austriamicrosystems AG

is now
 ams AG

The technical content of this austriamicrosystems datasheet is still valid.

Contact information:

Headquarters:

ams AG
Tobelbaderstrasse 30
8141 Unterpremstaetten, Austria
Tel: +43 (0) 31365000
e-Mail: ams_sales@ams.com

AS1119

144-LED Cross-Plexing Driver with 320 mA Charge-Pump

1 General Description

The AS1119 is a compact LED driver for 144 (90) single LEDs. The devices can be programmed via an $I^{2} \mathrm{C}$ compatible interface.
The AS1119 offers two blocks driving each 72 LEDs (3 blocks each 30LEDS) with $1 / 9$ (1/6) cycle rate. The required lines to drive all 144 (90) LEDs are reduced to 18 by using the cross-plexing feature optimizing space on the PCB. Every block driving 72(30) LEDs can be analog dimmed from 1 to 30 mA in 256 steps (8 bit).
Additionally each of the 144 (90) LEDs can be dimmed individually with 8 -bit allowing 256 steps of linear dimming. To reduce CPU usage up to 6 frames can be stored with individual time delays between frames to play small animations automatically.
The AS1119 operates from 2.7 V to 5.5 V and includes a 320 mA charge-pump to drive also white LEDs. The charge-pump operates in $2: 3$ and $1: 2$ mode.
The AS1119 features very low shutdown and operational current.
The device is available in a ultrasmall 36 -pin WL-CSP.

2 Key Features

- $1 \mathrm{MHz} \mathrm{I}^{2} \mathrm{C}$-Compatible Interface
- Open and Shorted LED Error Detection
- 144 LEDs in Dot Matrix
- Low-Power Shutdown Current
- Individual 8-bit LED PWM Control
- 8-bit Analog Brightness Control
- (1:1), 2:3, 1:2 320mA Charge Pump
- 6 Frames Memory for Animations
- System-clk synchronisation for multiple devices
- Supply Voltage Range: 2.7 V to 5.5 V
- Minimum PCB space required
- 36-pin WL-CSP package

3 Applications

The AS1119 is ideal for dot matrix displays in mobile phones, personal electronic and toys.

Figure 1. AS1119-Typical Application Diagram

4 Pinout

Pin Assignments

Figure 2. Pin Assignments (Top View)
(

Pin Descriptions

Table 1. Pin Descriptions

Pin Name	Pin Number	Description
$\begin{gathered} \hline \text { VDD1, VDD2, } \\ \text { VDD3 } \end{gathered}$	A6, E5, E1	Positive Supply Voltage. Connect to a +2.7 V to +5.5 V supply. Bypass this pin with $10 \mu \mathrm{~F}$ capacitance to GND1, GND2, GND3.
VCP	F1	Charge-Pump Output Voltage. Connect a $2.2 \mu \mathrm{~F}$ capacitor to GND3.
C1-, C1+	B1, C1	Flying Cap 1. Connect a $1 \mu \mathrm{~F}$ capacitor.
C2-, C2+	A1, D1	Flying Cap 2. Connect a $1 \mu \mathrm{~F}$ capacitor.
GND1	B5	Ground for VDD1. Used for CS0-CS8
GND2	F5	Ground for VDD2. Used for CS9-CS17
GND3	A2	Ground for VDD3. Used for Charge-Pump
SDA	C6	Serial-Data I/O. Open drain digital I/O $\mathrm{I}^{2} \mathrm{C}$ data pin.
SCL	D6	Serial-Clock Input.
ADO	C5	$1^{2} \mathrm{C}$ Address for bit 0. Put to GND or VDD to set ${ }^{2} \mathrm{C}$ addresses.
AD1	D5	$1^{2} \mathrm{C}$ Address for bit 1. Put to GND or VDD to set ${ }^{12} \mathrm{C}$ addresses.
RSTN	F6	Reset Input. Pull this pin to logic low to reset all control registers (set to default values) and to put the device into power-down. For normal operation pull this pin to VDD.
SYNC IN, SYNC_OUT	B6	Synchronization Clock Input or Output
IRQ	E6	Interrupt Request. Open drain digital Output.

Table 1. Pin Descriptions

Pin Name	Pin Number		Description
CS0 - CS8	$\begin{gathered} \text { A5-A3, B4-B2, } \\ \text { C4-C2 } \end{gathered}$	$\begin{aligned} & y \\ & \text { y } \\ & \text { 京 } \\ & \sum_{N}^{n} \end{aligned}$	Sinks and Sources for 72 LEDs each matrix.
CS9-CS17	$\begin{gathered} \hline \text { D4-D2, E4-E2, } \\ \text { F4-F2 } \end{gathered}$		
CS0-CS5	A5-A3, B4-B2		Sinks and Sources for 30 LEDs each matrix.
CS6-CS11	C4-C2, D4-D2		
CS12-CS17	E4-E2, F4-F2		

5 Absolute Maximum Ratings

Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Section 6 Electrical Characteristics on page 5 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 2. Absolute Maximum Ratings

Parameter	Min	Max	Units	Comments		
Electrical Parameters	-0.3	7	V			
VDD to GND	-0.3	7 or VDD +0.3	V			
All other pins to GND		500	mA			
Sink Current		100	mA			
Segment Current	-100	100	mA			
Input Current (latch-up immunity)						
Electrostatic Discharge						
Electrostatic Discharge HBM	1.5	kV	Norm: JEDEC 78			

6 Electrical Characteristics

VDD $=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{AMB}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, typ. values are at $\mathrm{TAMB}=+25^{\circ} \mathrm{C}$ (unless otherwise specified).
Table 3. Electrical Characteristics

1. Not all sources are allowed to be fully on at the same time.
2. guaranteed by design
3. $I_{S E G}=\frac{I_{\text {max }}-I_{\text {min }}}{I_{\text {max }}+I_{\text {min }}} \times 100$

Table 4. Logic Inputs/Outputs Characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
IIH, IIL	Logic Input Current	VIN $=0 \mathrm{~V}$ or VDD	-1		1	$\mu \mathrm{A}$
VIH	Logic High Input Voltage		1.6			V
VIL	Logic Low Input Voltage				0.6	V
$\Delta \mathrm{V}$ I	Hysteresis Voltage			0.1		V
Vol(SDA)	SDA Output Low Voltage	ISINK $=3 \mathrm{~mA}$			0.4	V
Vol(IRQ)	IRQ Output Low Voltage	IsInk $=3 \mathrm{~mA}$			0.4	V
$\underset{\substack{\text { UT) } \\ V O L(S Y N C O}}{ }$	Sync Clock Output Low Voltage	$\mathrm{ISINK}=1 \mathrm{~mA}$			0.4	V
$\begin{aligned} & \mathrm{VOH}(\mathrm{SYNC} \\ & \mathrm{UT}) \end{aligned}$	Sync Clock Output High Voltage	ISOURCE $=1 \mathrm{~mA}$			VDD-0.4	V
	Open Detection Level Threshold		VDd-0.4	$\begin{gathered} \hline \text { VDD- } \\ 0.1 \end{gathered}$		V
	Short Detection Level Threshold			0.9	1.2	V
	Capacitive Load for Each Bus Line	SCL Frequency $=400 \mathrm{kHz}$			400	pF
		SCL Frequency $=1000 \mathrm{kHz}$			100	

Table 5. ${ }^{2}$ C Timing Characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
fSCL	SCL Frequency		100		1000	kHz
tBUF	Bus Free Time Between STOP and START Conditions		1.3			$\mu \mathrm{l}$
tHoLDSTART	Hold Time for Repeated START Condition		160			ns
tLow	SCL Low Period		50		75	ns
tHIGH	SCL High Period		50		75	ns
tSETUPSTART	Setup Time for Repeated START Condition		100			ns
tSETUPDATA	Data Setup Time		10			ns
thoLDDATA	Data Hold Time		10		70	ns
tRISE(SCL)	SCL Rise Time		10	40	ns	
tRISE(SCL1)	SCL Rise Time after Repeated START Condition and After an ACK Bit		20	80	ns	
tFALL(SCL)	SCL Fall Time		20		80	ns
tRISE(SDA)	SDA Rise Time		160			ns
tFALL(SDA)	SDA Fall Time			50		ns
tSETUPSTOP	STOP Condition Setup Time			80	ns	
tSPIKESUP	Pulse Width of Spike Suppressed					

Notes:

1. The Min / Max values of the Timing Characteristics are guaranteed by design.
2. All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

Figure 3. Timing Diagram

7 Typical Operating Characteristics

Figure 4. Segment Drive Current vs. Supply Voltage

Figure 6. Segment Drive Current vs. Output Voltage

Figure 8. Open Detection Level vs. Supply Voltage

Figure 5. Segment Drive Current vs. Temperature

Figure 7. Ronnmos vs. Supply Voltage

Figure 9. Short Detection Level vs. Supply Voltage

Figure 10. Efficiency vs. Supply Voltage

Figure 12. Charge Pump Voltage vs. Supply Voltage

8 Detailed Description

Block Diagram

Figure 13. AS1119-Block Diagram

$I^{2} \mathrm{C}$ Interface

The AS1119 supports the $\mathrm{I}^{2} \mathrm{C}$ serial bus and data transmission protocol in fast mode at 1 MHz . The AS1119 operates as a slave on the $\mathrm{I}^{2} \mathrm{C}$ bus. The bus must be controlled by a master device that generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions. Connections to the bus are made via the open-drain I/O pins SCL and SDA.

