD $=3.0 \mathrm{~V}$		5.1	9.3	
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		4.8	8.7	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		4.8	8.7	
				fносо $=48 \mathrm{MHz}$,   $\mathrm{fiH}=24 \mathrm{MHz}$ Note 3	Normal operation	VDD $=5.0 \mathrm{~V}$		4.0	7.3	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		4.0	7.3	
				fносо $=24 \mathrm{MHz}$, fif $=24 \mathrm{MHz}$ Note 3	Normal operation	VdD $=5.0 \mathrm{~V}$		3.8	6.7	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		3.8	6.7	
				$\begin{aligned} & \text { fHoco = } 16 \mathrm{MHz}, \\ & \mathrm{fiH}=16 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		2.8	4.9	
						$\mathrm{VdD}=3.0 \mathrm{~V}$		2.8	4.9	
			HS (high-speed main) mode Note 5	$\begin{aligned} & f M x=20 \mathrm{MHz} \text { Note } 2, \\ & V D D=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.3	5.7	mA
						Resonator connection		3.4	5.8	
				$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.3	5.7	
						Resonator connection		3.4	5.8	
				$\begin{aligned} & f M X=10 \mathrm{MHz} \text { Note } 2, \\ & V D D=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.0	3.4	
						Resonator connection		2.1	3.5	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.0	3.4	
						Resonator connection		2.1	3.5	
			Subsystem clock operation	$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.7	6.1	$\mu \mathrm{A}$
						Resonator connection		4.7	6.1	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.7	6.1	
						Resonator connection		4.7	6.1	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.8	6.7	
						Resonator connection		4.8	6.7	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.8	7.5	
						Resonator connection		4.8	7.5	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.4	8.9	
						Resonator connection		5.4	8.9	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+105^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		7.2	21.0	
						Resonator connection		7.3	21.1	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $\quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fнoco: High-speed on-chip oscillator clock frequency ( 64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency ( 32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$
(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products
(TA = -40 to $+105^{\circ} \mathrm{C}, \mathbf{2 . 4} \mathrm{V} \leq \mathrm{EVDDO} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $=0 \mathrm{~V}$ )(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	$\begin{array}{\|l\|} \hline \text { IDD2 } \\ \text { Note 2 } \end{array}$	HALT mode	HS (high-speed main) mode Note 7	$\begin{aligned} & \text { fHoco }=64 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.80	4.36	mA
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.80	4.36	
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VDD $=5.0 \mathrm{~V}$		0.49	3.67	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.49	3.67	
				$\begin{aligned} & \text { fHoco }=48 \mathrm{MHz}, \\ & \text { fiH }=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VdD $=5.0 \mathrm{~V}$		0.62	3.42	
					VdD $=3.0 \mathrm{~V}$		0.62	3.42	
				fносо $=24 \mathrm{MHz}$, fif $=24 \mathrm{MHz}$ Note 4	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.4	2.85	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.4	2.85	
				$\begin{aligned} & \mathrm{fHoco}=16 \mathrm{MHz}, \\ & \mathrm{fiH}=16 \mathrm{MHz} \text { Note } 4 \end{aligned}$	Vdo $=5.0 \mathrm{~V}$		0.37	2.08	
					VDD $=3.0 \mathrm{~V}$		0.37	2.08	
			HS (high-speed main) mode Note 7	$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.28	2.45	mA
					Resonator connection		0.40	2.57	
				$\begin{aligned} & \text { fMx }=20 \mathrm{MHz} \text { Note } 3, \\ & \text { VDD }=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.28	2.45	
					Resonator connection		0.40	2.57	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.19	1.28	
					Resonator connection		0.25	1.36	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.19	1.28	
					Resonator connection		0.25	1.36	
			Subsystem clock operation	$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.25	0.57	$\mu \mathrm{A}$
					Resonator connection		0.44	0.76	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.30	0.57	
					Resonator connection		0.49	0.76	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.36	1.17	
					Resonator connection		0.59	1.36	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.49	1.97	
					Resonator connection		0.72	2.16	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.97	3.37	
					Resonator connection		1.16	3.56	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+105^{\circ} \mathrm{C} \end{aligned}$	Square wave input		3.20	17.10	
					Resonator connection		3.40	17.50	
	IDD3   Note 6	STOP mode   Note 8	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.18	0.51	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.24	0.51	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.29	1.10	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.41	1.90	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				0.90	3.30	
			$\mathrm{TA}=+105^{\circ} \mathrm{C}$				3.10	17.00	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $\quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency ( 64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency ( 32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(2) Flash ROM: 96 to $\mathbf{2 5 6} \mathrm{KB}$ of $\mathbf{3 0}$ - to 100-pin products
(TA $=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq$ EVDDo $=$ EVDD1 $\leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=$ EVsso $=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions					MIN.	TYP.	MAX.	Unit
	IDD1	Operating mode	HS (high-speed main) mode Note 5	$\begin{array}{\|l} \hline \mathrm{fHOco}=64 \mathrm{MHz}, \\ \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \\ \hline \mathrm{fHOco}=32 \mathrm{MHz}, \\ \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \\ \hline \end{array}$	Basic operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		2.6		mA
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		2.6		
					Basic operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		2.3		
						$\mathrm{VDD}=3.0 \mathrm{~V}$		2.3		
			HS (high-speed main) mode Note 5	$\begin{aligned} & \text { fHoco = } 64 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		5.4	10.9	mA
						$\mathrm{VDD}=3.0 \mathrm{~V}$		5.4	10.9	
				froco $=32 \mathrm{MHz}$, fiH $=32 \mathrm{MHz}$ Note 3	Normal operation	VDD $=5.0 \mathrm{~V}$		5.0	10.3	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		5.0	10.3	
				$\begin{aligned} & \mathrm{fHOco}=48 \mathrm{MHz}, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		4.2	8.2	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.2	8.2	
				$\begin{aligned} & \text { fHoco }=24 \mathrm{MHz}, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		4.0	7.8	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.0	7.8	
				$\begin{aligned} & \mathrm{fHOco}=16 \mathrm{MHz}, \\ & \mathrm{fiH}=16 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		3.0	5.6	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		3.0	5.6	
			HS (high-speed main) mode Note 5	$\begin{aligned} & \text { fMx }=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.4	6.6	mA
						Resonator connection		3.6	6.7	
				$\begin{aligned} & \mathrm{fmX}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.4	6.6	
						Resonator connection		3.6	6.7	
				$\begin{aligned} & \mathrm{fmX}=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.1	3.9	
						Resonator connection		2.2	4.0	
				$\begin{aligned} & \mathrm{fmX}=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.1	3.9	
						Resonator connection		2.2	4.0	
			Subsystem clock operation	$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.9	7.1	$\mu \mathrm{A}$
						Resonator connection		4.9	7.1	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.9	7.1	
						Resonator connection		4.9	7.1	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.1	8.8	
						Resonator connection		5.1	8.8	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.5	10.5	
						Resonator connection		5.5	10.5	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		6.5	14.5	
						Resonator connection		6.5	14.5	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}_{\mathrm{A}}=+105^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		13.0	58.0	
						Resonator connection		13.0	58.0	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

$$
\text { HS (high-speed main) mode: } \quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 32 \mathrm{MHz}
$$

$$
2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 16 \mathrm{MHz}
$$

Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency ( 64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency ( 32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$
(2) Flash ROM: 96 to $\mathbf{2 5 6} \mathrm{KB}$ of $\mathbf{3 0}$ - to 100-pin products
(TA = -40 to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V )
(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD2   Note 2	HALT mode	HS (high-speed main) mode Note 7	$\begin{aligned} & \text { fHoco }=64 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.79	4.86	mA
					VdD $=3.0 \mathrm{~V}$		0.79	4.86	
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VDD $=5.0 \mathrm{~V}$		0.49	4.17	
					VDD $=3.0 \mathrm{~V}$		0.49	4.17	
				$\begin{aligned} & \text { fHoco }=48 \mathrm{MHz}, \\ & \text { fiH }=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	V DD $=5.0 \mathrm{~V}$		0.62	3.82	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.62	3.82	
				$\begin{aligned} & \text { fHoco = } 24 \mathrm{MHz}, \\ & \mathrm{fIH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	V D $=5.0 \mathrm{~V}$		0.4	3.25	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.4	3.25	
				$\begin{aligned} & \text { fносо }=16 \mathrm{MHz}, \\ & \mathrm{fiH}=16 \mathrm{MHz} \text { Note } 4 \end{aligned}$	V D $=5.0 \mathrm{~V}$		0.38	2.28	
					VDD $=3.0 \mathrm{~V}$		0.38	2.28	
			HS (high-speed main) mode Note 7	$\begin{aligned} & f M x=20 \mathrm{MHz} \text { Note } 3, \\ & V D D=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.30	2.65	mA
					Resonator connection		0.40	2.77	
				$\begin{aligned} & f M x=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.30	2.65	
					Resonator connection		0.40	2.77	
				$\begin{aligned} & \text { fMx }=10 \mathrm{MHz} \text { Note } 3, \\ & V D D=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.20	1.36	
					Resonator connection		0.25	1.46	
				$\begin{aligned} & \text { fMx }=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.20	1.36	
					Resonator connection		0.25	1.46	
			Subsystem clock operation	$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.28	0.66	$\mu \mathrm{A}$
					Resonator connection		0.47	0.85	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.34	0.66	
					Resonator connection		0.53	0.85	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.37	2.35	
					Resonator connection		0.56	2.54	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.61	4.08	
					Resonator connection		0.80	4.27	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		1.55	8.09	
					Resonator connection		1.74	8.28	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+105^{\circ} \mathrm{C} \end{aligned}$	Square wave input		6.00	51.00	
					Resonator connection		6.00	51.00	
	IDD3   Note 6	STOP mode   Note 8	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.19	0.57	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.25	0.57	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.33	2.26	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.52	3.99	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				1.46	8.00	
			$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$				5.50	50.00	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, EVDDo, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $\quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz

$$
2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 16 \mathrm{MHz}
$$

Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency ( 64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency ( 32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

