Preliminary GaN Hybrid Power Amplifier HT1818-15M

RFHIC

Product Features

- E-pHEMT GaAs + GaN on SiC
- 2-Stage Amplifier 50ohms Matching
- Surface Mount Hybrid Type
- Small Size & Mass
- High Efficiency

Applications

- RF Sub-Systems
- Base Station
- Repeater
- 4G/LTE system
- Small cell

Package Type : NP-1EL

Description

The HT1818-15M is designed for LTE Repeater & RF Sub-systems application frequencies from 1805 to 1880MHz This amplifier uses GaN HEMT technology which performs high breakdown voltage, high efficiency. High In/Output impedance, High power density.

PARAMETER	UNIT	MIN	ТҮР	MAX	CONDITION	
Frequency Range	MHz	1805	-	1880	ZS = ZL = 50 ohm	
Power Gain		-	34	-		
Gain Flatness	dB	-	0.8	1.5	Amp1 : Idq1 = 140mA	
Input Return Loss		-	-9	-6	Amp2: Idq2 = 105mA	
Pout @ Average	dBm	-	33	-		
Pout @ Psat	dBm	40.5	41.5	-	Pulse Width=20us, Duty10%	
ACLR @ BW 10MHz	dBc	-	-39	-30	Non DPD	
LTE (PAPR 7.5dB)		-	-54	-	With DPD	
Drain Efficiency	%	-	27	-		
Ids1		-	140	-	Pout @ Average	
Ids2	mA	-	240	-		
		-	5	-	Drive Amp. (Vds1)	
Supply Voltage	v	-	-3.0	-2.0	Gate Bias (Vgs2)	
Constitut		-	28	-	Main Bias (Vds2)	

Electrical Specifications @ Vds1 =5V, Vds2 =28V, Ta=25 °C

Caution

The drain voltage must be supplied to the device after the gate voltage is supplied

Turn on : Turn on the Gate Voltage supply and last turn on the Drain voltage supplies Turn off : Turn off the Drain Voltage and last turn off the Gate voltage

Note

1. ACLR Measured Pout=33dBm @ fc± 10MHz / 9.015MHz

LTE 10MHz 1FA PAPR=7.5dB @ 0.01% probability on CCDF, (DPD Engine: Optichron OP6180)

2. HT Series have internal DC blocking capacitors at the RF input and output ports

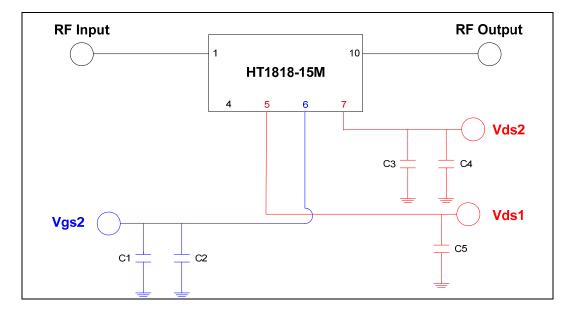
Mechanical Specifications

PARAMETER	UNIT	ТҮР	REMARK
Mass	g	2	-
Dimension	mm	20.5 x 15 x 3.5	-

Preliminary GaN Hybrid Power Amplifier HT1818-15M

Absolute Maximum Ratings

PARAMETER	UNIT	RATING	SYMBOL
Gate-Source Voltage	V	-10 ~ 0	Vgs2
Drain-Source Voltage	V	7	Vds1
	v	50	Vds2
Gate Current	mA	4.0	Igs2
Operating Junction Temperature	°C	225	TJ
Operating Case Temperature	°C	-30 ~ 95	T _C
Storage Temperature	°C	-40 ~ 100	T _{STG}
Maximum Input Level	dBm	20	Pin

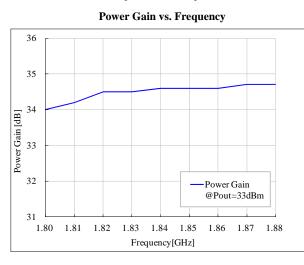

Operating Voltages

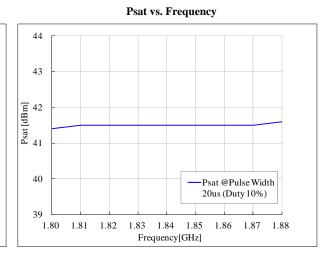
PARAMETER	UNIT	MIN	ТҮР	MAX	SYMBOL
Drain Voltage	v	4.75	5	5.25	Vds1
		27.5	28	-	Vds2
Gate Voltage (on-stage)	V	-	Vgs2@Idq2	-2	Vgs 2
Gate Voltage (off-stage)	V	-	-8	-	Vgs 2