Figure 14. ${ }^{2} \mathrm{C}$ Interface Initialisation

Figure 15. Bus Protocol

The bus protocol (as shown in Figure 15) is defined as:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.

The bus conditions are defined as:

- Bus Not Busy. Data and clock lines remain HIGH.
- Start Data Transfer. A change in the state of the data line, from HIGH to LOW, while the clock is HIGH, defines a START condition.
- Stop Data Transfer. A change in the state of the data line, from LOW to HIGH, while the clock line is HIGH, defines the STOP condition.
- Data Valid. The state of the data line represents valid data, when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal. There is one clock pulse per bit of data.
Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of data bytes transferred between START and STOP conditions is not limited and is determined by the master device. The information is transferred byte-wise and each receiver acknowledges with a ninth-bit. Within the $I^{2} \mathrm{C}$ bus specifications a high-speed mode (3.4 MHz clock rate) is defined.

Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse that is associated with this acknowledge bit. A device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an
acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line HIGH to enable the master to generate the STOP condition.

- Figure 15 on page 10 details how data transfer is accomplished on the $I^{2} \mathrm{C}$ bus. Depending upon the state of the R/W bit, two types of data transfer are possible:
- Master Transmitter to Slave Receiver. The first byte transmitted by the master is the slave address, followed by a number of data bytes. The slave returns an acknowledge bit after the slave address and each received byte.
- Slave Transmitter to Master Receiver. The first byte, the slave address, is transmitted by the master. The slave then returns an acknowledge bit. Next, a number of data bytes are transmitted by the slave to the master. The master returns an acknowledge bit after all received bytes other than the last byte. At the end of the last received byte, a not-acknowledge is returned. The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or a repeated START condition. Since a repeated START condition is also the beginning of the next serial transfer, the bus will not be released.

The AS1119 can operate in the following slave modes:

- Slave Receiver Mode. Serial data and clock are received through SDA and SCL. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by hardware after reception of the slave address and direction bit.
- Slave Transmitter Mode. The first byte (the slave address) is received and handled as in the slave receiver mode. However, in this mode the direction bit will indicate that the transfer direction is reversed. Serial data is transmitted on SDA by the AS1119 while the serial clock is input on SCL. START and STOP conditions are recognized as the beginning and end of a serial transfer.

${ }^{1}{ }^{2} \mathrm{C}$ Device Address Byte

The address byte (see Figure 16) is the first byte received following the START condition from the master device.
Figure 16. $I^{2} \mathrm{C}$ Device Address Byte

- The bit 1 and bit 2 of the address byte are the device select pins AD0 and AD1, which must be set to VDD or to GND. A maximum of four devices with the same pre-set code can therefore be connected on the same bus at one time.
- The last bit of the address byte (R / \bar{W}) define the operation to be performed. When set to a 1 a read operation is selected; when set to a 0 a write operation is selected.
Following the START condition, the AS1119 monitors the $I^{2} \mathrm{C}$ bus, checking the device type identifier being transmitted. Upon receiving the address code, and the R / \bar{W} bit, the slave device outputs an acknowledge signal on the SDA line.

Command Byte

The AS1119 operation, (see Table 15 on page 21) is determined by a command byte (see Table 17).
Figure 17. Command Byte

Figure 18. Command and Single Data Byte received by AS1119

Figure 19. Setting the Pointer to a Address Register to select a Data Register for a Read Operation

Figure 20. Reading n Bytes from AS1119

Initial Power-Up

On initial power-up, the AS1119 registers are reset to their default values, the display is blanked, and the device goes into shutdown mode. At this time, all registers should be programmed for normal operation.

Note: The default settings enable only scanning of one digit; the internal decoder is disabled and the Intensity Control Register (see page 16) and (see page 20) is set to the minimum values.

Shutdown Mode

The AS1119 device features two different shutdown modes. A software shutdown via shutdown register (see Shutdown Register (0x0A) on page 26) and a hardware shutdown via the RSTN pin.
The software shutdown disables all LED's and stops the internal operation of the logic. A shutdown mode via the RSTN pin additionally powers down the power-on-reset (PO) of the device. In this shutdown mode the AS1119 consumes only 100nA (typ.).

9 Register Description

Register Selection

Within this register the access to one of the RAM sections or to the Control register is selected. After one section is selected this section is valid as long as an other section is selected.

Table 6. Register Selection Address Map

Register Section	Address									Data									Description
	HEX	A7	A6	A5	A4	A3	A2	A1	A0	HEX	D7	D6	D5	D4	D3	D2	D1	D0	
NOP	253	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	No operation
Data Frame 0										1	0	0	0	0	0	0	0	1	Selection of RAM section for frame
Data Frame 1										2	0	0	0	0	0	0	1	0	
Data Frame 2										3	0	0	0	0	0	0	1	1	
Data Frame 3										4	0	0	0	0	0	1	0	0	
Data Frame 4										5	0	0	0	0	0	1	0	1	
Data Frame 5										6	0	0	0	0	0	1	1	0	
Control Register										11	0	0	0	0	1	0	1	1	Selection of Control Register

Data Definition of the single frames

One frame consits of 2 blocks (à 8×9 LED-matrix) or 3 blocks (à 5×6 LED-matrix). This configuration is set in the AS1119 config register (see Table 20 on page 24).
In the internal DPRAM of the device 6 frames can be stored. For each frame the following parameters have to be stored.

- LED is ON or OFF.
- LED is steady ON or blinking.
- The intensity of every single LED can be set via a 8 bits PWM.

Note: After power-up the data in the DPRAM is undefined (either ' 0 ' or ' 1 ').

2 Blocks with 8x9 LED Matrix

The AS1119 can be configured to control two seperated blocks of LEDs matrixes. This must be set via the bit D0 in the AS1119 config register (see AS1119 Config Register (0x04) on page 24).

Figure 21. 8x9 LED Matrix with two blocks

Datasheet-Register Description

The adress structure (as shown in Table 7) within on frame is always the same independent which frame was selected via the register selection (see Table 6 on page 13).
Table 7. Dataframe Adress Structure for 2 Matrixes

	Adresses within frame (HEX code)						
Current Source		On I Off		Blink		Intensity	
Matrix A	Matrix B						
CS0	CS9	0×00	0×01	0×12	0×13	$0 \times 24-0 \times 2 \mathrm{~B}$	$0 \times 2 \mathrm{C}-0 \times 33$
CS1	CS10	0×02	0×03	0×14	0×15	$0 \times 34-0 \times 3 \mathrm{~B}$	$0 \times 3 \mathrm{C}-0 \times 43$
CS2	CS11	0×04	0×05	0×16	0×17	$0 \times 44-0 \times 4 \mathrm{~B}$	$0 \times 4 \mathrm{C}-0 \times 53$
CS3	CS12	0×06	0×07	0×18	0×19	$0 \times 54-0 \times 5 \mathrm{~B}$	$0 \times 5 \mathrm{C}-0 \times 63$
CS4	CS13	0×08	0×09	$0 \times 1 \mathrm{~A}$	$0 \times 1 \mathrm{~B}$	$0 \times 64-0 \times 6 \mathrm{~B}$	$0 \times 6 \mathrm{C}-0 \times 73$
CS5	CS14	$0 \times 0 \mathrm{~A}$	$0 \times 0 \mathrm{~B}$	$0 \times 1 \mathrm{C}$	$0 \times 1 \mathrm{D}$	$0 \times 74-0 \times 7 \mathrm{~B}$	$0 \times 7 \mathrm{C}-0 \times 83$
CS6	CS15	$0 \times 0 \mathrm{C}$	$0 \times 0 \mathrm{D}$	$0 \times 1 \mathrm{E}$	$0 \times 1 \mathrm{~F}$	$0 \times 84-0 \times 8 \mathrm{~B}$	$0 \times 8 \mathrm{C}-0 \times 93$
CS7	CS16	$0 \times 0 \mathrm{E}$	$0 \times 0 \mathrm{~F}$	0×20	0×21	$0 \times 94-0 \times 9 \mathrm{~B}$	$0 \times 9 \mathrm{C}-0 \times \mathrm{A3}$
CS8	CS17	0×10	0×11	0×22	0×22	$0 \times 44-0 \times \mathrm{AB}$	$0 \times \mathrm{AC}-0 \times \mathrm{B3} 3$

In Table 8 it's described which databit represents which LED in the matrix. Per default all databits are ' 0 ', meaning no LED is on. A ' 1 ' puts the LED on.