<R>	Subsystem clock operation	fsub $=32.768 \mathrm{kHz}$ Note 4	Normal	Square wave input	5.2	7.7	$\mu \mathrm{A}$
<R>		$\mathrm{TA}=-40^{\circ} \mathrm{C}$	operation	Resonator connection	5.2	7.7	
		fsub $=32.768 \mathrm{kHz}$ Note 4	Normal	Square wave input	5.3	7.7	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	operation	Resonator connection	5.3	7.7	
		fsub $=32.768 \mathrm{kHz}$ Note 4	Normal	Square wave input	5.5	10.6	
		$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$	operation	Resonator connection	5.5	10.6	
<R>		$\text { fsub }=32.768 \mathrm{kHz} \text { Note } 4$	Normal	Square wave input	5.9	13.2	
<R>		$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	operation	Resonator connection	6.0	13.2	
		$\text { fsub }=32.768 \mathrm{kHz} \text { Note } 4$	Normal	Square wave input	6.8	17.5	
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	operation	Resonator connection	6.9	17.5	
<R>		fsub $=32.768 \mathrm{kHz}$ Note 4	Normal	Square wave input	15.5	77.8	
<R>		$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$	operation	Resonator connection	15.5	77.8	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

$$
\text { HS (high-speed main) mode: } \quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 32 \mathrm{MHz}
$$

$$
2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 16 \mathrm{MHz}
$$

Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency ( 64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency ( 32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$
(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=\mathrm{EVss} 1=0 \mathrm{~V}$ )
(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD2   Note 2	HALT mode	HS (high-speed main) mode Note 7	$\begin{aligned} & \text { fHoco }=64 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.93	5.16	mA
					VDD $=3.0 \mathrm{~V}$		0.93	5.16	
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VDD $=5.0 \mathrm{~V}$		0.5	4.47	
					VDD $=3.0 \mathrm{~V}$		0.5	4.47	
				$\begin{aligned} & \text { fHoco }=48 \mathrm{MHz}, \\ & \text { fiH }=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	V DD $=5.0 \mathrm{~V}$		0.72	4.08	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.72	4.08	
				$\begin{aligned} & \text { fHoco = } 24 \mathrm{MHz}, \\ & \mathrm{fIH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.42	3.51	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.42	3.51	
				$\begin{aligned} & \text { fHoco = } 16 \mathrm{MHz}, \\ & \text { fiH }=16 \mathrm{MHz} \text { Note } 4 \end{aligned}$	V D $=5.0 \mathrm{~V}$		0.39	2.38	
					VDD $=3.0 \mathrm{~V}$		0.39	2.38	
			HS (high-speed main) mode Note 7	$\begin{aligned} & \text { fMx }=20 \mathrm{MHz} \text { Note } 3, \\ & V D D=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.31	2.83	mA
					Resonator connection		0.41	2.92	
				$\begin{aligned} & f M x=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.31	2.83	
					Resonator connection		0.41	2.92	
				$\begin{aligned} & \text { fMx }=10 \mathrm{MHz} \text { Note } 3, \\ & V D D=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.21	1.46	
					Resonator connection		0.26	1.57	
				$\begin{aligned} & \text { fMx }=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.21	1.46	
					Resonator connection		0.26	1.57	
			Subsystem clock operation	$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.31	0.76	$\mu \mathrm{A}$
					Resonator connection		0.50	0.95	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.38	0.76	
					Resonator connection		0.57	0.95	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.47	3.59	
					Resonator connection		0.70	3.78	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.80	6.20	
					Resonator connection		1.00	6.39	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		1.65	10.56	
					Resonator connection		1.84	10.75	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+105^{\circ} \mathrm{C} \end{aligned}$	Square wave input		8.00	65.7	
					Resonator connection		8.00	65.7	
	IDD3   Note 6	STOP mode   Note 8	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.19	0.63	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.30	0.63	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.41	3.47	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.80	6.08	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				1.53	10.44	
			$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$				6.50	67.14	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, EVDDo, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $\quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz

$$
2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 16 \mathrm{MHz}
$$

Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency ( 64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency ( 32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

## (4) Peripheral Functions (Common to all products)

( $\mathrm{TA}_{\mathrm{A}}=-\mathbf{4 0}$ to $+105^{\circ} \mathrm{C}, \mathbf{2 . 4} \mathrm{V} \leq \mathrm{EVDDo}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	IFIL Note 1				0.20		$\mu \mathrm{A}$
RTC operating current	IRTC Notes 1, 2, 3				0.02		$\mu \mathrm{A}$
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		$\mu \mathrm{A}$
Watchdog timer operating current	IwdT Notes 1, 2, 5	$\mathrm{fiL}=15 \mathrm{kHz}$			0.22		$\mu \mathrm{A}$
A/D converter operating current	IAdC Notes 1, 6	When conversion at maximum speed	Normal mode, $\mathrm{A} V_{\mathrm{REFP}}=\mathrm{VDD}=5.0 \mathrm{~V}$		1.3	1.7	mA
			Low voltage mode, $\mathrm{A} \mathrm{~V}_{\text {REFP }}=\mathrm{VDD}=3.0 \mathrm{~V}$		0.5	0.7	mA
A/D converter reference voltage current	IAdREF Note 1				75.0		$\mu \mathrm{A}$
Temperature sensor operating current	ITmps Note 1				75.0		$\mu \mathrm{A}$
D/A converter operating current	IdaC Notes 1, 11, 13	Per D/A converter channel				1.5	mA
Comparator operating current	Icmp Notes 1, 12, 13	$\begin{aligned} & \text { VDD }=5.0 \mathrm{~V}, \\ & \text { Regulator output voltage }=2.1 \mathrm{~V} \end{aligned}$	Window mode		12.5		$\mu \mathrm{A}$
			Comparator high-speed mode		6.5		$\mu \mathrm{A}$
			Comparator low-speed mode		1.7		$\mu \mathrm{A}$
		$\begin{aligned} & \text { VDD }=5.0 \mathrm{~V}, \\ & \text { Regulator output voltage }=1.8 \mathrm{~V} \end{aligned}$	Window mode		8.0		$\mu \mathrm{A}$
			Comparator high-speed mode		4.0		$\mu \mathrm{A}$
			Comparator low-speed mode		1.3		$\mu \mathrm{A}$
LVD operating current	ILVD Notes 1, 7				0.08		$\mu \mathrm{A}$
Self-programming operating current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	Ibgo Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	Isnoz Note 1	ADC operation	The mode is performed Note 10		0.50	1.10	mA
			The A/D conversion operations are performed, Low voltage mode, $A V_{\text {REFP }}=V_{D D}=3.0 \mathrm{~V}$		1.20	2.04	
		CSI/UART operation			0.70	1.54	
		DTC operation			3.10		

Note 1. Current flowing to VDD.
Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IdD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.

Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).
The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IdD2 or IDD3 and ILVD when the LVD circuit is in operation.
Note 8. Current flowing during programming of the data flash.
Note 9. Current flowing during self-programming.
Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G14 User's Manual.
Note 11. Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
Note 12. Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.

Remark 1. fil: Low-speed on-chip oscillator clock frequency
Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 3. fcLk: CPU/peripheral hardware clock frequency
Remark 4. Temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$

### 3.4 AC Characteristics

$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $\left.=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fmain) operation	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.03125		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
		Subsystem clock (fsub) operation		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	28.5	30.5	31.3	$\mu \mathrm{s}$
		In the self-programming mode	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.03125		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
External system clock frequency	fex	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1.0		20.0	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 2.7 \mathrm{~V}$			1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input high-level width, low-level width	texh, texL	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			24			ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 2.7 \mathrm{~V}$			30			ns
	tEXHS, tEXLS				13.7			$\mu \mathrm{s}$
TIOO to TIO3, TI10 to TI13 input high-level width, low-level width	ttil, ttil				$\begin{gathered} 1 / \mathrm{fMCK}+10 \\ \text { Note } \end{gathered}$			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$	100			ns
				$2.4 \mathrm{~V} \leq$ EVdDo $<2.7 \mathrm{~V}$	300			ns
Timer RJ input highlevel width, low-level width	tTJIH,   tTJIL	TRJIO		$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	40			ns
				$2.4 \mathrm{~V} \leq$ EVDDo < 2.7 V	120			ns

Note The following conditions are required for low voltage interface when EVDDO < VDD

$$
2.4 \mathrm{~V} \leq \mathrm{EVDDO}<2.7 \mathrm{~V}: \text { MIN. } 125 \mathrm{~ns}
$$

Remark fмск: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number $(m=0,1), n$ : Channel number ( $\mathrm{n}=0$ to 3 ))


