

Space Oven Controlled Crystal Oscillator

RK 409

10⁻⁹ Stability class OCXO

For this product, full and detailed specifications can be delivered on request. Specific request can be addressed to RAKON info@rakon.fr

Product Description

This stable oscillator is designed for Space Clocks, Navigation and Positioning Systems and is used in such applications as GPS receivers, digital cards, board calculators, down and up converters, synthesizers.

The AV (Allan Variance) variant of the RK409 has a short term stability of 6.10^{-13} at 1 s. This frequency source is featured by remarkable overall frequency stability vs. temperature range up to \pm 0.5 ppb under vacuum and \pm 20 ppb per year.

The RK409 is available with different packages, in a small format (50x50x30mm) and is manufactured in accordance with MIL-PRF-55310 (Class 1, type 4 or type 6, level S or B).

Features

- Frequency Range: 10 MHz to 40 MHz
- Allan Variance @ 1s: 6.10⁻¹³
- Supply Voltage: +12V or +15V
- Warm up consumption: 7 Watt
- Steady state consumption: 3 W under vacuum and 4W under atmospheric pressure
- Frequency stability vs. operating temperature range: ± 0.5 ppb under
- Ageing: ± 150 ppb over 15 years at 10MHz
- Output wave form: sine 50 Ohms

- Output level: from 2 to 10 dBm
- Component selected as per ECSS-Q-ST-60C
- Materials selected as per ECSS-Q-70
- Manufacturing in accordance with:
 - o MIL-PRF-55310 (Class 1, type 4, level S or B)
 - o ECSS-Q-ST-70-08C and ECSS-Q-ST-70-38C
- Weight:125g (GP variant)/170g (AV variant)

Applications

- Transponders
- GPS receivers
- Navigation
- Converters

Heritage

- SPACEBUS 4000
- SATCOM

Specifications

- HTV
- HIMAWARI

1. Environmental conditions

Parameters	Conditions/remarks	Min	Nom	Max	Unit
	Option A	-5	25	60	°C
Operating Temperature	Option B	-20	25	70	°C
	Option C	-40	25	70	°C
Switch-on Temperature	TSo	-40		85	°C
Non-Operating					
Temperature	TNOp	-55		125	°C
Random Vibration	Level as per MIL-STD-202, Method 214, condition I-J (46.30 Grms)				
Sine Vibration	Level as per MIL-STD-202, Method 214, condition D (20 G)				
Shocks	Mechanical shock as per MIL-STD-202, Method 213, Condition E (half sine with a peak acceleration of 1000g for duration of 0.5 msec)				
	TID: 100 kRad, low dose rate				
Radiation	No SEL up to LET=60 MeV/mg/cm ²				

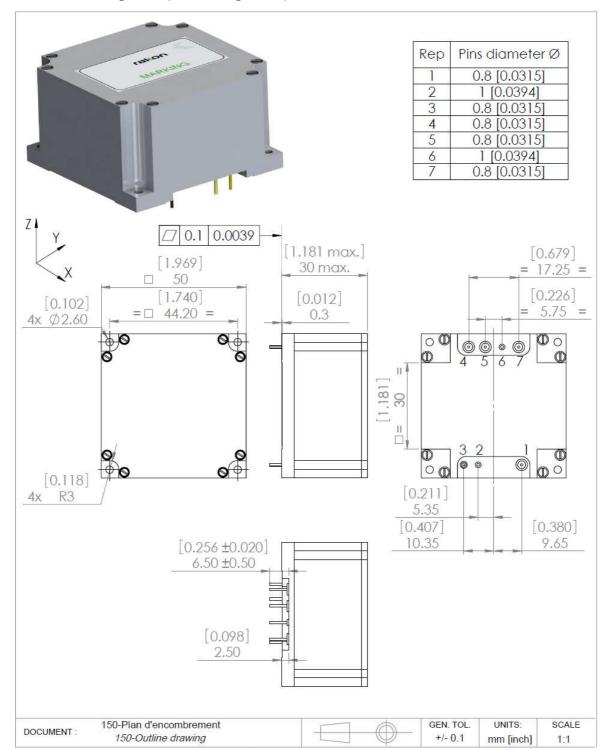
2. Electrical interface

Parameters	Conditions/remarks	Min	Nom	Max	Unit
	Option 12	11.4	12	12.6	V
Power supply	Option 15	14.25	15	15.75	V
Load Impedance		45	50	55	Ω
Reference voltage		6.6	6.9	7.2	V
Control voltage	Vc	0		Vref	V