Table 8. LEDs ON/OFF Register Format for 2 Matrixes Setup

Matrix	Current Source	Adress									Data							
		HEX	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
A	CSO	0x00	0	0	0	0	0	0	0	0	LED7	$\begin{gathered} \text { LED } \\ 6 \end{gathered}$	$\begin{gathered} \text { LED } \\ 5 \end{gathered}$	$\begin{gathered} \text { LED } \\ 4 \end{gathered}$	$\begin{gathered} \text { LED } \\ 3 \end{gathered}$	$\begin{gathered} \text { LED } \\ 2 \end{gathered}$	$\begin{gathered} \text { LED } \\ 1 \end{gathered}$	$\begin{gathered} \text { LED } \\ 0 \end{gathered}$
B	CS9	0x01	0	0	0	0	0	0	0	1	$\begin{gathered} \text { LED } \\ 15 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 14 \end{aligned}$	$\begin{gathered} \text { LED } \\ 13 \end{gathered}$	$\begin{gathered} \text { LED } \\ 12 \end{gathered}$	$\begin{gathered} \text { LED } \\ 11 \end{gathered}$	$\begin{gathered} \text { LED } \\ 10 \end{gathered}$	$\begin{gathered} \text { LED } \\ 9 \end{gathered}$	$\begin{gathered} \text { LED } \\ 8 \end{gathered}$
A	CS1	0x02	0	0	0	0	0	0	1	0	$\begin{gathered} \text { LED } \\ 23 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 22 \end{gathered}$	$\begin{gathered} \text { LED } \\ 21 \end{gathered}$	$\begin{gathered} \text { LED } \\ 20 \end{gathered}$	$\begin{gathered} \text { LED } \\ 19 \end{gathered}$	$\begin{gathered} \text { LED } \\ 18 \end{gathered}$	$\begin{gathered} \text { LED } \\ 17 \end{gathered}$	$\begin{gathered} \text { LED } \\ 16 \end{gathered}$
B	CS10	0x03	0	0	0	0	0	0	1	1	$\begin{gathered} \text { LED } \\ 31 \end{gathered}$	$\begin{gathered} \text { LED } \\ 30 \end{gathered}$	$\begin{gathered} \text { LED } \\ 29 \end{gathered}$	$\begin{gathered} \text { LED } \\ 28 \end{gathered}$	$\begin{gathered} \text { LED } \\ 27 \end{gathered}$	$\begin{gathered} \text { LED } \\ 26 \end{gathered}$	$\begin{gathered} \text { LED } \\ 25 \end{gathered}$	$\begin{gathered} \text { LED } \\ 24 \end{gathered}$
A	CS2	0x04	0	0	0	0	0	1	0	0	$\begin{gathered} \text { LED } \\ 39 \end{gathered}$	$\begin{gathered} \text { LED } \\ 38 \end{gathered}$	$\begin{gathered} \text { LED } \\ 37 \end{gathered}$	$\begin{gathered} \text { LED } \\ 36 \end{gathered}$	$\begin{gathered} \text { LED } \\ 35 \end{gathered}$	$\begin{gathered} \text { LED } \\ 34 \end{gathered}$	$\begin{gathered} \text { LED } \\ 33 \end{gathered}$	$\begin{gathered} \text { LED } \\ 32 \end{gathered}$
B	CS11	0x05	0	0	0	0	0	1	0	1	$\begin{aligned} & \text { LED } \\ & 47 \end{aligned}$	$\begin{gathered} \text { LED } \\ 46 \end{gathered}$	$\begin{gathered} \text { LED } \\ 45 \end{gathered}$	$\begin{gathered} \text { LED } \\ 44 \end{gathered}$	$\begin{gathered} \text { LED } \\ 43 \end{gathered}$	$\begin{gathered} \text { LED } \\ 42 \end{gathered}$	$\begin{gathered} \text { LED } \\ 41 \end{gathered}$	$\begin{gathered} \text { LED } \\ 40 \end{gathered}$
A	CS3	0x06	0	0	0	0	0	1	1	0	$\begin{gathered} \text { LED } \\ 55 \end{gathered}$	$\begin{gathered} \text { LED } \\ 54 \end{gathered}$	$\begin{gathered} \text { LED } \\ 53 \end{gathered}$	$\begin{gathered} \text { LED } \\ 52 \end{gathered}$	$\begin{gathered} \text { LED } \\ 51 \end{gathered}$	$\begin{gathered} \text { LED } \\ 50 \end{gathered}$	$\begin{gathered} \text { LED } \\ 49 \end{gathered}$	$\begin{gathered} \text { LED } \\ 48 \end{gathered}$
B	CS12	0x07	0	0	0	0	0	1	1	1	$\begin{gathered} \text { LED } \\ 63 \end{gathered}$	$\begin{gathered} \text { LED } \\ 62 \end{gathered}$	$\begin{gathered} \text { LED } \\ 61 \end{gathered}$	$\begin{gathered} \text { LED } \\ 60 \end{gathered}$	$\begin{gathered} \text { LED } \\ 59 \end{gathered}$	$\begin{gathered} \text { LED } \\ 58 \end{gathered}$	$\begin{gathered} \text { LED } \\ 57 \end{gathered}$	$\begin{gathered} \text { LED } \\ 56 \end{gathered}$
A	CS4	0x08	0	0	0	0	1	0	0	0	$\begin{gathered} \text { LED } \\ 71 \end{gathered}$	$\begin{gathered} \text { LED } \\ 70 \end{gathered}$	$\begin{gathered} \text { LED } \\ 69 \end{gathered}$	$\begin{gathered} \text { LED } \\ 68 \end{gathered}$	$\begin{gathered} \text { LED } \\ 67 \end{gathered}$	$\begin{gathered} \text { LED } \\ 66 \end{gathered}$	$\begin{gathered} \text { LED } \\ 65 \end{gathered}$	$\begin{gathered} \text { LED } \\ 64 \end{gathered}$
B	CS13	0x09	0	0	0	0	1	0	0	1	$\begin{gathered} \text { LED } \\ 79 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 78 \end{gathered}$	$\begin{gathered} \text { LED } \\ 77 \end{gathered}$	$\begin{gathered} \text { LED } \\ 76 \end{gathered}$	$\begin{gathered} \text { LED } \\ 75 \end{gathered}$	$\begin{gathered} \text { LED } \\ 74 \end{gathered}$	$\begin{gathered} \text { LED } \\ 73 \end{gathered}$	$\begin{gathered} \text { LED } \\ 72 \end{gathered}$
A	CS5	0x0A	0	0	0	0	1	0	1	0	$\begin{gathered} \hline \text { LED } \\ 87 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 86 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 85 \end{gathered}$	$\begin{gathered} \text { LED } \\ 84 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 83 \end{gathered}$	$\begin{gathered} \text { LED } \\ 82 \end{gathered}$	$\begin{gathered} \text { LED } \\ 81 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 80 \end{gathered}$
B	CS14	0x0B	0	0	0	0	1	0	1	1	$\begin{gathered} \text { LED } \\ 95 \\ \hline \end{gathered}$	$\begin{gathered} \text { LED } \\ 94 \end{gathered}$	$\begin{gathered} \text { LED } \\ 93 \end{gathered}$	$\begin{gathered} \text { LED } \\ 92 \end{gathered}$	$\begin{gathered} \text { LED } \\ 91 \end{gathered}$	$\begin{gathered} \text { LED } \\ 90 \end{gathered}$	$\begin{gathered} \text { LED } \\ 89 \end{gathered}$	$\begin{gathered} \text { LED } \\ 88 \end{gathered}$
A	CS6	0x0C	0	0	0	0	1	1	0	0	$\begin{aligned} & \text { LED } \\ & 103 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 102 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 101 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 100 \end{aligned}$	$\begin{gathered} \text { LED } \\ 99 \end{gathered}$	$\begin{gathered} \text { LED } \\ 98 \end{gathered}$	$\begin{gathered} \text { LED } \\ 97 \end{gathered}$	$\begin{gathered} \text { LED } \\ 96 \end{gathered}$
B	CS15	0x0D	0	0	0	0	1	1	0	1	$\begin{gathered} \text { LED } \\ 111 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 110 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 109 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 108 \end{aligned}$	$\begin{gathered} \text { LED } \\ 107 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 106 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 105 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 104 \end{aligned}$
A	CS7	0x0E	0	0	0	0	1	1	1	0	$\begin{gathered} \text { LED } \\ 119 \end{gathered}$	$\begin{gathered} \text { LED } \\ 118 \end{gathered}$	$\begin{gathered} \text { LED } \\ 117 \end{gathered}$	$\begin{gathered} \text { LED } \\ 116 \end{gathered}$	$\begin{gathered} \text { LED } \\ 115 \end{gathered}$	$\begin{gathered} \text { LED } \\ 114 \end{gathered}$	$\begin{gathered} \text { LED } \\ 113 \end{gathered}$	$\begin{gathered} \text { LED } \\ 112 \end{gathered}$
B	CS16	0x0F	0	0	0	0	1	1	1	1	$\begin{aligned} & \text { LED } \\ & 127 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 126 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 125 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 124 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 123 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 122 \end{aligned}$	$\begin{aligned} & \hline \text { LED } \\ & 121 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 120 \end{aligned}$

