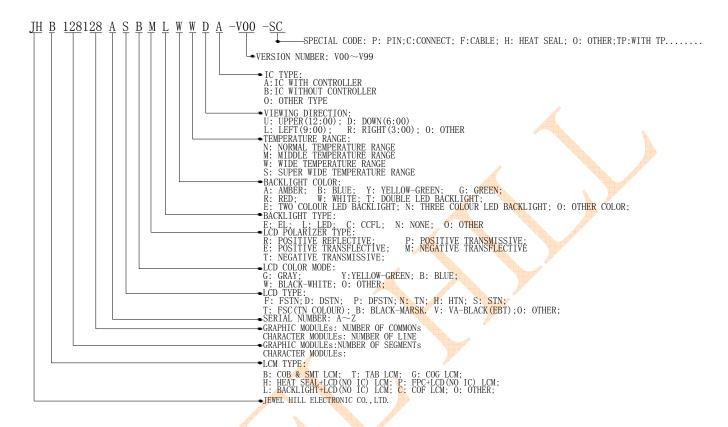


SPECIFICATIONS FOR LCD MODULE

Module No. JHB128128A


E-mail: <u>sales@jhlcd.com</u> Website: <u>www.jhlcd.com</u>

JHB128128A VER: 5.01 - 0 - Issue date: 2013/08/01

TABLE OF CONTENTS

LC	M NUMBER SYSTEM	. 2
1.	GENERAL DESCRIPTION	. 3
2.	FEATURES	.3
3.	MECHANICAL SPECIFICATION	. 3
4.	MECHANICAL DIMENSION	. 4
5.	MAXIMUM RATINGS	. 5
6.	ELECTRICAL CHARACTERISTICS	. 5
7.	MODULE FUNCTION DESCRIPTION	. 6
8.	ELECTRO-OPTICAL CHARACTERISTICS	15
9.	RELIABILITY	19
	PRECAUTIONS FOR USING LCD MODULES	
11.	USING LCD MODULES	22
	REVISION HISTORY	
	MPLE APPROVED REPORT	

LCM Number System

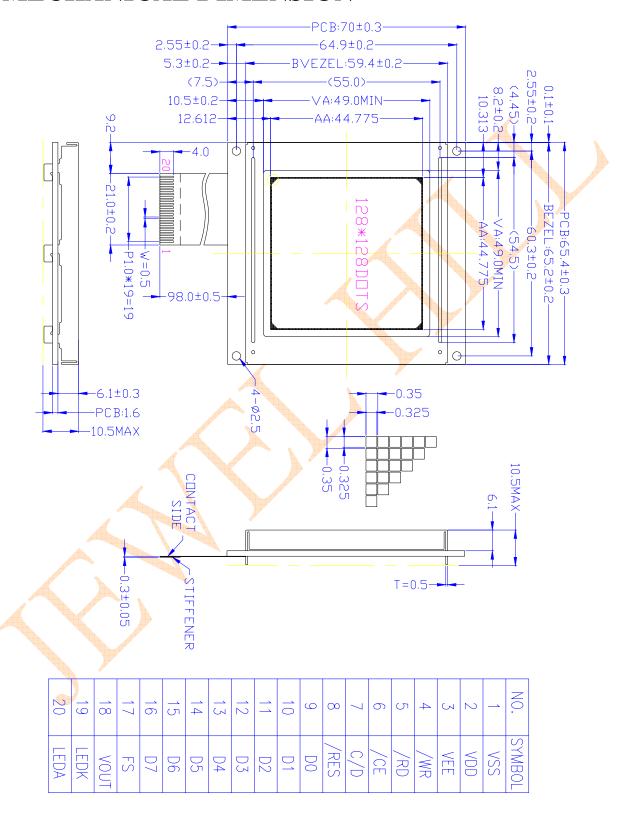
JHB128128A VER: 5.01 - 2 - Issue date: 2013/08/01

1. GENERAL DESCRIPTION

The JHB128128A is a 128 x 128 Dots Graphics LCD module. It has a STN panel composed of 128segments and 128 commons. The LCM can be easily accessed by micro-controller via parallel interface.

