Features

- 2:1 Wide Input Range
- 2kVDC/1 Second Isolation
- -40°C To +75°C Operating Temperature @ Full Load
- Industry Standard Pinout (SIP8)
 - EN/UL62368, UL60950, CB Report (pending)
 - Low Cost

Description

The RSE is a low cost isolated, regulated and short-circuit protected DC/DC converter designed for industrial applications. A compact SIP8 case size, 2:1 input, 2kVDC isolation and a wide operating temperature range of $-40^{\circ}C$ to $+75^{\circ}C$ without derating makes the RSE series ideal for industrial, transport and general-purpose on-board 5V power supplies. Industrial Class A EMC levels can be met with a simple Pi-filter and the converters come with a three year warranty.

Selection Guide						
Part Number	nom. Input Voltage [VDC]	Input Current @ full load [mA]	Output Voltage [VDC]	Output Current [mA]	Efficiency typ. ⁽¹⁾ [%]	max. Capacitive Load ⁽²⁾ [μF]
RSE-0505S/H2	4.5 - 9	526	5	400	76	6800
RSE-2405S/H2	18 - 36	103	5	400	80	6800

Notes:

Note1: Efficiency is tested at nominal input and full load at +25°C ambient Note2: Max. cap load is tested at nominal input and full resistive load

Specifications (measured @ ta= 25°C, nominal Vin, full load unless otherwise specified)

BASIC CHARACTERISTICS					
Parameter	Condition		Min.	Тур.	Max.
Internal Input Filter					capacitor
Input Voltage Range	nom. Vin=	5VDC 24VDC	4.5VDC 18VDC	5VDC 24VDC	9VDC 36VDC
Maximum Reverse Voltage		1			OVDC
Input Surge Voltage	100ms max nom. Vin=	5VDC 24VDC		15VDC 50VDC	
Quiescent Current	nom. Vin=	5VDC 24VDC		40mA 3mA	
Start-up time				500µs	
Rise time				450µs	
Hold-up time				10µs	
Internal Operating Frequency			130kHz		
Minimum Load			0%		
Output Ripple and Noise (3)	20MHz BW, 0-1009	% load			75mVp-p
ON/OFF CTRL (4)	DC-DC ON DC-DC OFF				<vr<0.8vdc 2V<vr<6vdc< td=""></vr<6vdc<></vr<0.8vdc
Input Current of CTRL Pin	5V VCTRL 3.3V VCTRL			15mA 10mA	
Standby Current				0.75mA	1.5mA

Notes:

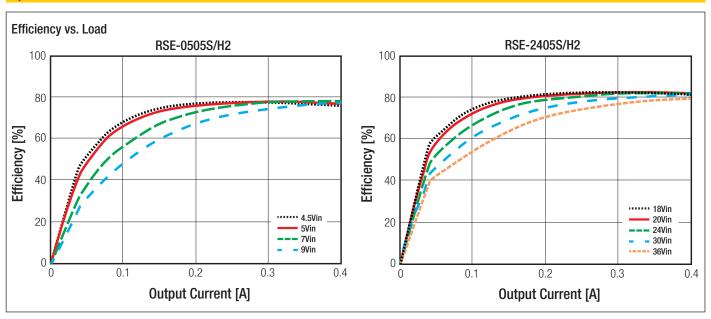
Note3: Measurements are made with a 0.1µF MLCC across output (low ESR)


Note4: Please refer to "Application and Installation"

continued on next page

RSE

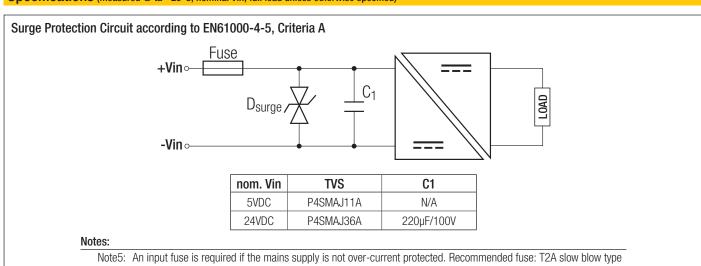
2 Watt SIP8 Single Output


UL62368-1 certified C22.2 No. 62368-1-14 certfied UL60950 (pending) C22.2 No. 60950-1-07 (pending) IEC/EN62368-1 (pending) EN55022/55024 compliant CB Report