Minimum Instruction Execution Time during Main System Clock Operation

Tcy vs Vdd (HS (high-speed main) mode)


When the high-speed on-chip oscillator clock is selected

-     -         - During self-programming
-.-.-.-. When high-speed system clock is selected

Supply voltage VDD [V]

AC Timing Test Points


External System Clock Timing


TI/TO Timing

TIOO to TI03, TI10 to TI13


TO00 to TO03, TO10 to TO13,
TRJIOO, TRJOO,
TRDIOA0, TRDIOA1,
TRDIOB0, TRDIOB1,
TRDIOC0, TRDIOC1,
TRDIODO, TRDIOD1,
TRGIOA, TRGIOB


TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1,


TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1


TRGIOA, TRGIOB


Interrupt Request Input Timing


Key Interrupt Input Timing

$\overline{\text { RESET }}$ Input Timing


### 3.5 Peripheral Functions Characteristics

AC Timing Test Points


### 3.5.1 Serial array unit

(1) During communication at same potential (UART mode)
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDD}=\mathrm{EVDD1} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Transfer rate Note 1		$2.4 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		fMCK/12 Note 2	bps
		Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 3		2.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
However, the SNOOZE mode cannot be used when FRQSEL4 $=1$.
Note 2. The following conditions are required for low voltage interface when EVDDO < VDD.

$$
2.4 \mathrm{~V} \leq \text { EVDDo < 2.7 V: MAX. 1.3 Mbps }
$$

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode: $32 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$

$$
16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})
$$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register $g$ (PIMg) and port output mode register $g$ (POMg).

UART mode connection diagram (during communication at same potential)


UART mode bit width (during communication at same potential) (reference)


Remark 1. $q$ : UART number ( $q=0$ to 3 ), $g$ : PIM and POM number ( $g=0,1,5,14$ )
Remark 2. fмСК: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13))
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)
( $\mathrm{TA}_{\mathrm{A}}=-\mathbf{4 0}$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX	
SCKp cycle time	tKcy1	tKCY1 $\geq$ 4/fcLk	$2.7 \mathrm{~V} \leq$ Evodo $\leq 5.5 \mathrm{~V}$	250		ns
			$2.4 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	500		ns
SCKp high-/low-level width	tKH1, tKL1	$4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}^{5} \leq 5.5 \mathrm{~V}$		tксү1/2-24		ns
		$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$		tкк¢ү1/2-36		ns
		$2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		tксү1/2-76		ns
SIp setup time (to SCKp $\uparrow$ ) Note 1	tsIK1	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		66		ns
		$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$		66		ns
		$2.4 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$		113		ns
SIp hold time (from SCKp $\uparrow$ ) Note 2	tKSI1			38		ns
Delay time from SCKp $\downarrow$ to SOp output Note 3	tKSO1	$\mathrm{C}=30 \mathrm{pF}$ Not			50	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad \mathrm{C}$ is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register $\mathbf{g}$ ( PIMg ) and port output mode register $\mathbf{g}$ ( POMg ).

Remark 1. $p$ : CSI number $(p=00,01,10,11,20,21,30,31)$, $m$ : Unit number $(m=0,1), n$ : Channel number $(n=0$ to 3$)$, $\mathrm{g}:$ PIM number $(\mathrm{g}=0,1,3$ to 5,14$)$
Remark 2. fмск: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13))
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)
( $\mathrm{T} A=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V )

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 5	tKCY2	$4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}^{5} \leq 5.5 \mathrm{~V}$	20 MHz < fMCK	16/fmCK		ns
			fMCK $\leq 20 \mathrm{MHz}$	12/fmCK		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{5} \leq 5.5 \mathrm{~V}$	16 MHz < fmCk	16/fmск		ns
			$\mathrm{fmCK} \leq 16 \mathrm{MHz}$	12/fmск		ns
		$2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		12/fMCK and 1000		ns
SCKp high-/low-level width	tKH2, tKL2	$4.0 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		tKcy2/2-14		ns
		$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$		tKcy2/2-16		ns
		$2.4 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		tKcy2/2-36		ns
SIp setup time (to SCKp $\uparrow$ ) Note 1	tsIK2	$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$		1/fmCK + 40		ns
		$2.4 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		1/fmск + 60		ns
SIp hold time (from SCKp $\uparrow$ ) Note 2	tKSI2			1/fMCK + 62		ns
Delay time from SCKp $\downarrow$ to SOp output Note 3	tKSO2	$C=30 \mathrm{pF}$ Note 4	$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$		2/fmck + 66	ns
			$2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$		2/fмск +113	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad$ is the load capacitance of the SOp output lines.
Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps .

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register $g$ ( PIMg ) and port output mode register $g(P O M g)$.

Remark 1. $\mathrm{p}: \operatorname{CSI}$ number $(\mathrm{p}=00,01,10,11,20,21,30,31)$, m : Unit number $(\mathrm{m}=0,1)$,
n : Channel number ( $\mathrm{n}=0$ to 3 ), g: PIM number ( $\mathrm{g}=0,1,3$ to 5,14 )
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13))
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
$\overline{\text { SSIOO }}$ setup time	tssik	DAPmn $=0$	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	240		ns
			$2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$	400		ns
		DAPmn $=1$	$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$	1/fмск + 240		ns
			$2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{5} 5.5 \mathrm{~V}$	1/fмск +400		ns
$\overline{\text { SSIOO }}$ hold time	tkssı	DAPmn $=0$	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	1/fмск +240		ns
			$2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$	1/fмск + 400		ns
		DAPmn $=1$	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	240		ns
			$2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{5} 5.5 \mathrm{~V}$	400		ns

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register $\mathbf{g}$ (PIMg) and port output mode register $g$ (POMg).

Remark $p$ : CSI number $(p=00)$, $m$ : Unit number $(m=0)$, $n$ : Channel number $(n=0), g$ : PIM number $(g=3,5)$
CSI mode connection diagram (during communication at same potential)


CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSIOO))


Remark 1. p : CSI number ( $\mathrm{p}=00,01,10,11,20,21,30,31$ )
Remark 2. m : Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13)


CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn = 0.)


Remark 1. $\mathrm{p}: \mathrm{CSI}$ number $(\mathrm{p}=00,01,10,11,20,21,30,31)$
Remark 2. m: Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13)
(4) During communication at same potential (simplified ${ }^{2} \mathrm{C}$ mode)
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V )

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		400 Note 1	kHz
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$		100 Note 1	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1200		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \text { DDo } \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	4600		ns
Hold time when SCLr = " H "	tHIGH	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDD}_{0} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1200		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	4600		ns
Data setup time (reception)	tsu: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmck + 220 Note 2		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	1/fmск + 580 Note 2		ns
Data hold time (transmission)	thD: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	770	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	0	1420	ns

Note 1. The value must also be equal to or less than fmск/4.
Note 2. Set the fмск value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (Vdd tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register $g$ ( PIMg ) and port output mode register $h$ (POMh).
(Remarks are listed on the next page.)

## Simplified ${ }^{2} \mathrm{C}$ mode connection diagram (during communication at same potential)



Simplified ${ }^{2} \mathrm{C}$ mode serial transfer timing (during communication at same potential)


Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SDAr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$ : Communication line (SDAr, SCLr) load capacitance
Remark 2. r: IIC number ( $r=00,01,10,11,20,21,30,31$ ), $g$ : PIM number ( $g=0,1,3$ to 5,14 ),
h: POM number ( $\mathrm{h}=0,1,3$ to $5,7,14$ )
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ( $m=0,1$ ), n : Channel number ( $\mathrm{n}=0$ to 3 ), $\mathrm{mn}=00$ to 03,10 to 13 )
(5) Communication at different potential ( $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (UART mode)
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
Transfer rate		reception	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$		fmck/12 Note 1	bps
			Theoretical value of the maximum transfer rate fmck $=$ fclk Note 3		2.6	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$		fmck/12 Note 1	bps
			Theoretical value of the maximum transfer rate fmck $=$ fclk Note 3		2.6	Mbps
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$		fmck/12 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fmck $=$ fclk Note 3		2.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
However, the SNOOZE mode cannot be used when FRQSEL4 $=1$.
Note 2. The following conditions are required for low voltage interface when EVDDO < VDD.
$2.4 \mathrm{~V} \leq$ EVDDO < 2.7 V: MAX. 1.3 Mbps
Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode: $32 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V})$

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VdD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g ( PIMg ) and port output mode register $\mathrm{g}(\mathrm{POMg})$. For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $q$ : UART number ( $q=0$ to 3 ), $g$ : PIM and POM number ( $g=0,1,5,14$ )
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13 )
Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIORO) is 1.
(5) Communication at different potential ( $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (UART mode)
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
Transfer rate		transmission	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$		Note 1	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{b}}=2.7 \mathrm{~V} \end{aligned}$		2.6 Note 2	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V} \end{aligned}$		Note 3	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{b}}=2.3 \mathrm{~V} \end{aligned}$		1.2 Note 4	Mbps
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$		Note 5	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{b}}=1.6 \mathrm{~V} \end{aligned}$		0.43 Note 6	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$ and $2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$


Baud rate error (theoretical value) $=$

$$
\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb}_{\mathrm{b}} \times \mathrm{Rb}_{\mathrm{b}} \times \ln \left(1-\frac{2.2}{\mathrm{~V}_{\mathrm{b}}}\right)\right\}
$$