3. Performances @ 10 MHz

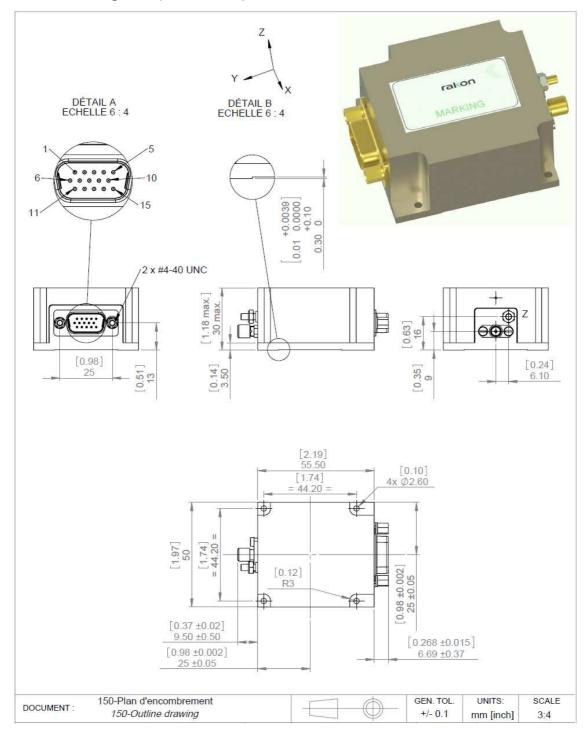
3.1. Option AV (Allan Variance)

Parameters	Conditions/Remarks	Min	Тур	Max	Unit	
Nominal Frequency		10		40	MHz	
Steady state input						
current power	Vacuum @ -20°C			4	W	
Warm up supply power				8	W	
Initial frequency	Frequency pulling					
accuracy	Option 2			± 10	ppb	
Frequency adjustment	Positive slope			± 500	ppb	
	Option A			± 0.5	ppb	
Frequency stability vs	Option B			± 1	ppb	
temperature	Option C			± 5	ppb	
Frequency variation vs.	Over Operating					
supply voltage	Temperature			± 0.1	ppb	
Frequency variation vs.	Over Operating					
load	Temperature			± 0.1	ppb	
Frequency variation vs						
pressure				± 50	ppb	
Frequency ageing	Over 1 year			± 20	ppb	
(10 MHz)	Over 15 years			± 150	ppb	
	1s			6.E-13		
Allan variance	10s			1.E-12		
Frequency warm up				30	mn	
Output waveform			Sine			
Output level	EOL	2		10	dBm	
Harmonics level						
and subharmonics				-30	dBc	
Non harmonics level	Non harmonics level			-85	dBc	
	1 Hz			-110	dBc/Hz	
	10 Hz			-135	dBc/Hz	
Phase noise	100 Hz			-145	dBc/Hz	
@ 10 MHz	1kHz			-150	dBc/Hz	
	10 kHz			-155	dBc/Hz	


3.2. Option GP (General Purpose)

Parameters	Conditions/Remarks	Min	Тур	Max	x Unit	
Nominal Frequency		10		40	MHz	
Steady state input						
current power	Vacuum @ -20°C			3	W	
Warm up supply power				7	W	
Initial frequency	Frequency pulling			. 10		
accuracy	Option 2			± 10	ppb	
Frequency adjustment	Positive slope			± 500	ppb	
	Option A			± 0.5	ppb	
Frequency stability vs	Option B			± 1	ppb	
temperature	Option C			± 10	ppb	
Frequency variation vs. supply voltage	Over Operating Temperature			± 0.1	ppb	
Frequency variation vs.			± 0.1	ppb		
Frequency variation vs pressure	on vs			± 50	ppb	
Frequency ageing	Over 1 year			± 20	ppb	
(10 MHz)	Over 15 years			± 150	ppb	
	1 s			1.E-12		
Allan variance	10s			2.E-12		
Frequency warm up				30	mn	
Output waveform			Sine			
Output level	EOL	2		10	dBm	
Harmonics level						
and subharmonics				-30	dBc	
Non harmonics level				-85	dBc	
Phase noise	1 Hz			-105	dBc/Hz	
	10 Hz			-135	dBc/Hz	
	100 Hz			-145	dBc/Hz	
	1kHz			-150	dBc/Hz	
	10 kHz			-155	dBc/Hz	