Table 8. LEDs ON/OFF Register Format for 2 Matrixes Setup

Matrix	Current Source	Adress									Data							
		HEX	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
A	CS8	0x10	0	0	0	1	0	0	0	0	$\begin{aligned} & \hline \text { LED } \\ & 135 \end{aligned}$	$\begin{aligned} & \hline \text { LED } \\ & 134 \end{aligned}$	$\begin{aligned} & \hline \text { LED } \\ & 133 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 132 \end{aligned}$	$\begin{aligned} & \hline \text { LED } \\ & 131 \end{aligned}$	$\begin{aligned} & \hline \text { LED } \\ & 130 \end{aligned}$	$\begin{aligned} & \hline \text { LED } \\ & 129 \end{aligned}$	$\begin{aligned} & \hline \text { LED } \\ & 128 \end{aligned}$
B	CS17	0x11	0	0	0	1	0	0	0	1	$\begin{gathered} \text { LED } \\ 143 \end{gathered}$	$\begin{gathered} \text { LED } \\ 142 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 141 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 140 \end{aligned}$	$\begin{gathered} \text { LED } \\ 139 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 138 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 137 \end{aligned}$	$\begin{gathered} \text { LED } \\ 136 \end{gathered}$

In the blink register (see Table 9) every single LED can be set to blink. The blink period is set in the display option register (see Display Option Register (0×03) on page 23).
Table 9. LEDs Blink Register Format for 2 Matrixes Setup

Matrix	Current Source	Adress									Data							
		HEX	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
A	CS0	0x12	0	0	0	1	0	0	1	0	$\begin{gathered} \text { LED } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 3 \end{gathered}$	$\begin{gathered} \text { LED } \\ 2 \end{gathered}$	$\begin{gathered} \hline \mathrm{LED} \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 0 \end{gathered}$
B	CS9	0x13	0	0	0	1	0	0	1	1	$\begin{gathered} \text { LED } \\ 15 \end{gathered}$	$\begin{gathered} \text { LED } \\ 14 \end{gathered}$	$\begin{gathered} \text { LED } \\ 13 \end{gathered}$	$\begin{gathered} \text { LED } \\ 12 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 11 \end{gathered}$	$\begin{gathered} \text { LED } \\ 10 \end{gathered}$	$\begin{gathered} \text { LED } \\ 9 \end{gathered}$	$\begin{gathered} \text { LED } \\ 8 \end{gathered}$
A	CS1	0x14	0	0	0	1	0	1	0	0	$\begin{gathered} \text { LED } \\ 23 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 22 \end{aligned}$	$\begin{gathered} \text { LED } \\ 21 \end{gathered}$	$\begin{gathered} \text { LED } \\ 20 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 19 \end{gathered}$	$\begin{gathered} \text { LED } \\ 18 \end{gathered}$	$\begin{gathered} \text { LED } \\ 17 \end{gathered}$	$\begin{gathered} \text { LED } \\ 16 \end{gathered}$
B	CS10	0x15	0	0	0	1	0	1	0	1	$\begin{gathered} \text { LED } \\ 31 \end{gathered}$	$\begin{gathered} \text { LED } \\ 30 \end{gathered}$	$\begin{gathered} \text { LED } \\ 29 \end{gathered}$	$\begin{gathered} \text { LED } \\ 28 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 27 \end{gathered}$	$\begin{gathered} \text { LED } \\ 26 \end{gathered}$	$\begin{gathered} \text { LED } \\ 25 \end{gathered}$	$\begin{gathered} \text { LED } \\ 24 \end{gathered}$
A	CS2	0x16	0	0	0	1	0	1	1	0	$\begin{gathered} \text { LED } \\ 39 \end{gathered}$	$\begin{gathered} \text { LED } \\ 38 \end{gathered}$	$\begin{gathered} \text { LED } \\ 37 \end{gathered}$	$\begin{gathered} \text { LED } \\ 36 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 35 \end{gathered}$	$\begin{gathered} \text { LED } \\ 34 \end{gathered}$	$\begin{gathered} \text { LED } \\ 33 \end{gathered}$	$\begin{gathered} \text { LED } \\ 32 \end{gathered}$
B	CS11	0x17	0	0	0	1	0	1	1	1	$\begin{gathered} \text { LED } \\ 47 \end{gathered}$	$\begin{gathered} \text { LED } \\ 46 \end{gathered}$	$\begin{gathered} \text { LED } \\ 45 \end{gathered}$	$\begin{gathered} \text { LED } \\ 44 \end{gathered}$	$\begin{gathered} \text { LED } \\ 43 \end{gathered}$	$\begin{gathered} \text { LED } \\ 42 \end{gathered}$	$\begin{gathered} \text { LED } \\ 41 \end{gathered}$	$\begin{gathered} \text { LED } \\ 40 \end{gathered}$
A	CS3	0x18	0	0	0	1	1	0	0	0	$\begin{gathered} \text { LED } \\ 55 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 54 \end{gathered}$	$\begin{gathered} \text { LED } \\ 53 \end{gathered}$	$\begin{gathered} \text { LED } \\ 52 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 51 \end{gathered}$	$\begin{gathered} \text { LED } \\ 50 \end{gathered}$	$\begin{gathered} \text { LED } \\ 49 \end{gathered}$	$\begin{gathered} \text { LED } \\ 48 \end{gathered}$
B	CS12	0x19	0	0	0	1	1	0	0	1	$\begin{gathered} \text { LED } \\ 63 \end{gathered}$	$\begin{gathered} \text { LED } \\ 62 \end{gathered}$	$\begin{gathered} \text { LED } \\ 61 \end{gathered}$	$\begin{gathered} \text { LED } \\ 60 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 59 \end{gathered}$	$\begin{gathered} \text { LED } \\ 58 \end{gathered}$	$\begin{gathered} \text { LED } \\ 57 \end{gathered}$	$\begin{gathered} \text { LED } \\ 56 \end{gathered}$
A	CS4	0x1A	0	0	0	1	1	0	1	0	$\begin{gathered} \text { LED } \\ 71 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 70 \end{aligned}$	$\begin{gathered} \text { LED } \\ 69 \end{gathered}$	$\begin{gathered} \text { LED } \\ 68 \end{gathered}$	$\begin{gathered} \text { LED } \\ 67 \end{gathered}$	$\begin{gathered} \text { LED } \\ 66 \end{gathered}$	$\begin{gathered} \text { LED } \\ 65 \end{gathered}$	$\begin{gathered} \text { LED } \\ 64 \end{gathered}$
B	CS13	0x1B	0	0	0	1	1	0	1	1	$\begin{gathered} \text { LED } \\ 79 \end{gathered}$	$\begin{gathered} \text { LED } \\ 78 \end{gathered}$	$\begin{gathered} \text { LED } \\ 77 \end{gathered}$	$\begin{gathered} \text { LED } \\ 76 \end{gathered}$	$\begin{gathered} \text { LED } \\ 75 \end{gathered}$	$\begin{gathered} \text { LED } \\ 74 \end{gathered}$	$\begin{gathered} \text { LED } \\ 73 \end{gathered}$	$\begin{gathered} \text { LED } \\ 72 \end{gathered}$
A	CS5	0x1C	0	0	0	1	1	1	0	0	$\begin{gathered} \hline \text { LED } \\ 87 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 86 \end{gathered}$	$\begin{gathered} \text { LED } \\ 85 \end{gathered}$	$\begin{gathered} \text { LED } \\ 84 \end{gathered}$	$\begin{gathered} \text { LED } \\ 83 \end{gathered}$	$\begin{gathered} \text { LED } \\ 82 \end{gathered}$	$\begin{gathered} \text { LED } \\ 81 \end{gathered}$	$\begin{gathered} \text { LED } \\ 80 \end{gathered}$
B	CS14	0x1D	0	0	0	1	1	1	0	1	$\begin{gathered} \text { LED } \\ 95 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 94 \end{gathered}$	$\begin{gathered} \text { LED } \\ 93 \end{gathered}$	$\begin{gathered} \text { LED } \\ 92 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 91 \end{gathered}$	$\begin{gathered} \text { LED } \\ 90 \end{gathered}$	$\begin{gathered} \text { LED } \\ 89 \end{gathered}$	$\begin{gathered} \text { LED } \\ 88 \end{gathered}$
A	CS6	0x1E	0	0	0	1	1	1	1	0	$\begin{aligned} & \text { LED } \\ & 103 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 102 \end{aligned}$	$\begin{gathered} \text { LED } \\ 101 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 100 \end{aligned}$	$\begin{gathered} \hline \text { LED } \\ 99 \end{gathered}$	$\begin{gathered} \text { LED } \\ 98 \end{gathered}$	$\begin{gathered} \text { LED } \\ 97 \end{gathered}$	$\begin{gathered} \text { LED } \\ 96 \end{gathered}$
B	CS15	0x1F	0	0	1	1	1	1	1	1	$\begin{gathered} \text { LED } \\ 111 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 110 \end{aligned}$	$\begin{gathered} \hline \text { LED } \\ 109 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 108 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 107 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 106 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 105 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 104 \end{aligned}$
A	CS7	0x20	0	0	1	0	0	0	0	0	$\begin{gathered} \text { LED } \\ 119 \end{gathered}$	$\begin{gathered} \text { LED } \\ 118 \end{gathered}$	$\begin{gathered} \text { LED } \\ 117 \end{gathered}$	$\begin{gathered} \text { LED } \\ 116 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 115 \end{aligned}$	$\begin{gathered} \text { LED } \\ 114 \end{gathered}$	$\begin{gathered} \text { LED } \\ 113 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 112 \end{aligned}$
B	CS16	0x21	0	0	1	0	0	0	0	1	$\begin{gathered} \text { LED } \\ 127 \end{gathered}$	$\begin{aligned} & \hline \text { LED } \\ & 126 \end{aligned}$	$\begin{gathered} \text { LED } \\ 125 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 124 \end{aligned}$	$\begin{aligned} & \hline \text { LED } \\ & 123 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 122 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 121 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 120 \end{aligned}$
A	CS8	0x22	0	0	1	0	0	0	1	0	$\begin{aligned} & \text { LED } \\ & 135 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 134 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 133 \end{aligned}$	$\begin{gathered} \text { LED } \\ 132 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 131 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 130 \end{aligned}$	$\begin{gathered} \text { LED } \\ 129 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 128 \end{aligned}$
B	CS17	0x23	0	0	1	0	0	0	1	1	$\begin{aligned} & \text { LED } \\ & 143 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 142 \end{aligned}$	$\begin{gathered} \text { LED } \\ 141 \end{gathered}$	$\begin{gathered} \text { LED } \\ 140 \end{gathered}$	$\begin{aligned} & \hline \text { LED } \\ & 139 \end{aligned}$	$\begin{aligned} & \text { LED } \\ & 138 \end{aligned}$	$\begin{gathered} \text { LED } \\ 137 \end{gathered}$	$\begin{gathered} \text { LED } \\ 136 \end{gathered}$