2. FEATURES

Display Mode	Transflective and Positive
Display Wode	STN(BLUE) mode
Display Format	Graphic 128 x 128 dots
Input Data	Parallel data input from MPU
Multiplexing Ratio	1/128 Duty
Bias	1/12 Bias
Viewing Direction	6 O'clock
Backlight	LED (White)


3. MECHANICAL SPECIFICATION

Item	Specifications	Unit
Dimensional outline	65.4 x 70.0 x 10.5max	mm
Resolution	128segs x 128coms	dots
View area	49.0(W) x 49.0(H)	mm
Active area	44.775(W) x 44.775(H)	mm
Dots pitch	0.35 (W)×0.35(H)	mm
Dots size	0.325(W)×0.325 (H)	mm

JHB128128A VER: 5.01 - 3 - Issue date: 2013/08/01

4. MECHANICAL DIMENSION

JHB128128A VER: 5.01 - 4 - Issue date: 2013/08/01

5. MAXIMUM RATINGS

Item	Symbol	Min	Max	Unit	Note
G 1 1	V_{DD} - V_{SS}	-0.3	7.0	V	
Supply voltage	V_{LCD}	-0.3	24.0	V	
Input Voltage	$V_{ m IN}$	-0.3	V _{DD} +0.3	V	
Operating temperature	T_{OPR}	-20	+70	$^{\circ}\mathbb{C}$	
Storage temperature	T_{STR}	-30	+80	$^{\circ}$	
Humidity			90	%RH	

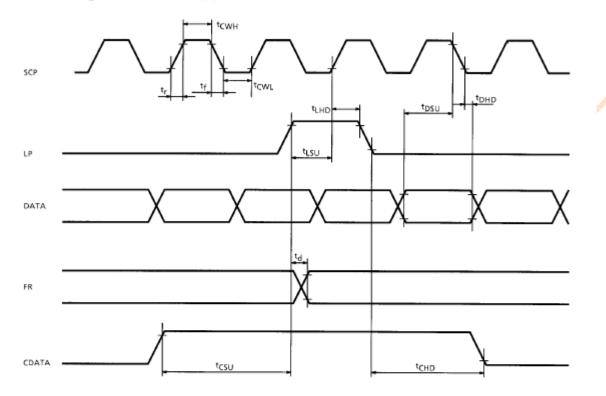
6. ELECTRICAL CHARACTERISTICS

Item		Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage Logic		$V_{\scriptscriptstyle DD}$		_	5.0	5.5	V
Innut Valtaga	H level	V_{IH}		$0.8V_{\mathrm{DD}}$		V_{DD}	V
Input Voltage	L level	$V_{\rm IL}$		V_{ss}		$0.2V_{DD}$	V
Current Consur (LCD DRIV	•	I_{DD}	V_{DD} =5.0V; V_{LCD} =17.5V, T_{amb} =25°C;		40	50	mA
LCD Driving V	Voltage	V_{LCD}	Bias=1/12 VLCD=VDD-V0	17.0	17.5	18.0	V
Current Consur (With LED Back	A Property of the Control of the Con	$V_{\scriptscriptstyle F}$	$I_{\text{F}}\!\!=\!\!60\text{mA},$ $T_{\text{amb}}\!\!=\!\!25^{\circ}\!\!\!\text{C};$		5.0	5.2	V
Current Consur (With LED Back	•	$ m I_F$	$V_{\scriptscriptstyle F}\!\!=\!\!5.0~{ m V},$ $T_{\scriptscriptstyle amb}\!\!=\!\!25^{\circ}\!{ m C}$;		60	80	mA