( $\left.\frac{1}{\text { Transfer rate }}\right) \times$ Number of transferred bits

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
Note 3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq$ EVDDo $<4.0 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$
1
Maximum transfer rate $=\frac{}{\left\{-\mathrm{Cb} \times \mathrm{Rb}_{\mathrm{b}} \times \ln \left(1-\frac{2.0}{V_{b}}\right)\right\} \times 3}[\mathrm{bps}]$

Baud rate error (theoretical value) $=\longrightarrow \frac{1}{\frac{\text { Transfer rate } \times 2}{}-\left\{-\mathrm{Cb} \times \operatorname{Rb} \times \ln \left(1-\frac{2.0}{\mathrm{~V}_{b}}\right)\right\}}$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

Note 5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}$ and $1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$


Baud rate error (theoretical value) $=\underline{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \operatorname{Rb} \times \ln \left(1-\frac{1.5}{\mathrm{~V}_{\mathrm{b}}}\right)\right\}} \times 100[\%]$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 6. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VdD tolerance (for the 30-to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g ( PIMg ) and port output mode register g ( POMg ). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## UART mode connection diagram (during communication at different potential)



## UART mode bit width (during communication at different potential) (reference)



Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (TxDq) pull-up resistance,
$\mathrm{Cb}[\mathrm{F}]$ : Communication line ( TxDq ) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $q$ : UART number ( $q=0$ to 3 ), $g$ : PIM and POM number ( $g=0,1,5,14$ )
Remark 3. fMck: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13 ))
Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIORO) is 1.
(6) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (CSI mode) (master mode, SCKp... internal clock output)
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy $1 \geq 4 / \mathrm{fcLK}$	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	600		ns
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1000		ns
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	2300		ns
SCKp high-level width	tkH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tк¢Y1/2-150		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \text { DDo }<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tkcy1/2-340		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		tксү1/2-916		ns
SCKp low-level width	tkL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tксү1/2-24		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tксү1/2-36		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		tkcy1/2-100		ns

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed two pages after the next page.)
(6) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (CSI mode) (master mode, SCKp... internal clock output)
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVSS} 0=\mathrm{EVsS} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
SIp setup time (to SCKp $\uparrow$ ) ${ }^{\text {Note }}$	tsIK1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	162		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}^{2}=2.7 \mathrm{k} \Omega \end{aligned}$	354		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	958		ns
SIp hold time (from SCKp $\uparrow$ ) Note	tkSI1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	38		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	38		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}^{2}=5.5 \mathrm{k} \Omega \end{aligned}$	38		ns
Delay time from SCKp $\downarrow$ to SOp output Note	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		200	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		390	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		966	ns

Note $\quad$ When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVdD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register $\mathbf{g}$ (PIMg) and port output mode register $g$ ( POMg ). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the page after the next page.)
(6) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (CSI mode) (master mode, SCKp... internal clock output)
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVSS} 0=\mathrm{EVsS} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
SIp setup time (to SCKpl) Note	tsIK1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	88		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	88		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	220		ns
SIp hold time (from SCKp $\downarrow$ ) Note	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	38		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	38		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	38		ns
Delay time from SCKp $\uparrow$ to SOp output Note	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		50	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		50	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDo}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		50	ns

Note $\quad$ When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVdD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register $\mathbf{g}$ (PIMg) and port output mode register $g$ ( POMg ). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## CSI mode connection diagram (during communication at different potential



Remark 5. $\mathrm{Rb}[\Omega]$ : Communication line (SCKp, SOp) pull-up resistance, $\mathrm{Cb}[F]$ : Communication line (SCKp, SOp) load capacitance, $\mathrm{V}[\mathrm{V}]$ : Communication line voltage
Remark 6. p : CSI number $(\mathrm{p}=00,01,10,20,30,31)$, $m$ : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3$)$, g : PIM and POM number ( $\mathrm{g}=0,1,3$ to 5,14 )
Remark 7. fМСк: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ( $\mathrm{mn}=00$ )
Remark 8. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn =1.)


CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn =0.)


Remark 1. p : CSI number $(\mathrm{p}=00,01,10,20,30,31)$, m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3$)$,
$\mathrm{g}: \mathrm{PIM}$ and POM number $(\mathrm{g}=0,1,3$ to 5,14$)$
Remark 2. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
(7) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (CSI mode) (slave mode, SCKp... external clock input)
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
SCKp cycle time ${ }^{\text {Note } 1}$	tkcy2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$	24 MHz < fmCK	28/fмск		ns
			20 MHz < $\mathrm{fmck}^{5} \mathbf{2 4 \mathrm { MHz }}$	24/fмск		ns
			$8 \mathrm{MHz}<$ fmck $\leq 20 \mathrm{MHz}$	20/fмск		ns
			$4 \mathrm{MHz}<$ fmck $\leq 8 \mathrm{MHz}$	16/fмск		ns
			fmck $\leq 4 \mathrm{MHz}$	12/fмск		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$	24 MHz < fmCk	40/fмск		ns
			20 MHz < fmck $\leq 24 \mathrm{MHz}$	32/fмск		ns
			16 MHz < fmck $\leq 20 \mathrm{MHz}$	28/fмск		ns
			$8 \mathrm{MHz}<$ fmck $\leq 16 \mathrm{MHz}$	24/fмск		ns
			$4 \mathrm{MHz}<$ fmck $\leq 8 \mathrm{MHz}$	16/fмск		ns
			fмck $\leq 4 \mathrm{MHz}$	12/fмск		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \end{aligned}$	24 MHz < fmck	96/fмск		ns
			$20 \mathrm{MHz}<$ fmck $\leq 24 \mathrm{MHz}$	72/fмск		ns
			16 MHz < fmck $\leq 20 \mathrm{MHz}$	64/fмск		ns
			$8 \mathrm{MHz}<$ fmck $\leq 16 \mathrm{MHz}$	52/fмск		ns
			$4 \mathrm{MHz}<$ fmck $\leq 8 \mathrm{MHz}$	32/fмск		ns
			fmck $\leq 4 \mathrm{MHz}$	20/fmск		ns
SCKp high-/low-level width	tKH2, tKL2	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$		tксү2/2-24		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		tксү2/2-36		ns
		$2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$		tксү2/2-100		ns
SIp setup time (to SCKp $\uparrow$ ) Note 2	tsik2	$4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}^{5} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$		1/fмск + 40		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		1/fмск + 40		ns
		$2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$		1/fмск + 60		ns
SIp hold time (from SCKp $\uparrow$ ) Note 3	tKSI2			1/fмск + 62		ns
Delay time from SCKp $\downarrow$ to SOp output Note 4	tkso2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			2/fmск + 240	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{V}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			2/fmск + 428	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rv}=5.5 \mathrm{k} \Omega \end{aligned}$			2/fmск + 1146	ns

(Notes, Caution, and Remarks are listed on the next page.)

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. When DAPmn = 0 and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow "$ when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VdD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)


Remark 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$ : Communication line (SOp) pull-up resistance, $\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$ : Communication line (SOp) load capacitance,
$\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. p : CSI number $(\mathrm{p}=00,01,10,20,30,31)$, m : Unit number $(\mathrm{m}=0,1), \mathrm{n}$ : Channel number $(\mathrm{n}=0$ to 3$)$, $\mathrm{g}:$ PIM and POM number $(\mathrm{g}=0,1,3$ to 5,14$)$
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number ( $\mathrm{mn}=00,01,02,10,12,13$ )
Remark 4. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

CSI mode serial transfer timing (slave mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)


CSI mode serial transfer timing (slave mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn = 0.)


Remark 1. p : CSI number $(\mathrm{p}=00,01,10,20,30,31)$, $m$ : Unit number $(\mathrm{m}=0,1), \mathrm{n}$ : Channel number ( $\mathrm{n}=0$ to 3 ),
$\mathrm{g}: \mathrm{PIM}$ and POM number ( $\mathrm{g}=0,1,3$ to 5,14 )
Remark 2. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.
(8) Communication at different potential ( $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V )

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		400 Note 1	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		400 Note 1	kHz
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$		100 Note 1	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		100 Note 1	kHz
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}_{0}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		100 Note 1	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1200		ns
		$\begin{aligned} & \hline 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \\ & \hline \end{aligned}$	1200		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}^{2}=2.8 \mathrm{k} \Omega \end{aligned}$	4600		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	4600		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	4650		ns
Hold time when SCLr = " H "	tHIGH	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	620		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	500		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{E} \mathrm{VDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega \end{aligned}$	2700		ns
		$\begin{aligned} & \hline 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{VDDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	2400		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}_{0}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1830		ns

(8) Communication at different potential ( $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, VSS = EVSS $0=\mathrm{EVSS} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:DAT	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmck + 340 Note 2		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmск + 340 Note 2		ns
		$\begin{aligned} & \hline 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \\ & \hline \end{aligned}$	1/fmck + 760 Note 2		ns
		$\begin{aligned} & \hline 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmck + 760 Note 2		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1/fmск +570 Note 2		ns
Data hold time (transmission)	thd: DAT	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	770	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}^{2}=2.7 \mathrm{k} \Omega \end{aligned}$	0	770	ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	0	1420	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{VDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	1420	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDD}_{0}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	0	1215	ns