In the intensity register (see Table 10) the brightness of every single LED can bes set via a 8bit PWM (255 steps).
Table 10. LEDs Intensity Register Format for 2 Matrixes Setup

Table 10. LEDs Intensity Register Format for 2 Matrixes Setup

3 Blocks with 5x6 LED Matrix
The AS1119 can be configured to control three seperated blocks of LEDs matrixes. This must be set via the bit D0 in the AS1119 config register (see AS1119 Config Register (0x04) on page 24).

Figure 22. 5x6 LED Matrix with 3 Matrixes

Table 11. Dataframe Adress Structure for 3 Matrixes

In Table 12 it's described which databit represents which LED in the matrix. Per default all databits are ' 0 ', meaning no LED is on. A '1' puts the LED on.

Note: LED A01 is the first LED of the Current Source 0 in the Matrix A. LED B01 is the first LED of the Current Source 6 in the Matrix B. and so on.

Table 12. LEDs ON/OFF Register Format for 3 Matrixes Setup

Current Source	Adress									Data							
	HEX	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
$\begin{gathered} \text { CSO, CS6, } \\ \text { CS12 } \end{gathered}$	0x00	0	0	0	0	0	0	0	0	$\begin{gathered} \text { LED } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 3 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 0 \end{gathered}$
	0×01	0	0	0	0	0	0	0	1	X	$\begin{gathered} \text { LED } \\ 14 \end{gathered}$	$\begin{gathered} \text { LED } \\ 13 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 12 \end{gathered}$	$\begin{gathered} \text { LED } \\ 11 \end{gathered}$	$\begin{gathered} \text { LED } \\ 10 \end{gathered}$	$\begin{gathered} \text { LED } \\ 9 \end{gathered}$	$\begin{gathered} \text { LED } \\ 8 \end{gathered}$
$\begin{gathered} \text { CS1, CS7, } \\ \text { CS13 } \end{gathered}$	0x02	0	0	0	0	0	0	1	0	$\begin{gathered} \text { LED } \\ 23 \end{gathered}$	$\begin{gathered} \text { LED } \\ 22 \end{gathered}$	$\begin{gathered} \text { LED } \\ 21 \end{gathered}$	$\begin{gathered} \text { LED } \\ 20 \end{gathered}$	$\begin{gathered} \text { LED } \\ 19 \end{gathered}$	$\begin{gathered} \text { LED } \\ 18 \end{gathered}$	$\begin{gathered} \text { LED } \\ 17 \end{gathered}$	$\begin{gathered} \text { LED } \\ 16 \end{gathered}$
	0×03	0	0	0	0	0	0	1	1	X	$\begin{gathered} \text { LED } \\ 30 \end{gathered}$	$\begin{gathered} \text { LED } \\ 29 \end{gathered}$	$\begin{gathered} \text { LED } \\ 28 \end{gathered}$	$\begin{gathered} \text { LED } \\ 27 \end{gathered}$	$\begin{gathered} \text { LED } \\ 26 \end{gathered}$	$\begin{gathered} \text { LED } \\ 25 \end{gathered}$	$\begin{gathered} \text { LED } \\ 24 \end{gathered}$
$\begin{gathered} \text { CS2, CS8, } \\ \text { CS14 } \end{gathered}$	0x04	0	0	0	0	0	1	0	0	$\begin{gathered} \text { LED } \\ 39 \end{gathered}$	$\begin{gathered} \text { LED } \\ 38 \end{gathered}$	$\begin{gathered} \text { LED } \\ 37 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 36 \end{gathered}$	$\begin{gathered} \text { LED } \\ 35 \end{gathered}$	$\begin{gathered} \text { LED } \\ 34 \end{gathered}$	$\begin{gathered} \text { LED } \\ 33 \end{gathered}$	$\begin{gathered} \text { LED } \\ 32 \end{gathered}$
	0x05	0	0	0	0	0	1	0	1	X	$\begin{gathered} \text { LED } \\ 46 \end{gathered}$	$\begin{gathered} \text { LED } \\ 45 \end{gathered}$	$\begin{gathered} \text { LED } \\ 44 \end{gathered}$	$\begin{gathered} \text { LED } \\ 43 \end{gathered}$	$\begin{gathered} \text { LED } \\ 42 \end{gathered}$	$\begin{gathered} \text { LED } \\ 41 \end{gathered}$	$\begin{gathered} \text { LED } \\ 40 \end{gathered}$