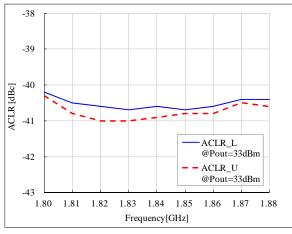
Block Diagram

Application Circuit

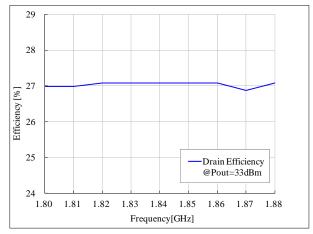
Part List

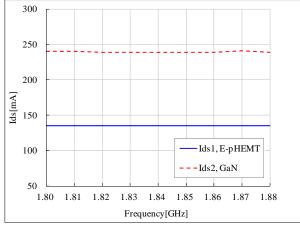

Location	Model No.	Spec.	Maker
C4	1812C225K101CT	2.2uF / 100V	WALSIN
C1, C5	C3216X7R1C106K	10uF / 16V	TDK
C2, C3	201CHA100JSLE	10pF	TEMEX
Evaluation Board	RO4350B	2Layer, 30mil	ROGERS


Preliminary GaN Hybrid Power Amplifier HT1818-15M

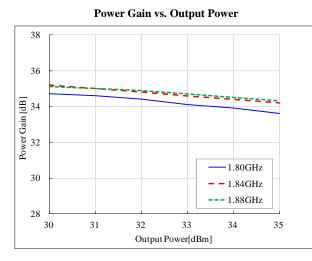

Performance Charts

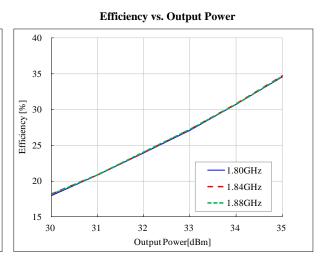
* **Bias condition** @ Idq1= 140mA, Idq2= 105mA, Ta=25°C

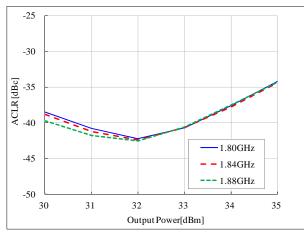



ACLR vs. Frequency

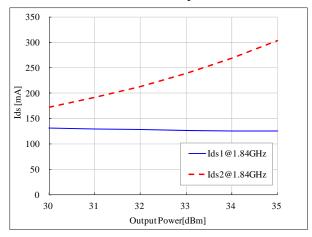
Efficiency vs. Frequency





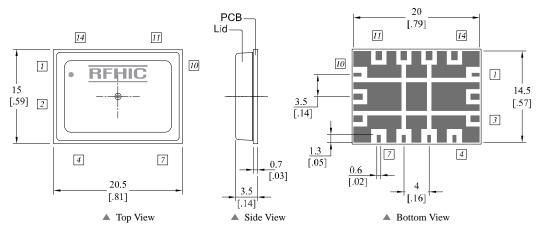

Performance Charts

* Bias condition @ Idq1= 140mA, Idq2= 105mA, Ta=25 $^\circ\!\!\mathbb{C}$



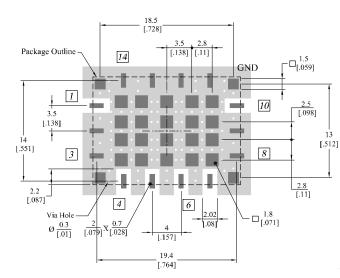
ACLR vs. Output Power

Ids1 vs. Ids2 vs. Output Power

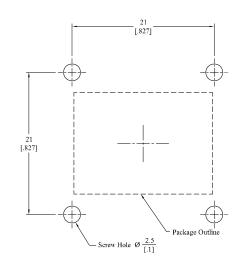


*LTE 10MHz (PAPR=7.5dB) w/o DPD

RFHIC


Package Dimensions (Type: NP-1EL)

