PD-97264

Three Terminal, Adjustable
OM1325SM
Negative Voltage Regulator
1.5A

Product Summary:

Part Number	Standard Military Drawing Number	$\mathbf{V}_{\text {IN }}$	Adjustable $\mathbf{V}_{\text {out }}$	Package
OM1325SM	7703406 M	-4.25 V to -41.25 V	-1.2 V to -37 V	SMD-3

These three terminal negative voltage regulators are supplied in hermetically sealed packages. All protective features are designed into the circuit, including thermal shutdown, current-limiting, and safearea control. With heat sinking, these devices can deliver up to 1.5 amps of output current. The unit also features output voltages that can be fixed from -1.2 volts to -37 volts using external resistors.

Features:

- Similar to Industry Standard LM137A
- Approved to DSCC Standardized Military Drawing Number 7703406
- Built-in Thermal Overload Protection
- Short Circuit Current Limiting

■ Maximum Output Voltage Tolerence is Guaranteed $\pm 1 \%$

- This part is also available in

TO-257AA Package as OM1325ST (Isolated), TO-257AA Package as OM1325NT(Non-Isolated), SMD-1 Package as OM1325NM,
TO-204 Package as OM1325NK

Absolute Maximum Ratings @ $\mathrm{TC}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Value	Units
Recommended Output Voltage Range	$\mathrm{V}_{\text {OUT }}$	-1.2 to -37	Vdc
Recommended Input Voltage Range	$\mathrm{V}_{\text {IN }}$	-4.25 to -41.25	
Output Current	$\mathrm{I}_{\text {OUT }}$	1.5	A
Power Dissipation	P_{D}	20	W
Input - Output Voltage Differential	$\mathrm{V}_{\text {DIFF }}$	40	V
Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {THJC }}$	3.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range	T_{J}	-55 to +150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {S }}$	-65 to +150	
Lead Temperature (Soldering 10 seconds)	T_{L}	300	

Electrical Characteristics: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=8.0 \mathrm{~mA}$ (Unless Otherwise Specified)

Parameter	Test Conditions	Symbol	Min.	Max.	Units
Reference Voltage	$\mathrm{V}_{\text {DIFF }}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$V_{\text {REF }}$	-1.262	-1.238	V
	$\mathrm{V}_{\text {DIFF }}=3.0 \mathrm{~V}$ (3)		-1.280	-1.220	
	$\mathrm{V}_{\text {DIFF }}=40 \mathrm{~V}$ (3)		-1.280	-1.220	
Line Regulation (1)	$3.0 \mathrm{~V} \leq \mathrm{V}_{\text {DIFF }} \leq 40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\text {LINE }}$	-4.5	4.5	mV
	$3.0 \mathrm{~V} \leq \mathrm{V}_{\text {DIFF }} \leq 40 \mathrm{~V}$ (3)		-13.8	13.8	
Load Regulation (1)	$8.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 1.5 \mathrm{~A}, \mathrm{~V}_{\text {DIFF }}=5.0 \mathrm{~V}$ (3)	$\mathrm{R}_{\text {LOAD }}$	-25	25	
	$8.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 1.5 \mathrm{~A}, \mathrm{~V}_{\text {DIFF }}=12 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$		-25	25	
	$8.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 200 \mathrm{~mA}, \mathrm{~V}_{\text {DIFF }}=40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-25	25	
	$8.0 \mathrm{~mA} \leq \mathrm{I}_{\text {L }} \leq 100 \mathrm{~mA}, \mathrm{~V}_{\text {DIFF }}=40 \mathrm{~V}$ (3)		-50	50	
Thermal Regulation	$\begin{aligned} & V_{I N}=-14.6 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1.5 \mathrm{~A} \\ & \mathrm{P}_{\mathrm{D}}=20 \mathrm{~W}, \mathrm{t}=10 \mathrm{~ms}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {RTH }}$	-5.0	5.0	
Ripple Rejection (2)	$\begin{aligned} & f=120 \mathrm{~Hz}, V_{\text {OUT }}=V_{\text {REF }}{ }^{(3)} \\ & C_{\text {ADJ }}=10 \mu \mathrm{~F} \end{aligned}$	R_{N}	66	-	dB
Adjustment Pin Current	$\mathrm{V}_{\text {DIFF }}=3.0 \mathrm{~V}$ (3)	$\mathrm{I}_{\text {ADJ }}$	-	100	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {DIFF }}=40 \mathrm{~V}$ (3)		-	100	
Adjustment Pin Current Change	$3.0 \mathrm{~V} \leq \mathrm{V}_{\text {DIFF }} \leq 40 \mathrm{~V}$ (3)	$\mathrm{I}_{\text {ADJ (ine) }}$	-5.0	5.0	
	$8.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 1.5 \mathrm{~A}, \mathrm{~V}_{\text {DIFF }}=5.0 \mathrm{~V}$ (3)	$\mathrm{I}_{\text {ADJ (load) }}$	-5.0	5.0	
Minimum Load Current	$\mathrm{V}_{\text {DIFF }}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-1.4 \mathrm{~V}$ (forced) (3)	$I_{\text {min }}$	-	3.0	mA
	$\mathrm{V}_{\text {DIFF }}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-1.4 \mathrm{~V}$ (forced) (3)		-	3.0	
	$\mathrm{V}_{\text {DIFF }}=40 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-1.4 \mathrm{~V}$ (forced) (3)		-	5.0	
Current Limit (2)	$\mathrm{V}_{\text {DIFF }}=5.0 \mathrm{~V}$ (3)	I_{CL}	1.5	3.5	A
	$\mathrm{V}_{\text {DIFF }}=40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.24	1.2	

NOTES:

(1) Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
(2) If not tested, shall be guaranteed to the specified limits.
(3) Denotes the specifications which apply over the full operating temperature range.

Standard Application

* C_{i} is required if regulator is located more than 4 inches from power supply filter. A $1.0 \mu \mathrm{~F}$ solid tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic is recommended.
${ }^{* *} \mathrm{C}_{0}$ is necessary for stability. A $1.0 \mu \mathrm{~F}$ solid tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic is recommended.

$$
V_{\text {OUT }}=-1.25 \mathrm{~V}(1+\mathrm{R} 2 / \mathrm{R} 1)
$$

Case Outline and Dimensions - SMD-3

Part Numbering Nomenclature Device Number $1325 \quad \begin{aligned} & \text { SM } \quad$| M |
| :--- |\(\quad \begin{array}{l}Screening

M=MIL-PRF-38535

Package Code

M=SMD-3\end{array}

\& $$
\begin{array}{l}\text { Isolated / Non-Isolated } \\
S=\text { Isolated }\end{array}
$$\end{aligned}\)

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776 Data and specifications subject to change without notice. 10/2006