Note 1. The value must also be equal to or less than fMCK/4.
Note 2. Set the fmск value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VdD tolerance (for the 30- to 52-pin products)/EVdd tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (Vdd tolerance (for the 30- to 52-pin products)/EVdD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register $g$ ( PIMg ) and port output mode register $g$ ( POMg ). For Vit and Vil, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## Simplified ${ }^{2} \mathrm{C}$ mode connection diagram (during communication at different potential)



Simplified ${ }^{2}{ }^{2} \mathrm{C}$ mode serial transfer timing (during communication at different potential)


Remark 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$ : Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$ : Communication line (SDAr, SCLr) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. r: IIC number ( $r=00,01,10,11,20,30,31$ ), $g$ : PIM, POM number ( $g=0,1,3$ to 5,14 )
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ( $m=0,1$ ), n : Channel number $(\mathrm{n}=0,2), \mathrm{mn}=00,01,02,10,12,13$ )

### 3.5.2 Serial interface IICA

( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V )

Parameter	Symbol	Conditions	HS (high-speed main) mode				Unit
			Standard mode		Fast mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fcLk $\geq 3.5 \mathrm{MHz}$	-	-	0	400	kHz
		Standard mode: fcLk $\geq 1 \mathrm{MHz}$	0	100	-	-	kHz
Setup time of restart condition	tsu: STA		4.7		0.6		$\mu \mathrm{s}$
Hold time Note 1	thD: STA		4.0		0.6		$\mu \mathrm{s}$
Hold time when SCLA0 $=$ "L"	tıow		4.7		1.3		$\mu \mathrm{s}$
Hold time when SCLA0 = "H"	thigh		4.0		0.6		$\mu \mathrm{s}$
Data setup time (reception)	tsu: DAT		250		100		ns
Data hold time (transmission) Note 2	thD: DAT		0	3.45	0	0.9	$\mu \mathrm{s}$
Setup time of stop condition	tsu: sto		4.0		0.6		$\mu \mathrm{s}$
Bus-free time	tbuF		4.7		1.3		$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIORO2) in the peripheral I/O redirection register 0 (PIORO) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, Vol1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Standard mode: $\quad \mathrm{Cb}=400 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$
Fast mode: $\quad \mathrm{Cb}_{\mathrm{b}}=320 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$

IICA serial transfer timing


Remark $n=0,1$

### 3.6 Analog Characteristics

### 3.6.1 A/D converter characteristics

## Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage ( + ) = AVREFP   Reference voltage (-) = AVREFM	Reference voltage (+) $=$ VDD   Reference voltage (-) = Vss	Reference voltage ( + ) = VBGR   Reference voltage (-)=AVREFm
ANIO to ANI14	Refer to 3.6.1 (1).	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).
ANI16 to ANI20	Refer to 3.6.1 (2).		
Internal reference voltage   Temperature sensor output voltage	Refer to 3.6.1 (1).		-

(1) When reference voltage ( + ) $=$ AVREFP/ANIO (ADREFP1 $=0$, ADREFPO $=1$ ), reference voltage ( - ) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, Reference voltage ( + ) = AVREFP,
Reference voltage ( - ) = AVREFM $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution   AVREFP $=$ VdD Note 3	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq 5.5 \mathrm{~V}$		1.2	$\pm 3.5$	LSB
Conversion time	tconv	10-bit resolution   Target pin: ANI2 to ANI14	$3.6 \mathrm{~V} \leq \mathrm{Vdo} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
		10-bit resolution   Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution   AVREFP $=$ VDD Note 3	$2.4 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$			$\pm 0.25$	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution   AVREFP $=$ VdD Note 3	$2.4 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			$\pm 0.25$	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution   AVREFP $=$ Vdd Note 3	$2.4 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$			$\pm 2.5$	LSB
Differential linearity error Note 1	DLE	10-bit resolution   AVREFP $=$ VdD Note 3	$2.4 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			$\pm 1.5$	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVRefp	V
		Internal reference voltage output ( $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		Vbgr Note 4			V
		Temperature sensor output voltage ( $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		VTMPS25 Note 4			V

Note 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. When AVrefp < VDD, the MAX. values are as follows.

Overall error:	Add $\pm 1.0$ LSB to the MAX. value when AVREFP $=$ VDD.
Zero-scale error/Full-scale error:	Add $\pm 0.05 \%$ FSR to the MAX. value when AVREFP $=$ VDD.
Integral linearity error/ Differential linearity error:	Add $\pm 0.5$ LSB to the MAX. value when AVREFP $=$ VDD.

Note 4. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.
(2) When reference voltage ( + ) $=$ AVREFP/ANIO (ADREFP1 $=0$, ADREFPO $=1$ ), reference voltage $(-)=$ AVrefmlANI1 (ADREFM = 1), target pin: ANI16 to ANI20
(TA $=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$,
Vss = EVsso = EVss1 = 0 V, Reference voltage ( + ) = AVrefp, Reference voltage ( - ) = AVrefm $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution   EVddo $\leq$ AVRefp $=$ Vdd Notes 3,4	2.4 V S AVREFP $\leq 5.5 \mathrm{~V}$		1.2	$\pm 5.0$	LSB
Conversion time	tconv	10-bit resolution   Target ANI pin: ANI16 to ANI20	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution   EVDDO $\leq A V_{\text {REFP }}=$ Vdd Notes 3,4	2.4 V S AVREFP $\leq 5.5 \mathrm{~V}$			$\pm 0.35$	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution   EVdDo $\leq A V_{\text {REFP }}=$ VdD Notes 3, 4	2.4 V S AVREFP $\leq 5.5 \mathrm{~V}$			$\pm 0.35$	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution   EVddo $\leq$ AVrefp $=$ Vdd Notes 3, 4	2.4 V S AVREFP $\leq 5.5 \mathrm{~V}$			$\pm 3.5$	LSB
Differential linearity error Note 1	DLE	10-bit resolution   EVddo $\leq$ AVRefp $=$ Vdd Notes 3, 4	2.4 V S AVREFP $\leq 5.5 \mathrm{~V}$			$\pm 2.0$	LSB
Analog input voltage	VAIN	ANI16 to ANI20		0		AVREFP and EVddo	V

Note 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. When EVDDO $\leq \operatorname{AVREFP} \leq \operatorname{VDD}$, the MAX. values are as follows.
Overall error: $\quad$ Add $\pm 1.0$ LSB to the MAX. value when $A V$ REFP $=$ VDD.
Zero-scale error/Full-scale error: Add $\pm 0.05 \%$ FSR to the MAX. value when AVREFP = Vdd. Integral linearity error/ Differential linearity error: Add $\pm 0.5$ LSB to the MAX. value when AVrefp = Vdd.
Note 4. When AVREFP < EVDDo $\leq \operatorname{VDD}$, the MAX. values are as follows.

Overall error:	Add $\pm 4.0$ LSB to the MAX. value when $A V R E F P=V D D$.
Zero-scale error/Full-scale error:	Add $\pm 0.20 \%$ FSR to the MAX. value when $A V R E F P=$ VDD.
Integral linearity error/ Differential linearity error:	Add $\pm 2.0$ LSB to the MAX. value when AVREFP $=$ VDD.

(3) When reference voltage $(+)=\operatorname{VDD}(\operatorname{ADREFP} 1=0, \operatorname{ADREFP} 0=0)$, reference voltage $(-)=\operatorname{Vss}(\operatorname{ADREFM}=0)$, target pin: ANIO to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V , Reference voltage $(+)=\mathrm{VDD}$, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VmD} \leq 5.5 \mathrm{~V}$		1.2	$\pm 7.0$	LSB
Conversion time	tconv	10-bit resolution   Target pin: ANIO to ANI14, ANI16 to ANI20	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
		10-bit resolution   Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{Vdo} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$\pm 0.60$	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{Vdo} \leq 5.5 \mathrm{~V}$			$\pm 0.60$	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$			$\pm 4.0$	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$			$\pm 2.0$	LSB
Analog input voltage	Vain	ANIO to ANI14		0		Vdd	V
		ANI16 to ANI20		0		EVddo	V
		Internal reference voltage ( $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		Vbgr Note 3			V
		Temperature sensor output voltage ( $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		VTMPS25 Note 3			V

Note 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.
Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.
(4) When reference voltage ( + ) = Internal reference voltage (ADREFP1 $=1$, ADREFP0 $=0$ ), reference voltage ( - ) = AVrefm/ANI1 (ADREFM = 1), target pin: ANIO, ANI2 to ANI14, ANI16 to ANI20
( $\mathrm{T} A=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{EVDD}=\mathrm{EVDD1} \leq \mathrm{VdD}, \mathrm{Vss}=\mathrm{EVsso}=\mathrm{EVss} 1=0 \mathrm{~V}$,
Reference voltage ( + ) = Vbgr Note 3, Reference voltage ( - ) = AVREFm $=0 \mathrm{~V}$ Note 4, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8			bit
Conversion time	tconv	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1,2	Ezs	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$\pm 0.60$	\% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$\pm 2.0$	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$\pm 1.0$	LSB
Analog input voltage	Vain			0		Vbgr Note 3	V

Note 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.
Note 3. Refer to 3.6.2 Temperature sensor characteristicslinternal reference voltage characteristic.
Note 4. When reference voltage $(-)=$ Vss, the MAX. values are as follows.

Zero-scale error:	Add $\pm 0.35 \%$ FSR to the MAX. value when reference voltage $(-)=$ AVREFM.
Integral linearity error:	Add $\pm 0.5$ LSB to the MAX. value when reference voltage $(-)=$ AVREFM.
Differential linearity error:	Add $\pm 0.2$ LSB to the MAX. value when reference voltage $(-)=A V R E F M$.