Table 12. LEDs ON/OFF Register Format for 3 Matrixes Setup

Current Source	Adress									Data							
	HEX	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
$\begin{gathered} \text { CS3, CS9, } \\ \text { CS15 } \end{gathered}$	0x06	0	0	0	0	0	1	1	0	$\begin{gathered} \hline \text { LED } \\ 55 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 54 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 53 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { LED5 } \\ 2 \end{array}$	$\begin{gathered} \hline \text { LED } \\ 51 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 50 \end{gathered}$	$\begin{gathered} \text { LED } \\ 49 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 48 \end{gathered}$
	0x07	0	0	0	0	0	1	1	1	X	$\begin{gathered} \text { LED } \\ 62 \end{gathered}$	$\begin{gathered} \text { LED } \\ 61 \end{gathered}$	$\begin{gathered} \text { LED } \\ 60 \end{gathered}$	$\begin{gathered} \text { LED } \\ 59 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 58 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 57 \end{aligned}$	$\begin{gathered} \hline \text { LED } \\ 56 \end{gathered}$
$\begin{aligned} & \text { CS4, } \\ & \text { CS10, } \\ & \text { CS16 } \end{aligned}$	0x08	0	0	0	0	1	0	0	0	$\begin{gathered} \text { LED } \\ 71 \end{gathered}$	$\begin{gathered} \text { LED } \\ 70 \end{gathered}$	$\begin{gathered} \text { LED } \\ 69 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { LED6 } \\ 8 \end{array}$	$\begin{gathered} \text { LED } \\ 67 \end{gathered}$	$\begin{gathered} \text { LED } \\ 66 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 65 \end{aligned}$	$\begin{gathered} \text { LED } \\ 64 \end{gathered}$
	0x09	0	0	0	0	1	0	0	1	X	$\begin{gathered} \text { LED } \\ 78 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 77 \end{gathered}$	$\begin{gathered} \text { LED } \\ 76 \end{gathered}$	$\begin{gathered} \text { LED } \\ 75 \end{gathered}$	$\begin{gathered} \text { LED } \\ 74 \end{gathered}$	$\begin{gathered} \text { LED } \\ 73 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 72 \end{gathered}$
$\begin{aligned} & \text { CS5, } \\ & \text { CS11, } \\ & \text { CS17 } \end{aligned}$	0x0A	0	0	0	0	1	0	1	0	$\begin{gathered} \text { LED } \\ 87 \end{gathered}$	$\begin{gathered} \text { LED } \\ 86 \end{gathered}$	$\begin{gathered} \text { LED } \\ 85 \end{gathered}$	$\begin{gathered} \hline \text { LED8 } \\ 4 \end{gathered}$	$\begin{gathered} \text { LED } \\ 83 \end{gathered}$	$\begin{gathered} \text { LED } \\ 82 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 81 \end{aligned}$	$\begin{gathered} \text { LED } \\ 80 \end{gathered}$
	0x0B	0	0	0	0	1	0	1	1	X	$\begin{gathered} \text { LED } \\ 94 \end{gathered}$	$\begin{gathered} \text { LED } \\ 93 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 92 \end{aligned}$	$\begin{gathered} \text { LED } \\ 91 \end{gathered}$	$\begin{gathered} \text { LED } \\ 90 \end{gathered}$	$\begin{gathered} \text { LED } \\ 89 \end{gathered}$	$\begin{gathered} \text { LED } \\ 88 \end{gathered}$

In the blink register (see Table 13) every single LED can be set to blink. The blink period is set in the display option register (see Display Option Register (0×03) on page 23).

Table 13. LEDs Blink Register Format for 3 Matrixes Setup

Current Source	Adress									Data							
	HEX	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
$\begin{gathered} \text { CS0, CS6, } \\ \text { CS12 } \end{gathered}$	0x12	0	0	0	0	0	0	0	0	$\begin{gathered} \text { LED } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 4 \end{gathered}$	$\begin{gathered} \text { LED } \\ 3 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 2 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 0 \end{gathered}$
	0x12	0	0	0	0	0	0	0	1	X	$\begin{gathered} \text { LED } \\ 14 \end{gathered}$	$\begin{gathered} \text { LED } \\ 13 \end{gathered}$	$\begin{gathered} \text { LED } \\ 12 \end{gathered}$	$\begin{gathered} \text { LED } \\ 11 \end{gathered}$	$\begin{gathered} \text { LED } \\ 10 \end{gathered}$	$\begin{gathered} \text { LED } \\ 9 \end{gathered}$	$\begin{gathered} \text { LED } \\ 8 \end{gathered}$
$\begin{gathered} \text { CS1, CS7, } \\ \text { CS13 } \end{gathered}$	0x14	0	0	0	0	0	0	1	0	$\begin{gathered} \text { LED } \\ 23 \end{gathered}$	$\begin{gathered} \text { LED } \\ 22 \end{gathered}$	$\begin{gathered} \text { LED } \\ 21 \end{gathered}$	$\begin{gathered} \text { LED } \\ 20 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 19 \end{gathered}$	$\begin{gathered} \text { LED } \\ 18 \end{gathered}$	$\begin{gathered} \text { LED } \\ 17 \end{gathered}$	$\begin{gathered} \text { LED } \\ 16 \end{gathered}$
	0x15	0	0	0	0	0	0	1	1	X	$\begin{gathered} \text { LED } \\ 30 \end{gathered}$	$\begin{gathered} \text { LED } \\ 29 \end{gathered}$	$\begin{gathered} \text { LED } \\ 28 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 27 \end{gathered}$	$\begin{gathered} \text { LED } \\ 26 \end{gathered}$	$\begin{gathered} \text { LED } \\ 25 \end{gathered}$	$\begin{gathered} \text { LED } \\ 24 \end{gathered}$
$\begin{gathered} \text { CS2, CS8, } \\ \text { CS14 } \end{gathered}$	0x16	0	0	0	0	0	1	0	0	$\begin{gathered} \text { LED } \\ 39 \end{gathered}$	$\begin{gathered} \text { LED } \\ 38 \end{gathered}$	$\begin{gathered} \text { LED } \\ 37 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 36 \end{gathered}$	$\begin{gathered} \text { LED } \\ 35 \end{gathered}$	$\begin{gathered} \text { LED } \\ 34 \end{gathered}$	$\begin{gathered} \text { LED } \\ 33 \end{gathered}$	$\begin{gathered} \text { LED } \\ 32 \end{gathered}$
	0x17	0	0	0	0	0	1	0	1	X	$\begin{gathered} \text { LED } \\ 46 \end{gathered}$	$\begin{gathered} \text { LED } \\ 45 \end{gathered}$	$\begin{gathered} \text { LED } \\ 44 \end{gathered}$	$\begin{gathered} \text { LED } \\ 43 \end{gathered}$	$\begin{gathered} \text { LED } \\ 42 \end{gathered}$	$\begin{gathered} \text { LED } \\ 41 \end{gathered}$	$\begin{gathered} \text { LED } \\ 40 \end{gathered}$
$\begin{gathered} \text { CS3, CS9, } \\ \text { CS15 } \end{gathered}$	0x18	0	0	0	0	0	1	1	0	$\begin{gathered} \text { LED } \\ 55 \end{gathered}$	$\begin{gathered} \text { LED } \\ 54 \end{gathered}$	$\begin{gathered} \text { LED } \\ 53 \end{gathered}$	$\begin{gathered} \text { LED5 } \\ 2 \end{gathered}$	$\begin{gathered} \text { LED } \\ 51 \end{gathered}$	$\begin{aligned} & \text { LED } \\ & 50 \end{aligned}$	$\begin{gathered} \text { LED } \\ 49 \end{gathered}$	$\begin{gathered} \text { LED } \\ 48 \end{gathered}$
	0x19	0	0	0	0	0	1	1	1	X	$\begin{gathered} \text { LED } \\ 62 \end{gathered}$	$\begin{gathered} \text { LED } \\ 61 \end{gathered}$	$\begin{gathered} \text { LED } \\ 60 \end{gathered}$	$\begin{gathered} \text { LED } \\ 59 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 58 \end{gathered}$	$\begin{gathered} \text { LED } \\ 57 \end{gathered}$	$\begin{gathered} \text { LED } \\ 56 \end{gathered}$
$\begin{aligned} & \text { CS4, } \\ & \text { CS10, } \\ & \text { CS16 } \end{aligned}$	0x1A	0	0	0	0	1	0	0	0	$\begin{gathered} \text { LED } \\ 71 \end{gathered}$	$\begin{gathered} \text { LED } \\ 70 \end{gathered}$	$\begin{gathered} \text { LED } \\ 69 \end{gathered}$	$\begin{gathered} \text { LED6 } \\ 8 \end{gathered}$	$\begin{gathered} \text { LED } \\ 67 \end{gathered}$	$\begin{gathered} \text { LED } \\ 66 \end{gathered}$	$\begin{gathered} \text { LED } \\ 65 \end{gathered}$	$\begin{gathered} \text { LED } \\ 64 \end{gathered}$
	0x1B	0	0	0	0	1	0	0	1	X	$\begin{gathered} \text { LED } \\ 78 \end{gathered}$	$\begin{gathered} \text { LED } \\ 77 \end{gathered}$	$\begin{gathered} \text { LED } \\ 76 \end{gathered}$	$\begin{gathered} \text { LED } \\ 75 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 74 \end{gathered}$	$\begin{gathered} \text { LED } \\ 73 \end{gathered}$	$\begin{gathered} \text { LED } \\ 72 \end{gathered}$
$\begin{aligned} & \text { CS5, } \\ & \text { CS11, } \\ & \text { CS17 } \end{aligned}$	0x1C	0	0	0	0	1	0	1	0	$\begin{gathered} \text { LED } \\ 87 \end{gathered}$	$\begin{gathered} \text { LED } \\ 86 \end{gathered}$	$\begin{gathered} \text { LED } \\ 85 \end{gathered}$	$\underset{4}{\text { LED8 }}$	$\begin{gathered} \hline \text { LED } \\ 83 \end{gathered}$	$\begin{aligned} & \hline \text { LED } \\ & 82 \end{aligned}$	$\begin{gathered} \hline \text { LED } \\ 81 \end{gathered}$	$\begin{gathered} \hline \text { LED } \\ 80 \end{gathered}$
	$0 \times 1 \mathrm{D}$	0	0	0	0	1	0	1	1	X	$\begin{gathered} \text { LED } \\ 94 \end{gathered}$	$\begin{gathered} \text { LED } \\ 93 \end{gathered}$	$\begin{gathered} \text { LED } \\ 92 \end{gathered}$	$\begin{gathered} \text { LED } \\ 91 \end{gathered}$	$\begin{gathered} \text { LED } \\ 90 \end{gathered}$	$\begin{gathered} \text { LED } \\ 89 \end{gathered}$	$\begin{gathered} \text { LED } \\ 88 \end{gathered}$