* Unit: mm[inch] | Tolerance: ±0.15[.006]



Pin Description								
Pin No	Function	Pin No	Function	Pin No	Function	Pin No	Function	
1	RF Input	4	N.C	8	GND	11	GND	
2	GND	5	Vds1	9	GND	12	GND	
3	GND	6	Vgs2	10	RF Output	13	GND	
-	-	7	Vds2	-	-	14	GND	

Recommended Pattern

Recommended Mounting Configuration

* Mounting Configuration Notes

1. For the proper performance of the device, Ground / Thermal via holes must be designed to remove heat.

- 2. To properly use heatsink, ensure the ground/thermal via hole region to contact the heatsink. We recommend the mounting screws
- be added near the heatsink to mount the board
- 3. In designing the necessary RF trace, width will depend upon the PCB material and construction.
- 4. Use 1 oz. Copper minimum thickness for the heatsink.
- 5. Do not put solder mask on the backside of the PCB in the region where the board contacts the heatsink
- 6. We recommend adding as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.

HT1818-15M

Precautions

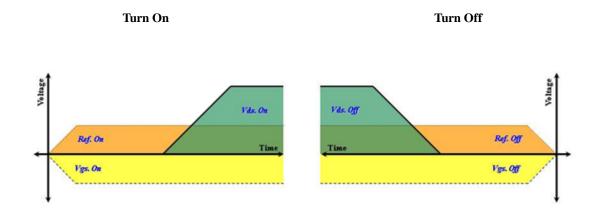
This product is a Gallium Nitride Transistor.

The Gallium Nitride Transistor requires a Negative Voltage Bias which operates alongside a Positive Voltage Bias. These Biases are applied in accordance to the Sequence during Turn-On and Turn-Off.

The Pallet Amplifier does not have a built-in Bias Sequence Circuit. Therefore, users need to either apply positive voltages and negative voltages in the required sequence, or add an external Bias Circuit to this Amplifier.

The required sequence for power supply is as follows.

During Turn-On


- 1. Connect GND.
- 2. Apply Vgs2.
- 3. Apply Vds1 and Vds2
- 4. Apply the RF Power.

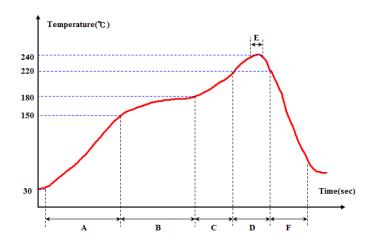
During Turn-Off

1. Turn off RF power.

2. Turn off Vds1 and Vds2, and then, turn off the Vgs2.

3. Remove all connections.

- Sequence Timing Diagram -


Reflow Profile

* Reflow oven settings

Zone	Α	В	С	D	Е	F
Temperature(°C)	30~150 °C	150 ~ 180 ℃	180~220 °C	220~220 °C	235 ~ 240 °C	$2 \sim 6$ °C/Sec Drop
Belt speed	55 ~ 115 sec	55 ~ 75 sec	30 ~ 50 sec	30 ~ 50 sec	5 ~ 10 sec	60 ~ 90 sec

Reflow Cycle Limit= 1time

* Measured reflow profile

Ordering Information

Part Number	Package Design
	-R (Reel)
HT1818-15M	-B (Bulk)
	-EVB (Evaluation Board)

Revision History

Part Number	Release Date	Version	Modification	Data Sheet Status
HT1818-15M	2013.03.25	0.1	Initial Release of Data sheet	Preliminary

RFHIC Corporation reserves the right to make changes to any products herein or to discontinue any product at any time without notice. While product specifications have been thoroughly examined for reliability, RFHIC Corporation strongly recommends buyers to verify that the information they are using is accurate before ordering. RFHIC Corporation does not assume any liability for the suitability of its products for any particular purpose, and disclaims any and all liability, including without limitation consequential or incidental damages. RFHIC products are not intended for use in life support equipment or application, buyer shall indemify, protect and hold RFHIC Corporation and its directors, officers, stockholders, employees, representatives and distributors harmless against any and all claims arising out of such unauthorized use.

Sales, inquiries and support should be directed to the local authorized geographic distributor for RFHIC Corporation. For customers in the US, please contact the US Sales Team at 919-677-8780. For all other inquiries, please contact the International Sales Team at 82-31-250-5078.