### 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic

( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 $=0 \mathrm{~V}$, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register $=80 \mathrm{H}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.05		V
Internal reference voltage	VBGR	Setting ADS register $=81 \mathrm{H}$	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the   temperature		-3.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Operation stabilization wait time	tAMP		5			$\mu \mathrm{~s}$

### 3.6.3 D/A converter characteristics

( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVss} 0=\mathrm{EVss} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES					8	bit
Overall error	AINL	Rload $=4 \mathrm{M} \Omega$	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$\pm 2.5$	LSB
		Rload $=8 \mathrm{M} \Omega$	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$\pm 2.5$	LSB
Settling time	tset	Cload $=20 \mathrm{pF}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			3	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			6	$\mu \mathrm{s}$

### 3.6.4 Comparator

$\left(\mathrm{TA}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 $\left.=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		EVddo-1.4	V
	Ivcmp			-0.3		EVdDo + 0.3	V
Output delay	td	$\begin{aligned} & \text { VDD }=3.0 \mathrm{~V} \\ & \text { Input slew rate }>50 \mathrm{mV} / \mu \mathrm{s} \end{aligned}$	Comparator high-speed mode, standard mode			1.2	$\mu \mathrm{s}$
			Comparator high-speed mode, window mode			2.0	$\mu \mathrm{s}$
			Comparator low-speed mode, standard mode		3.0	5.0	$\mu \mathrm{s}$
High-electric-potential reference voltage	VTW+	Comparator high-speed m	, window mode		0.76 VDD		V
Low-electric-potential reference voltage	VTW-	Comparator high-speed mo	, window mode		0.24 VDD		V
Operation stabilization wait time	tcmp			100			$\mu \mathrm{s}$
Internal reference voltage Note	VBGR	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, HS	igh-speed main) mode	1.38	1.45	1.50	V

Note $\quad$ Not usable in sub-clock operation or STOP mode.

### 3.6.5 POR circuit characteristics

$\left(\mathrm{TA}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power on/down reset threshold	VPOR	Voltage threshold on VDD rising	1.45	1.51	1.57	V
	VPDR	Voltage threshold on VDD falling Note 1	1.44	1.50	1.56	V
Minimum pulse width Note 2	TPW		300			$\mu \mathrm{~s}$

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 3.4 AC Characteristics.
Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDd exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).


### 3.6.6 LVD circuit characteristics

(1) Reset Mode and Interrupt Mode
(TA = -40 to $+105^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = 0 V )

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage detection threshold	Supply voltage level	VLVDo	Rising edge	3.90	4.06	4.22	V
			Falling edge	3.83	3.98	4.13	V
		VLVD1	Rising edge	3.60	3.75	3.90	V
			Falling edge	3.53	3.67	3.81	V
		VLVD2	Rising edge	3.01	3.13	3.25	V
			Falling edge	2.94	3.06	3.18	V
		VLVD3	Rising edge	2.90	3.02	3.14	V
			Falling edge	2.85	2.96	3.07	V
		VLVD4	Rising edge	2.81	2.92	3.03	V
			Falling edge	2.75	2.86	2.97	V
		VLVD5	Rising edge	2.70	2.81	2.92	V
			Falling edge	2.64	2.75	2.86	V
		VLVD6	Rising edge	2.61	2.71	2.81	V
			Falling edge	2.55	2.65	2.75	V
		VLvD7	Rising edge	2.51	2.61	2.71	V
			Falling edge	2.45	2.55	2.65	V
Minimum pulse width		tLw		300			$\mu \mathrm{s}$
Detection delay time						300	$\mu \mathrm{s}$

(2) Interrupt \& Reset Mode
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Voltage detection threshold	VLVdDo	VPOC2, VPOC1, VPOC0 $=0,1,1$, falling reset voltage		2.64	2.75	2.86	V
	VLVDD1		Rising release reset voltage	2.81	2.92	3.03	V
			Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2	LVIS1, LVIS0 $=1,0$   LVIS1, LVIS0 $=0,1$	Rising release reset voltage	2.90	3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3	LVIS1, LVIS0 $=0,0$	Rising release reset voltage	3.90	4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V

### 3.6.7 Power supply voltage rising slope characteristics

$\left(\mathrm{TA}_{\mathrm{A}}=-\mathbf{4 0}\right.$ to $\left.+105^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SvDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VdD reaches the operating voltage range shown in 3.4 AC Characteristics.

### 3.7 RAM Data Retention Characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.


### 3.8 Flash Memory Programming Characteristics

( $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ Note 4	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1,000,000		
		Retained for 5 years $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ Note 4	100,000			
		Retained for 20 years $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ Note 4	10,000			

Note 1. 1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
Note 2. When using flash memory programmer and Renesas Electronics self-programming library
Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
Note 4. This temperature is the average value at which data are retained.

### 3.9 Dedicated Flash Memory Programmer Communication (UART)

$\left(\mathrm{TA}_{\mathrm{A}}=-\mathbf{4 0}\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.
Transfer rate		During serial programming	115,200		$1,000,000$

### 3.10 Timing of Entry to Flash Memory Programming Modes

$$
\left(\mathrm{TA}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} \text {, Vss }=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tSUINIT	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOLO pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			$\mu \mathrm{s}$
How long the TOOLO pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thD	POR and LVD reset must end before the external reset ends.	1			ms


$<1>$ The low level is input to the TOOL0 pin.
<2> The external reset ends (POR and LVD reset must end before the external reset ends).
$<3>$ The TOOLO pin is set to the high level.
$<4>$ Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.
tsu: How long from when the TOOLO pin is placed at the low level until a pin reset ends
thD: How long to keep the TOOLO pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)

## 4. PACKAGE DRAWINGS

## $4.1 \quad$ 30-pin products

R5F104AAASP, R5F104ACASP, R5F104ADASP, R5F104AEASP, R5F104AFASP, R5F104AGASP R5F104AADSP, R5F104ACDSP, R5F104ADDSP, R5F104AEDSP, R5F104AFDSP, R5F104AGDSP R5F104AAGSP, R5F104ACGSP, R5F104ADGSP, R5F104AEGSP, R5F104AFGSP, R5F104AGGSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18



NOTE
Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

(C)2012 Renesas Electronics Corporation. All rights reserved.

### 4.2 32-pin products

R5F104BAANA, R5F104BCANA, R5F104BDANA, R5F104BEANA, R5F104BFANA, R5F104BGANA R5F104BADNA, R5F104BCDNA, R5F104BDDNA, R5F104BEDNA, R5F104BFDNA, R5F104BGDNA R5F104BAGNA, R5F104BCGNA, R5F104BDGNA, R5F104BEGNA, R5F104BFGNA, R5F104BGGNA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN32-5×5-0.50	PWQN0032KB-A	P32K8-50-3B4-4	0.06



DETAIL OF (A) PART

(C)2012 Renesas Electronics Corporation. All rights reserved.

R5F104BAAFP, R5F104BCAFP, R5F104BDAFP, R5F104BEAFP, R5F104BFAFP, R5F104BGAFP R5F104BADFP, R5F104BCDFP, R5F104BDDFP, R5F104BEDFP, R5F104BFDFP, R5F104BGDFP R5F104BAGFP, R5F104BCGFP, R5F104BDGFP, R5F104BEGFP, R5F104BFGFP, R5F104BGGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2


detail of lead end

NOTE
1.Dimensions " $¥ 1$ " and " $※ 2$ " do not include mold flash.
2.Dimension " $\times 3$ " does not include trim offset.

ITEM	DIMENSIONS
D	$7.00 \pm 0.10$
E	$7.00 \pm 0.10$
HD	$9.00 \pm 0.20$
HE	$9.00 \pm 0.20$
A	1.70 MAX.
A1	$0.10 \pm 0.10$
A2	1.40
b	$0.37 \pm 0.05$
c	$0.145 \pm 0.055$
L	$0.50 \pm 0.20$
$\theta$	$0^{\circ}$ to $8^{\circ}$
e	0.80
x	0.20
$y$	0.10

© 2012 Renesas Electronics Corporation. All rights reserved.

## $4.3 \quad$ 36-pin products

R5F104CAALA, R5F104CCALA, R5F104CDALA, R5F104CEALA, R5F104CFALA, R5F104CGALA R5F104CAGLA, R5F104CCGLA, R5F104CDGLA, R5F104CEGLA, R5F104CFGLA, R5F104CGGLA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA36-4×4-0.50	PWLG0036KA-A	P36FC-50-AA4-2	0.023



[^2]
### 4.4 40-pin products

R5F104EAANA, R5F104ECANA, R5F104EDANA, R5F104EEANA, R5F104EFANA, R5F104EGANA, R5F104EHANA

R5F104EADNA, R5F104ECDNA, R5F104EDDNA, R5F104EEDNA, R5F104EFDNA, R5F104EGDNA, R5F104EHDNA
R5F104EAGNA, R5F104ECGNA, R5F104EDGNA, R5F104EEGNA, R5F104EFGNA, R5F104EGGNA, R5F104EHGNA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN40-6x6-0.50	PWQN0040KC-A	P40K8-50-4B4-4	0.09



DETAIL OF (A) PART


Referance   Symbol	Dimension in Millimeters		
	Min	Nom	Max
D	5.95	6.00	6.05
E	5.95	6.00	6.05
A	0.70	0.75	0.80
b	0.18	0.25	0.30
e	-	0.50	-
Lp	0.30	0.40	0.50
x	-	-	0.05
y	-	-	0.05

© 2012 Renesas Electronics Corporation. All rights reserved.