In the intensity register (see Table 14) the brightness of every single LED can be set via a 8bit PWM (255 steps).
Table 14. LEDs Intensity Register Format for 3 Matrixes Setup

Table 14. LEDs Intensity Register Format for 3 Matrixes Setup

Control-Registers

The AS1119 devices contain 13 control-registers which are listed in Table 15. All registers are selected using a 8-bit address word, and communication is done via the serial interface. Select the Control Register via the Register Selection (see Table 6 on page 13).

Table 15. Control Register Address Map

Register Name	HEX	Register Address								Register Data
		A7	A6	A5	A4	A3	A2	A1	A0	D7:D0
Frame Address	0x00	0	0	0	0	0	0	0	0	(see Table 16 on page 22)
Frame Play	0x01	0	0	0	0	0	0	0	1	(see Table 17 on page 22)
Frame Time	0x02	0	0	0	0	0	0	1	0	(see Table 18 on page 23)
Display Option	0x03	0	0	0	0	0	0	1	1	(see Table 19 on page 23)
AS1119 Config	0x04	0	0	0	0	0	1	0	0	(see Table 20 on page 24)
Current Source Matrix A	0x05	0	0	0	0	0	1	0	1	
Current Source Matrix B	0x06	0	0	0	0	0	1	1	0	(see Table 21 on page 25)
Current Source Matrix C	0x07	0	0	0	0	0	1	1	1	
Chare Pump Config	0x08	0	0	0	0	1	0	0	0	(see Table 22 on page 25)
Open/Short Test	0x09	0	0	0	0	1	0	0	1	(see Table 23 on page 26)
Shutdown	0x0A	0	0	0	0	1	0	1	0	(see Table 24 on page 26)
${ }^{12} \mathrm{C}$ Interface Monitoring	0x0B	0	0	0	0	1	0	1	1	(see Table 25 on page 26)
Open/Short Status	0x0C	0	0	0	0	1	1	0	0	(see Table 26 on page 27)
AS1119 Status	0x0D	0	0	0	0	1	1	0	1	(see Table 27 on page 27)

Frame Address Register (0x00)

In this register it must be set if a picture or a movie is to display on the LED matrix. Also the start address of the the movie or the picture which should be displayed must be set within this register. The default setting of this register is 0×00.

Table 16. Frame Address Register Format

0x00 Frame Address Register							
Bit	Bit Name	Default	Access				Bit Description
7	Play Movie	0	R/W	0: no movie 1: play movie			
6	Display Picture	0	R/W	0: no picture 1: display picture			
$5: 3$	Start Address for movie		000: Frame 0 001: Frame 1 010: Frame 2 011: Frame 3 100: Frame 4 101: Frame 5				
$2: 0$	Address of Picture	000	R/W	000: Frame 0 001: Frame 1 010: Frame 2 011: Frame 3 100: Frame 4 101: Frame 5			

Note: If bit 6 and 7 are set to ' 1 ' the AS1119 will play the movie first and than the picture will be displayed.

Frame Play Register (0x01)

Within this register two movie play obtions can be set. Per default this register is set to 0×00.

- The number of frames which are displayed in one movie.
- The number of loops to play in a movie.

Table 17. Frame Play Register Format

0×01 Frame Play Register				
Bit	Bit Name	Default	Access	Bit Description
7:6	-	00	n/a	
5:3	Number of loops played in one movie	000	R/W	000: no loop 001: 1 loop 010: 2 loops 011: 3 loops 100: 4 loops 101: 5 loops 110: 6 loops 111: play endless
2:0	Number of frames to played in a movie	000	R/W	000: 1 frame 001: 2 frames 010: 3 frames 011: 4 frames 100: 5 frames 101: 6 frames

Note: To stopp a movie in play endless mode, bits D5:D3 have to be set to a value between 000 to 110 .

Frame Time Register (0x02)

Every single frame in a movie is displayed for a certain time before the next frame is displayed. This time can be set within this register with 4 bits. The stated values in Table 18 are typical values. Per default this register is set to 0×00.

Table 18. Frame Time Register Format

0x02 Frame Time Register					
Bit	Bit Name	Default	Access	Bit Description	tion
7:4	-	00	n/a		
3:0	Delay between frame change in a movie	000	R/W	0000:play frame only one time 0001: 32.5ms 0010: 65ms 0011: 97.5ms 0100: 130ms 0101: 162.5ms 0110: 195ms 0111: 227.5ms 1000: 260ms 1001: 292.5ms 1010: 325ms 1011:357.5ms 1100: 390ms 1101: 422.5ms 1110: 455 ms 1111: 487.5 ms	

Display Option Register (0x03)

With the scan-limit it can be controlled how many digits are displayed in each matrix. When all 18 digits in the 2 matrix configuration are displayed, the display scan rate is 430 Hz (typ.). If the number of digits to display is reduced, the update frequency is increased. Per default this register is set to 0×07.

Table 19. Display Option Register Format

0x03 Display Option Register				
Bit	Bit Name	Default	Access	Bit Description
7	-	0	n/a	
6	intensity setting	0	R/W	0: use intensity setting of frame 0 for all other frames $1:$ set the intensity of each frame independently
5	start with blink	0	R/W	0: start blinking with LED on $1:$ start blinking with LED off
4	blink period	0	R/W	$0: 1.5 \mathrm{~s}$ $1: 3 \mathrm{~s}$

Table 19. Display Option Register Format

0x03 Display Option Register						
Bit	Bit Name	Default	Access	Bit Description		
3:0	number of displayed current sources in one frame (scan-limit)	0111	R/W	2 Matrix setting		
				Matrix A	Matrix B	
				0000: CSO 0001: CS0 to CS1 0010: CS0 to CS2 0011: CSO to CS3 0100: CS0 to CS4 0101: CS0 to CS5 0110: CS0 to CS6 0111: CS0 to CS7 1000: CS0 to CS8	0000: CS0 0001: CS0 to CS1 0010: CS0 to CS2 0011: CSO to CS3 0100: CS0 to CS4 0101: CS0 to CS5 0110: CS0 to CS6 0111: CS0 to CS7 1000: CS0 to CS8	
				3 Matrixes setting		
				Matrix A	Matrix B	Matrix C
				0000: CSO 0001: CS0 to CS1 0010: CSO to CS2 0011: CSO to CS3 0100: CS0 to CS4 0101: CS0 to CS5	0000: CS6 0001: CS6 to CS7 0010: CS6 to CS8 0011: CS6 to CS9 0100: CS6 to CS10 0101: CS6 to CS11	0000: CS12 0001: CS12 to CS13 0010: CS12 to CS14 0011: CS12 to CS15 0100: CS12 to CS16 0101: CS12 to CS17

AS1119 Config Register (0x04)

In this register the configuration of the charge pumps is set to 2 or 3 blocks. The direction of the SYNC_IN/SYNC_OUT pin (input or output) is also set. Per default this register is set to 0×00.