4. Mechanical features


Package name	Description	Dimensions Wheight		
PT1	Pin Through Hole	50x50x30 mm		
SS1	Sub-D+SMA	50x55x30 mm	MARKING	ion on

4.1. Package PT1 (Pin Through hole)

Pin number	Name	Function		
1	Alarm option 0	Not connected		
	Alarm option 1	Oven alarm		
2,6	GND	Ground		
3	Fout	Frequency output		
4	Vc	Voltage control		
5	Vref	Reference voltage		
7	Vcc	Power supply		

4.2. Package SS1 (Sub-D+SMA)

Pin number	Name	Function
1	Vc	Voltage control
2,4,12		Not connected
3	Alarm option 0	Not connected
	Alarm option 1	Oven alarm
6,7,8,13,14,15	GND	Ground
5,9,10	Vcc	Power supply
11	Vref	Reference voltage
SMA connector	Fout	Frequency output

Space Oven Controlled Crystal Oscillator

RK 409

10⁻⁹ Stability class OCXO

5. Model philosophy

Representativeness	Engineering Model	Engineering Qualification	Qualification Model	Flight Model	Flight Model + Lot Acceptance
_		Model			test
Options	Α	B, C	D	E, F, G, H	l
	Passive				
	commercial parts,	Mil Grade parts			
	Active parts from	procured from the			
Components	the same	same	HiRel Parts	HiRel Parts	HiRel Parts
	manufacturer of	manufacturer of			
	HiRel parts	HiRel parts			
			ESCC3501	ESCC3501	ESCC3501
Crystal material	Swept quartz	Swept quartz	Swept quartz	Swept quartz	Swept quartz
	stabilized	stabilized	stabilized	stabilized	stabilized
	Flight	Flight			
Mechanical	representative in	representative in	Flight design	Flight design	Flight design
interface	form-fit-function	form-fit-function			
Electrical interface	Flight design	Flight design	Flight design	Flight design	Flight design
			Qualification	Acceptance	Acceptance
Tests	Acceptance	Qualification	testing	testing	testing (including
	testing	testing	(including	(including	screening)+ LAT
			screening)	screening)	

6. Options for Engineering Qualification Model

- Option B: production manufacturing, qualification flow including qualification mechanical tests
- Option C: production manufacturing, electrical tests only

7. Flight Model Screening according to MIL-PRF-55310

Option E: full level S

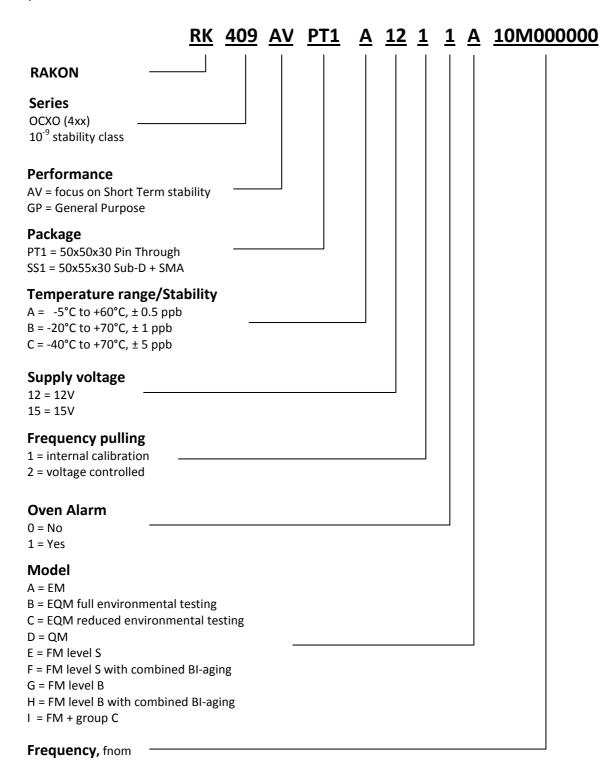
• Option F: level S with combined burn in aging of 480 hours

Option G: full level B

Option H: level B with combined burn in aging of 480 hours

Option I: level S with 1 pc/batch

Lot Acceptance test could be performed on all screening options


8. Deliverable documentation

- Test data
- Full specification
- Certificate of Conformity (CoC)

9. Ordering part number definition

The part number breakdown is defined as follows:

RK 409