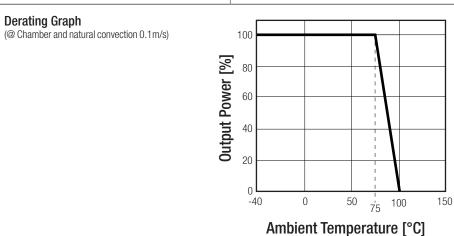
www.recom-power.com REV.: 1/2017 ECO-1

Series

Specifications (measured @ ta= 25°C, nominal Vin, full load unless otherwise specified)


REGULATIONS					
arameter Condition		Condition	Value		
Output Accuracy	()-100% load		±2.0% max.	
Line Regulation	low line	to high line, full load		±0.2% max.	
Load Regulation	0%	to 100% load	±0.5% max.		
Accuracy vs. Load					
RSE-05	05S/H2		RSE-2405S/H2	2	
0.6		0.5			
0.5		2.1			
		0.4			
≥ 0.4		≥ _{0.3}			
0.3 cd		acy			
Work of the second of the seco		Accuracy [%]			
4 0.2		ă			
0.1		0.1			
0 0.1	0.2 0.3 0.	0 0	0.1 0.2	0.3 0.4	
	Current [A]		Output Current		

PROTECTIONS				
Parameter		Туре	Value	
Short Circuit Protection (SCP)	belov	v 100mΩ	continuous, auto recovery	
Isolation Voltage	I/P to O/P	tested for 1 second	2kVDC	
Isolation Resistance			1GΩ min.	
Isolation Capacitance			100pF max.	
Insulation Grade			functional	
continued on next page				



Series

Specifications (measured @ ta= 25°C, nominal Vin, full load unless otherwise specified)

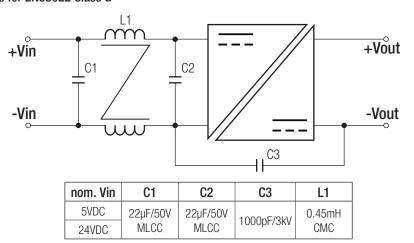
ENVIRONMENTAL				
Parameter	Condition		Value	
Operating Temperature Range	without derating (see gra	ph)	-40°C to +75°C	
Maximum Case Temperature			+105°C	
Temperature Coefficient			±0.05%/°C	
Operating Altitude			5000m	
Operating Humidity	non-condensing		5% - 95% RH max.	
Pollution Degree			PD2	
MTBF	according to MIL-HDBK-217F, G.B.	+25°C	2289 x 10 ³ hours	
	according to MIL-HDDR-2171, G.B.	+75°C	781 x 10 ³ hours	
Vibration			MIL-STD 202G	

SAFETY AND CERTIFICATIONS					
Certificate Type (Safety)	Report / File Number	Standard			
Information Technology Equipment, General Requirements for Safety	pending	UL60950-1, 2nd Edition, 2014 CSA C22.2 No. 60950-1-07, 2nd Ed. 2014			
Audio/Video, information and communication technology equipment - Safety requirements	E224736-A48	UL62368-1, 2nd Edition, 2014 CSA C22.2 Nr. 62368-1-14, 2nd Ed. 2014			
Audio/Video, information and communication technology equipment - Safety requirements (CB Scheme)	pending	IEC/EN62368-1, 2nd Edition, 2014			
RoHS2		RoHS 2011/65/EU + AM2015/863			
continued on next page					