## $4.5 \quad$ 44-pin products

R5F104FAAFP, R5F104FCAFP, R5F104FDAFP, R5F104FEAFP, R5F104FFAFP, R5F104FGAFP, R5F104FHAFP, R5F104FJAFP

R5F104FADFP, R5F104FCDFP, R5F104FDDFP, R5F104FEDFP, R5F104FFDFP, R5F104FGDFP, R5F104FHDFP, R5F104FJDFP
R5F104FAGFP, R5F104FCGFP, R5F104FDGFP, R5F104FEGFP, R5F104FFGFP, R5F104FGGFP, R5F104FHGFP, R5F104FJGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10×10-0.80	PLQP0044GC-A	P44GB-80-UES-2	0.36



	(UNIT:mm)
ITEM	DIMENSIONS
D	$10.00 \pm 0.20$
E	$10.00 \pm 0.20$
HD	$12.00 \pm 0.20$
HE	$12.00 \pm 0.20$
A	1.60 MAX
A 1	$0.10 \pm 0.05$
A 2	$1.40 \pm 0.05$
A 3	0.25
b	$0.37_{-0}^{+0.08}$
c	$0.145_{-0.045}^{+0.055}$
L	0.50
Lp	$0.60 \pm 0.15$
L 1	$1.00 \pm 0.20$
$\theta$	$3_{-3}^{\circ} 5^{\circ}$
e	0.80
x	0.20
$y$	0.10
ZD	1.00
ZE	1.00

### 4.6 48-pin products

R5F104GAAFB, R5F104GCAFB, R5F104GDAFB, R5F104GEAFB, R5F104GFAFB, R5F104GGAFB, R5F104GHAFB, R5F104GJAFB
R5F104GADFB, R5F104GCDFB, R5F104GDDFB, R5F104GEDFB, R5F104GFDFB, R5F104GGDFB, R5F104GHDFB, R5F104GJDFB
R5F104GAGFB, R5F104GCGFB, R5F104GDGFB, R5F104GEGFB, R5F104GFGFB, R5F104GGGFB, R5F104GHGFB, R5F104GJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16

NOTE
Each lead centerline is located within 0.08 mm of

	(UNIT:mm)
ITEM	DIMENSIONS
D	$7.00 \pm 0.20$
E	$7.00 \pm 0.20$
HD	$9.00 \pm 0.20$
HE	$9.00 \pm 0.20$
A	1.60 MAX.
A1	$0.10 \pm 0.05$
A2	$1.40 \pm 0.05$
A3	0.25
b	$0.22 \pm 0.05$
c	$0.1455_{-0.045}^{+0.055}$
L	0.50
Lp	$0.60 \pm 0.15$
L1	$1.00 \pm 0.20$
$\theta$	$3^{\circ}{ }_{-3^{\circ}}^{\circ}$
$\theta$	0.50
X	0.08
y	0.08
ZD	0.75
ZE	0.75

its true position at maximum material condition.

R5F104GKAFB, R5F104GLAFB
R5F104GKGFB, R5F104GLGFB


R5F104GAANA, R5F104GCANA, R5F104GDANA, R5F104GEANA, R5F104GFANA, R5F104GGANA, R5F104GHANA, R5F104GJANA

R5F104GADNA, R5F104GCDNA, R5F104GDDNA, R5F104GEDNA, R5F104GFDNA, R5F104GGDNA, R5F104GHDNA, R5F104GJDNA
R5F104GAGNA, R5F104GCGNA, R5F104GDGNA, R5F104GEGNA, R5F104GFGNA, R5F104GGGNA, R5F104GHGNA, R5F104GJGNA
R5F104GKANA, R5F104GLANA
R5F104GKGNA, R5F104GLGNA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN48-7x7-0.50	PWQN0048KB-A	48PJN-A   P48K8-50-5B4-5	0.13



Referance   Symbol	Dimension in Millimeters		
	Min	Nom	Max
D	6.95	7.00	7.05
E	6.95	7.00	7.05
A	0.70	0.75	0.80
b	0.18	0.25	0.30
e	-	0.50	-
Lp	0.30	0.40	0.50
x	-	-	0.05
y	-	-	0.05

©2012 Renesas Electronics Corporation. All rights reserved.

### 4.7 52-pin products

R5F104JCAFA, R5F104JDAFA, R5F104JEAFA, R5F104JFAFA, R5F104JGAFA, R5F104JHAFA, R5F104JJAFA R5F104JCDFA, R5F104JDDFA, R5F104JEDFA, R5F104JFDFA, R5F104JGDFA, R5F104JHDFA, R5F104JJDFA R5F104JCGFA, R5F104JDGFA, R5F104JEGFA, R5F104JFGFA, R5F104JGGFA, R5F104JHGFA, R5F104JJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3


detail of lead end

NOTE
1.Dimensions " $\neq 1$ " and " $※ 2$ " do not include mold flash.
2.Dimension " $※ 3$ " does not include trim offset.

	(UNIT:mm)
ITEM	DIMENSIONS
D	$10.00 \pm 0.10$
E	$10.00 \pm 0.10$
$H D$	$12.00 \pm 0.20$
HE	$12.00 \pm 0.20$
A	1.70 MAX.
A1	$0.10 \pm 0.05$
A2	1.40
b	$0.32 \pm 0.05$
c	$0.145 \pm 0.055$
L	$0.50 \pm 0.15$
$\theta$	$0^{\circ}$ to $8^{\circ}$
e	0.65
x	0.13
y	0.10

© 2012 Renesas Electronics Corporation. All rights reserved.

## $4.8 \quad$ 64-pin products

R5F104LCAFA, R5F104LDAFA, R5F104LEAFA, R5F104LFAFA, R5F104LGAFA, R5F104LHAFA, R5F104LJAFA R5F104LCDFA, R5F104LDDFA, R5F104LEDFA, R5F104LFDFA, R5F104LGDFA, R5F104LHDFA, R5F104LJDFA R5F104LCGFA, R5F104LDGFA, R5F104LEGFA, R5F104LFGFA, R5F104LGGFA, R5F104LHGFA, R5F104LJGFA R5F104LKAFA, R5F104LLAFA
R5F104LKGFA, R5F104LLGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) $[\mathrm{g}]$
P-LQFP64-12×12-0.65	PLQP0064JA-A	P64GK-65-UET-2	0.51



## NOTE

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

R5F104LKAFB, R5F104LLAFB
R5F104LKGFB, R5F104LLGFB


R5F104LCAFB, R5F104LDAFB, R5F104LEAFB, R5F104LFAFB, R5F104LGAFB, R5F104LHAFB, R5F104LJAFB

R5F104LCDFB, R5F104LDDFB, R5F104LEDFB, R5F104LFDFB, R5F104LGDFB, R5F104LHDFB, R5F104LJDFB
R5F104LCGFB, R5F104LDGFB, R5F104LEGFB, R5F104LFGFB, R5F104LGGFB, R5F104LHGFB, R5F104LJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP64-10×10-0.50	PLQP0064KF-A	P64GB-50-UEU-2	0.35

 its true position at maximum material condition.

R5F104LCALA, R5F104LDALA, R5F104LEALA, R5F104LFALA, R5F104LGALA, R5F104LHALA, R5F104LJALA R5F104LKALA, R5F104LLALA

R5F104LCGLA,R5F104LDGLA, R5F104LEGLA, R5F104LFGLA, R5F104LGGLA, R5F104LHGLA, R5F104LJGLA R5F104LKGLA, R5F104LLGLA

64-PIN PLASTIC FLGA (5x5)


R5F104LCAFP, R5F104LDAFP, R5F104LEAFP, R5F104LFAFP, R5F104LGAFP, R5F104LHAFP, R5F104LJAFP R5F104LCDFP, R5F104LDDFP, R5F104LEDFP, R5F104LFDFP, R5F104LGDFP, R5F104LHDFP, R5F104LJDFP R5F104LCGFP, R5F104LDGFP, R5F104LEGFP, R5F104LFGFP, R5F104LGGFP, R5F104LHGFP, R5F104LJGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-14×14-0.80	PLQP0064GA-A	P64GC-80-GBW-1	0.7


© 2012 Renesas Electronics Corporation. All rights reserved.

## $4.9 \quad$ 80-pin products

R5F104MFAFB, R5F104MGAFB, R5F104MHAFB, R5F104MJAFB
R5F104MFDFB, R5F104MGDFB, R5F104MHDFB, R5F104MJDFB
R5F104MFGFB, R5F104MGGFB, R5F104MHGFB, R5F104MJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP80-12×12-0.50	PLQP0080KE-A	P80GK-50-8EU-2	0.53



## NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

[^3]R5F104MKAFB, R5F104MLAFB
R5F104MKGFB, R5F104MLGFB


R5F104MFAFA, R5F104MGAFA, R5F104MHAFA, R5F104MJAFA
R5F104MFDFA, R5F104MGDFA, R5F104MHDFA, R5F104MJDFA
R5F104MFGFA, R5F104MGGFA, R5F104MHGFA, R5F104MJGFA
R5F104MKAFA, R5F104MLAFA
R5F104MKGFA, R5F104MLGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69



Referance   Symbol	Dimension in Millimeters		
	Min	Nom	Max
D	13.80	14.00	14.20
E	13.80	14.00	14.20
HD	17.00	17.20	17.40
HE	17.00	17.20	17.40
A	-	-	1.70
A1	0.05	0.125	0.20
A2	1.35	1.40	1.45
A3	-	0.25	-
bp	0.26	0.32	0.38
c	0.10	0.145	0.20
L	-	0.80	-
Lp	0.736	0.886	1.036
L1	1.40	1.60	1.80
$\theta$	$0^{\circ}$	$3^{\circ}$	$8^{\circ}$
e	-	0.65	-
x	-	-	0.13
y	-	-	0.10
ZD	-	0.825	-
ZE	-	0.825	-

© 2012 Renesas Electronics Corporation. All rights reserved.

