

Pb

Micro Commercial Components

Micro Commercial Components 20736 Marilla Street Chatsworth CA 91311

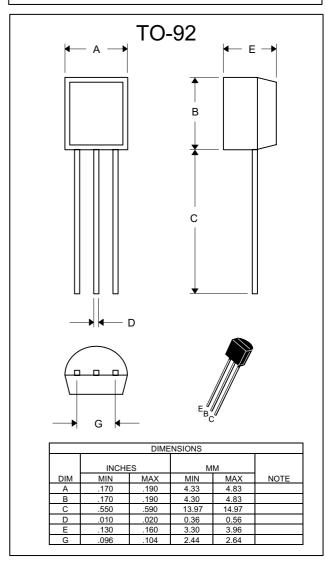
Phone: (818) 701-4933 Fax: (818) 701-4939

MPSA44

Features

- Through Hole Package
- 150°C Junction Temperature
- Epoxy meets UL 94 V-0 flammability rating
- Moisure Sensitivity Level 1
- Lead Free Finish/RoHS Compliant ("P" Suffix designates RoHS Compliant. See ordering information)

Mechanical Data


Case: TO-92, Molded Plastic

Marking: A44

Maximum Ratings @ 25°C Unless Otherwise Specified

Charateristic	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	400	V
Collector-Base Voltage	V_{CBO}	400	V
Emitter-Base Voltage	V_{EBO}	5.0	V
Collector Current(DC)	I _C	200	mA
Power Dissipation@T _A =25°C	P _d	625	mW
		5.0	mW/°C
Power Dissipation@T _C =25°C	P_d	1.5	W
Ower Dissipation@1 _C =25 C	' d	12	mW/°C
Thermal Resistance, Junction to Ambient Air	$R_{ heta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{ heta$ JC	83.3	°C/W
Operating & Storage Temperature	T_{j}, T_{STG}	-55~150	°C

NPN Silicon High Voltage Transistor 625mW

MPSA44

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	·			
Collector–Emitter Breakdown Voltage ⁽¹⁾ ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V _(BR) CEC	400	_	Vdc
Collector–Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	V _(BR) CBC	400	_	Vdc
Emitter–Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V _{(BR)EBC}	5.0	_	Vdc
Collector Cutoff Current (V _{CB} = 400 Vdc, I _E = 0)	I _{CBO}	_	0.1	μAdc
Emitter Cutoff Current (V _{EB} = 4.0 Vdc, I _C = 0)	I _{EBO}	_	0.1	μAdc
ON CHARACTERISTICS ⁽¹⁾	•	•	•	•
DC Current $Gain^{(1)}$ ($I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$)	h _{FE}	70 80 80 60	300	
Collector–Emitter Saturation Voltage ⁽¹⁾ $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ $(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$	V _{CE(sat)}	_	0.2 0.3	Vdc
Base–Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$)	V _{BE(sat)}	_	0.75	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Output Capacitance (V _{CB} = 20 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	7.0	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _{ibo}	_	130	pF
Small–Signal Current Gain (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	h _{fe}	1.0	_	_

^{1.} Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%.

Micro Commercial Components

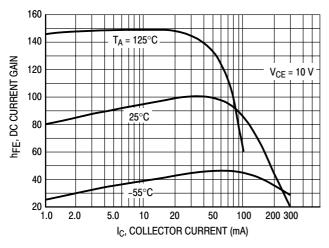


Figure 1. DC Current Gain

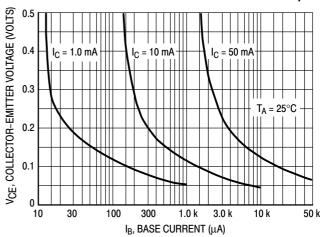


Figure 2. Collector Saturation Region

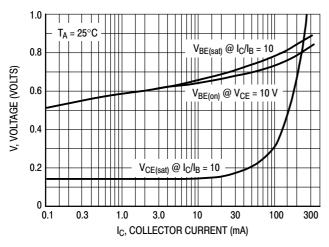


Figure 3. "On" Voltages

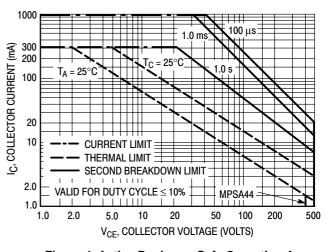


Figure 4. Active Region — Safe Operating Area

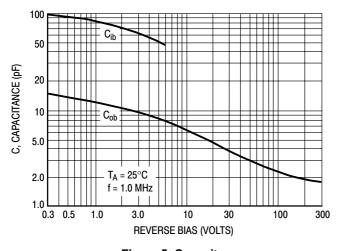


Figure 5. Capacitance

3 of 4

Micro Commercial Components

Ordering Information:

Device	Packing	
Part Number-AP	Ammo Packing: 2Kpcs/Ammo Box	
Part Number-BP	Bulk: 100Kpcs/Carton	

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.