www.recom-power.com REV.: 1/2017 ECO-3



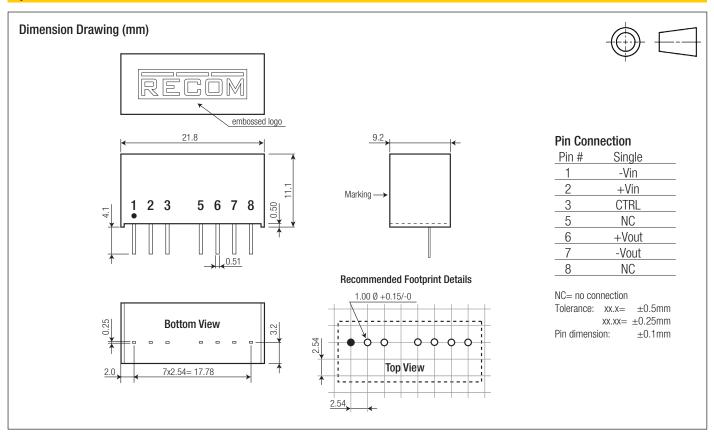
Series

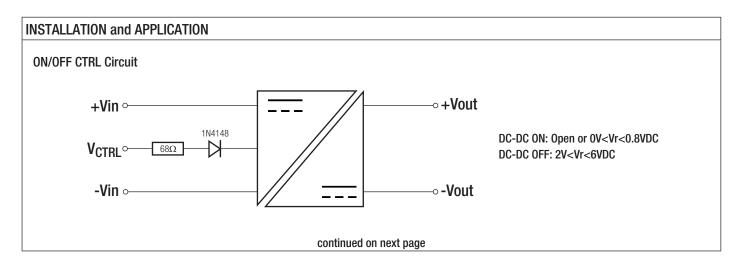

Specifications (measured @ ta= 25°C, nominal Vin, full load unless otherwise specified)

EMC Compliance	Conditions	Standard / Criterion
Information technology equipment - Radio disturbance characteristics - Limits and	with external filter	EN55022, Class A
methods of measurement	(see filter suggestion below)	EN55022, Class B
Information technology equipment - Immunity characteristics - Limits and methods of measurement		EN55024, 2015
ESD Electrostatic discharge immunity test	±8kV Air; ±4kV Contact	IEC6100-4-2, Criteria A
Radiated, radio-frequency, electromagnetic field immunity test	3V/m	IEC6100-4-3, Criteria A
Fast Transient and Burst Immunity	DC Power Port: ±0.5kV	IEC6100-4-4, Criteria A
Surge Immunity	DC Power Port: ±0.5kV	IEC6100-4-5, Criteria A
Immunity to conducted disturbances, induced by radio-frequency fields	DC Power Port: 3V	IEC6100-4-6, Criteria A
Power Magnetic Field	50Hz, 1A/m	IEC6100-4-8, Criteria A

EMC Filtering Suggestions for EN55022 Class A

EMC Filtering Suggestions for EN55022 Class B




DIMENSION and PHYSICAL CHARACTERISTICS				
Parameter	Туре	Value		
	Case	non-conductive black plastic, (UL94-V0)		
Material	Potting	epoxy, (UL94-V0)		
	PCB	FR4, (UL94-V0)		
Package Dimension (LxWxH)		21.8 x 9.2 x 11.1mm		
Package Weight		4.7g typ.		
continued on next page				

Series

Specifications (measured @ ta= 25°C, nominal Vin, full load unless otherwise specified)

PACKAGING INFORMATION				
Packaging Dimension (LxWxH)	tube	520.0 x 11.2 x 18.2mm		
Packaging Quantity		22pcs		
Storage Temperature Range		-55°C to +125°C		
Storage Humidity		5% - 95% RH max.		

The product information and specifications are subject to change without prior notice. RECOM products are not authorized for use in safety-critical applications (such as life support) without RECOM's explicit written consent. A safety-critical application is defined as an application where a failure of a RECOM product may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The buyer shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.