## $4.10 \quad$ 100-pin products

R5F104PFAFB, R5F104PGAFB, R5F104PHAFB, R5F104PJAFB R5F104PFDFB, R5F104PGDFB, R5F104PHDFB, R5F104PJDFB R5F104PFGFB, R5F104PGGFB, R5F104PHGFB, R5F104PJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP100-14×14-0.50	PLQP0100KE-A	P100GC-50-GBR-1	0.69


(C)2012 Renesas Electronics Corporation. All rights reserved.

R5F104PKAFB, R5F104PLAFB
R5F104PKGFB, R5F104PLGFB


R5F104PFAFA, R5F104PGAFA, R5F104PHAFA, R5F104PJAFA
R5F104PFDFA, R5F104PGDFA, R5F104PHDFA, R5F104PJDFA
R5F104PFGFA, R5F104PGGFA, R5F104PHGFA, R5F104PJGFA
R5F104PKAFA, R5F104PLAFA
R5F104PKGFA, R5F104PLGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP100-14x20-0.65	PLQP0100JC-A	P100GF-65-GBN-1	0.92


detail of lead end


(UNIT:mm)	
ITEM	DIMENSIONS
D	$20.00 \pm 0.20$
E	$14.00 \pm 0.20$
HD	$22.00 \pm 0.20$
HE	$16.00 \pm 0.20$
A	1.60 MAX.
A1	$0.10 \pm 0.05$
A2	$1.40 \pm 0.05$
A3	0.25
b	$0.32+0.08$
C	$0.145_{-0.045}^{+0.055}$
L	0.50
Lp	$0.60 \pm 0.15$
L1	$1.00 \pm 0.20$
$\theta$	$3^{\circ}{ }^{+} 5^{\circ}{ }^{\circ}$
e	0.65
x	0.13
y	0.10
ZD	0.575
ZE	0.825

© 2012 Renesas Electronics Corporation. All rights reserved.

## REVISION HISTORY

RL78/G14 Datasheet

Rev.	Date	Description	
		Page	Summary
0.01	Feb 10, 2011	-	First Edition issued
0.02	May 01, 2011	1 to 2   3   4 to 13   14   15 to 17   23 to 26	1.1 Features revised   1.2 Ordering Information revised   1.3 Pin Configuration (Top View) revised   1.4 Pin Identification revised   1.5.1 30-pin products to 1.5 . 3 36-pin products revised   1.6 Outline of Functions revised
0.03	Jul 28, 2011	1	1.1 Features revised
1.00	Feb 21, 2012	$\begin{gathered} 1 \text { to } 40 \\ 41 \text { to } 97 \end{gathered}$	1. OUTLINE revised   2. ELECTRICAL SPECIFICATIONS added
2.00	Oct 25, 2013	1 3 to 8 9 to 22 34 to 43 34 to 43 34 to 43 34 to 43 45,46 47 48 48 49 53 to 62 65,66 67 to 69 70 to 97 98 to 101 102 to 105 107 107 109 110 110 111	Modification of 1.1 Features   Modification of 1.2 Ordering Information   Modification of package type in 1.3 Pin Configuration (Top View)   Modification of description of subsystem clock in 1.6 Outline of Functions   Modification of description of timer output in 1.6 Outline of Functions   Modification of error of data transfer controller in 1.6 Outline of Functions   Modification of error of event link controller in 1.6 Outline of Functions   Modification of description of Tables in 2.1 Absolute Maximum Ratings   Modification of Tables, notes, cautions, and remarks in 2.2 Oscillator Characteristics   Modification of error of conditions of high level input voltage in 2.3.1 Pin characteristics   Modification of error of conditions of low level output voltage in 2.3.1 Pin characteristics   Modification of Notes and Remarks in 2.3.2 Supply current characteristics   Addition of Minimum Instruction Execution Time during Main System Clock Operation   Addition of AC Timing Test Points   Addition of LS mode and LV mode characteristics in 2.5.1 Serial array unit   Addition of LS mode and LV mode characteristics in 2.5.2 Serial interface IICA   Addition of characteristics about conversion of internal reference voltage and temperature sensor in 2.6.1 A/D converter characteristics   Addition of characteristic in 2.6.4 Comparator   Deletion of detection delay in 2.6.5 POR circuit characteristics   Modification of 2.6.7 Power supply voltage rising slope characteristics   Modification of 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics   Addition of characteristic in 2.8 Flash Memory Programming Characteristics   Addition of description in 2.10 Timing for Switching Flash Memory Programming Modes

## REVISION HISTORY

RL78/G14 Datasheet

Rev.	Date	Description	
		Page	Summary
2.00	Oct 25, 2013	$\begin{aligned} & 112 \text { to } 169 \\ & 171 \text { to } 187 \end{aligned}$	Addition of CHAPTER 3 ELECTRICAL SPECIFICATIONS Modification of 4.130 -pin products to 4.10 100-pin products
3.00	Feb 07, 2014	All 1 2 3 6 to 8 15,16 17 18,19 20 21,22 $35,37,39$, $41,43,45$, 47 42,43 46,47 45 to 68 118 137 to 140 180 189,190 191 193 to 195 198,199 201,202	Addition of products with maximum 512 KB flash ROM and 48 KB RAM Modification of 1.1 Features   Modification of ROM, RAM capacities and addition of note 3   Modification of Figure 1-1 Part Number, Memory Size, and Package of RL78/G14   Addition of part number   Modification of 1.3.6 48-pin products   Modification of 1.3.7 52-pin products   Modification of 1.3.8 64-pin products   Modification of 1.3.9 80-pin products   Modification of 1.3.10 100-pin products   Modification of operating ambient temperature in 1.6 Outline of Functions   Addition of table of 48-pin, 52-pin, 64-pin products (code flash memory 384 KB to 512 KB)   Addition of table of 80-pin, 100-pin products (code flash memory 384 KB to 512 KB)   Addition of (3) Flash ROM: 384 to 512 KB of 48 - to 100-pin products   Modification of 2.7 Data Memory Retention Characteristics   Addition of (3) Flash ROM: 384 to 512 KB of 48- to 100-pin products   Modification of 3.7 Data Memory Retention Characteristics   Addition and modification of 4.6 48-pin products   Modification of 4.752 -pin products   Addition and modification of 4.8 64-pin products   Addition and modification of 4.9 80-pin products   Addition and modification of 4.10 100-pin products
3.20	Jan 05, 2015	p. 2 p. 6 p. 6 to 8 p. 17 p.36, 39, $42,45,48$, 50,52 p. 46,48 p. 47 p. 62,64, $66,68,70$, 72	Deletion of R5F104JK and R5F104JL from the list of ROM and RAM capacities and modification of note   Deletion of ordering part numbers of R5F104JK and R5F104JL from 52-pin plastic LQFP package in 1.2 Ordering Information   Deletion of note 2 in 1.2 Ordering Information   Deletion of note 2 in 1.3.7 52-pin products   Modification of description in 1.6 Outline of Functions   Deletion of description of 52-pin in 1.6 Outline of Functions   Modification of note of 1.6 Outline of Functions   Modification of specifications in 2.3.2 Supply current characteristics

## REVISION HISTORY $\quad$ RL78/G14 Datasheet

Rev.	Date	Description	
		Page	Summary
3.20	Jan 05, 2015	p.135, 137,	Modification of specifications in 3.3.2 Supply current characteristics
		139,141,   143,145   p.197	
		Modification of part number in 4.7 52-pin products	
3.30	Aug 12, 2016	p.143, 145	Addition of maximum values in (3) Flash ROM: 384 to 512 KB of 48- to 100-pin products of   3.3.2 Supply current characteristics

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash ${ }^{\circledR}$ technology licensed from Silicon Storage Technology, Inc.
All trademarks and registered trademarks are the property of their respective owners.

## NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

## Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

## "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.
6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

## Renesns

SALES OFFICES
Renesas Electronics Corporation
http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
2801 Scott Bolulevard Santa Clara, CA 95050-2
Tel: $+1-408-588-600$, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: $+44-1628-585-900$
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Tel: +86-10, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
Tel: $+886-2-8175-9600$ North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit \#06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn. Bhd.
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Renesas Electronics Korea Co., Ltd.
Res., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141


[^0]:    * This value is the theoretical value of the relative difference between the transmission and reception sides

[^1]:    (Remarks are listed on the page after the next page.)

[^2]:    © 2012 Renesas Electronics Corporation. All rights reserved.

[^3]:    © 2012 Renesas Electronics Corporation. All rights reserved.