Table 20. AS1119 Config Register Format

0x04 AS1119 Config Register				
Bit	Bit Name	Default	Access	Bit Description
7:3	-	00000	n/a	
2:1	Sync	00	R/W	00: internal oscillator is system-clk. No synchronisation on pin B6. Tie pin to high or low. 01: internal oscillator is system-clk. System-clk is available on pin B6 for synchronization. (output) 10: internal oscillator is disabled. Pin B6 is used as clk input for system-clk. 11: do not use
0	Matrix Configuration	0	R/W	$0: 3$ matrixes (à 5x6 LED-Matrix) $1: 2$ matrixes (à 8x9 LED-Matrix)

Current Source Block A, B, C Registers (0x05, 0x06, 0x07)
Within this registers the current for every single LED in one block can be set from 0 mA to 31 mA in 255 steps (8 bits). Per default this register is set to 0×00.

Table 21. Current Sourcer Register Format

Current Source Registers				
Bit	Bit Name	Default	Access	Bit Description
Address 0x05				
7:0	Analog Current Matrix A	0000000	R/W	00000000: 0mA 11111111: 31mA
Address 0x06				
7:0	Analog Current Matrix B	0000000	R/W	00000000: 0mA 11111111: 31mA
Address 0x07				-
7:0	Analog Current Matrix C	0000000	R/W	00000000: 0mA 11111111: 31mA

Charge Pump Config Register (0x08)

In this register the characteristics of the Charge Pump can be set. By the use of the charge pump (bit 0) the supply voltage for the LEDs can be boosted to 1.5 - or 2-times of the device supply (VDD), if required. Additionally bit1 offers the option to check periodically if the LED supply can be reduced again during operation. This period is defined by bit 4:2
Alternatively, the LED supply can be (re)set to VDD by disabling the charge pump for a short time. In this case the period can be defined by user (application). Per default this register is set to $0 \times 1 \mathrm{E}$.

Table 22. AS1119 Config Register Format

0x08 Charge Pump Config Register					
Bit	Bit Name	Default	Access		Bit Description
$7: 5$	-	000	n / a		
$4: 2$	Timeframe for reduce supply test	111	R/W	000: 0.3 s $001: 0.5 \mathrm{~s}$ $010: 0.8 \mathrm{~s}$ 011: 1.0 s $100: 1.3 \mathrm{~s}$ $101: 1.6 \mathrm{~s}$ $110: 1.8 \mathrm{~s}$ $111: 2.1 \mathrm{~s}$	
1	Reduce supply option	1	R/W	$0:$ reduce supply option off $1:$ reduce supply option on	
0	Charge Pump	0	R/W	0: Charge Pump disable $1:$ Charge Pump enable	

Open/Short Test Register (0x09)

The AS1119 can detect open and shorted LEDs. To start this test the according bits have to be set. The result of the open/short test is written in the Open/Short staturs register (see Table 26). The default setting of this register is 0×00.

Table 23. Open/Short Test Register Format

0x09 Open/Short Test Register				
Bit	Bit Name	Default	Access	Bit Description
$7: 2$	-	000000	n/a	
1	Full Matrix	0	R/W	0: all LED's are available in the matrixes $1:$ not all LED's are available in the matrixes
0	Error detection	0	R/W	0: start test $1:$ no test

The Open/Short test is only checking LEDs which are defined as ON in the Data Frame Registers Table 8 on page 14 or Table 12 on page 18. With the bit1 (Full Matrix) all LEDs of the matrixes will be defined as ON and will be tested intependently from the content of the Data Frame Register. The function of bit1 is only available during the open/short test and not during normal operation.

Shutdown Register (0x0A)

The default setting of this register is 0×00. To get the AS1119 operational the bit DO has to be set to ' 1 '.
Table 24. Shutdown Register Format

0x0A Shutdown Register							
Bit	Bit Name	Default	Access			\quad Bit Description	
:---							
$7: 1$							

$I^{2} \mathrm{C}$ Interface Monitoring Register (0x0B)

This register is used to monitor the activity on the ${ }^{12} \mathrm{C}$ bus. If a deadlock situation occurs (e.g. the bus SDA pin is pulled to low and no communication is possible) the chip will reset the $I^{2} \mathrm{C}$ interface and the master is able to start the communication again.
The time window for the reset of the interface of the AS1119 can bes set via 7 bits from $256 \mu \mathrm{~s}$ to 33 ms . The default setting of this register is $0 x F F$.

Table 25. ${ }^{2}$ C Interface Monitoring Register Format

Ox0B ${ }^{2} \mathrm{C}$ Interface Monitoring Register				
Bit	Bit Name	Default	Access	Bit Description
7:2	Time out window	1111111	R/W	$\begin{aligned} & 0 \text { to } 127 \text { => } 1 \text { to } 128 \times 256 \mu \mathrm{~s} \\ & 0000000: 256 \mu \mathrm{~s} \\ & \ldots \ldots \ldots . . \\ & 1111111: 32.7 \mathrm{~ms} \end{aligned}$
0	${ }^{12} \mathrm{C}$ Monitor	1	R/W	0 : $I^{2} \mathrm{C}$ monitoring off 1: $I^{2} \mathrm{C}$ monitoring on

Open/Short Status Register (0x0C)

This is a read only register. Within this register the result of the open/short test can be read out. It's also stated if the test is completed or still running. The default setting of this register is 0×00.

Table 26. Open/Short Status Register Format

Ox0C Open/Short Status Register					
Bit	Bit Name	Default	Access		Bit Description
7	-	0	n/a		
6	status	0	R	0: no test 1: test ongoing	
5	short test result Matrix C	0	R	0: no error detected 1: short in Matrix C	
4	short test result Matrix B	0	R	0: no error detected 1: short in Matrix B	
3	short test result Matrix A	0	R	0: no error detected 1: short in Matrix A	
2	open test result Matrix C	0	R	0: no error detected 1: open in Matrix C	
1	open test result Matrix B	0	R	0: no error detected 1: open in Matrix B	
0	open test result Matrix A	0	R	0: no error detected 1: open in Matrix A	

AS1119 Status Register (0x0D)

This is a read only register. From this register the actual status of the AS1119 can be read out. The default setting of this register is 0×00. After an read command the bits $5: 4$ are set to ' 0 ' again automatically.

Table 27. AS1119 Status Register Register Format

0x0D AS1119 Status Register				
Bit	Bit Name	Default	Access	Bit Description
7	-	0	n/a	
6	Movie status			0 : no movie is playing 1: one movie is playing
5:4	Interrupt	00	R	00: no Interrupt triggered 01: POR triggered an interrupt ${ }^{1}$ 10: $I^{2} \mathrm{C}$ monitor triggered an interrupt 11: both (${ }^{2} \mathrm{C}$ and POR) triggered an interrupt
3:0	actual displayed frame	000	R	000: frame 0 001: frame 1 010: frame 2 011: frame 3 100: frame 4 101: frame 5

1. The power-on reset is part of the start sequence, hence after start-up this bit is also set.

10 Package Drawings and Markings

Figure 23. 36-pin WL-CSP Marking

Table 28. Packaging Code YYWWIZZ

YY	WW	I	ZZ
last two digits of the current year	manufacturing week	plant identifier	free choice / traceability code

Figure 24. 36-pin WL-CSP

11 Ordering Information

The devices are available as the standard products shown in Table 29.
Table 29. Ordering Information

Ordering Code	Marking	Desciption	Delivery Form	Package
AS1119-BWLT	AS1119	144-LED Cross-Plexing Driver with 320mA Charge-Pump	Tape and Reel	36-pin WL-CSP

Note: All products are RoHS compliant and austriamicrosystems green.
Buy our products or get free samples online at ICdirect: http://www.austriamicrosystems.com/ICdirect
Technical Support is found at http://www.austriamicrosystems.com/Technical-Support
For further information and requests, please contact us mailto:sales@austriamicrosystems.com or find your local distributor at http://www.austriamicrosystems.com/distributor

Copyrights

Copyright © 1997-2010, austriamicrosystems AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

All products and companies mentioned are trademarks or registered trademarks of their respective companies.

Disclaimer

Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location.

The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services.

Z2 austriamicrosystems

Contact Information

Headquarters

austriamicrosystems AG

Tobelbaderstrasse 30
A-8141 Unterpremstaetten, Austria
Tel: +43 (0) 31365000
Fax: +43 (0) 313652501

For Sales Offices, Distributors and Representatives, please visit: http://www.austriamicrosystems.com/contact