JHB128128A VER: 5.01 - 5 - Issue date: 2013/08/01

7. MODULE FUNCTION DESCRIPTION

7.1. PIN DESCRIPTION

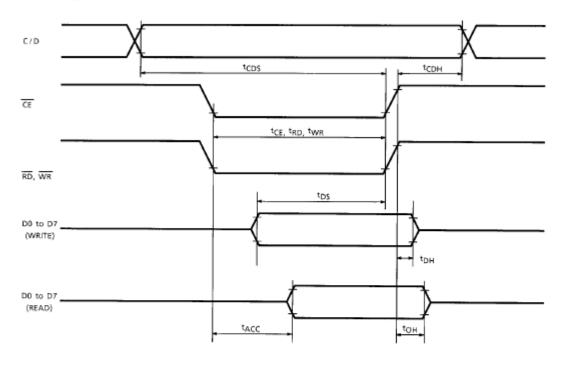

Pin No.	Symbol	Description
1	VSS	Power supply for Ground (0V)
2	VDD	Power supply for positive
3	VEE	LCD driver voltage regulation pin
4	/WR	Write selection signal, "L": Write
5	/RD	Read Enable signed, "L": Read
6	/CE	Chip Enable Signal
7	C/D	H:Intraction; L:Data
8	/RES	Reset signal
9	DB0	
10	DB1	
11	DB2	
12	DB3	8-bit bi-directional data bus
13	DB4	o-oft of-directional data bus
14	DB5	
15	DB6	
16	DB7	
17	FS	Font Selection; "H": 6*8; "L": 8*8
18	VOUT	Negative Voltage Output
19	LEDK	Supply voltage for LED Negative
20	LEDA	Supply voltage for LED Positive

JHB128128A VER: 5.01 - 6 - Issue date: 2013/08/01

7.2 TIMING CHARACTERISTICS

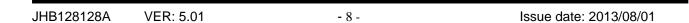
Ac Characteristics

Switching Characteristics (1)


Test Conditions (Unless Otherwise Noted, V_{DD} = 5.0 V ± 10%, V_{SS} = 0 V, Ta = -20 to 70°C)

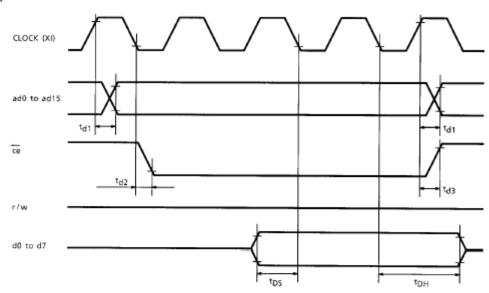
Item	Symbol	Test Conditions	Min	Max	Unit
Operating Frequency	f _{SCP}	Ta = -10~70°C	1	2.75	MHz
SCP Pulse Width	town, town	_	150	١	ns
SCP Rise / Fall Time	t _r , t _f	ı	ı	30	ns
LP Set-up Time	tLSU	-	150	290	ns
LP Hold Time	t _{LHD}	-	5	40	ns
Data Set-up Time	t _{DSU}	-	170	ı	ns
Data Hold Time	t _{DHD}	-	80	١	ns
FR Delay Time	t _d	-	0	90	ns
CDATA Set-up Time	tcsu	_	450	850	ns
CDATA Hold Time	t _{CHD}	_	450	950	ns

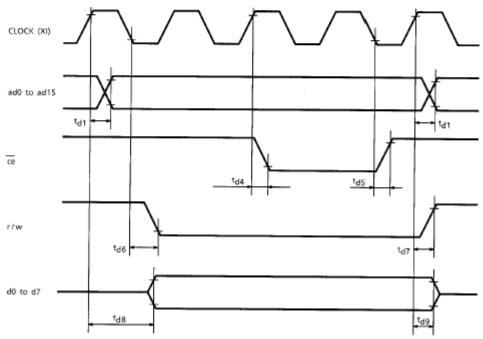
JHB128128A VER: 5.01 - 7 - Issue date: 2013/08/01


Switching Characteristics (2)

Bus Timing

Test Conditions (Unless Otherwise Noted, V_{DD} = 5.0 V ± 10%, V_{SS} = 0 V, Ta = -20 to 75°C)

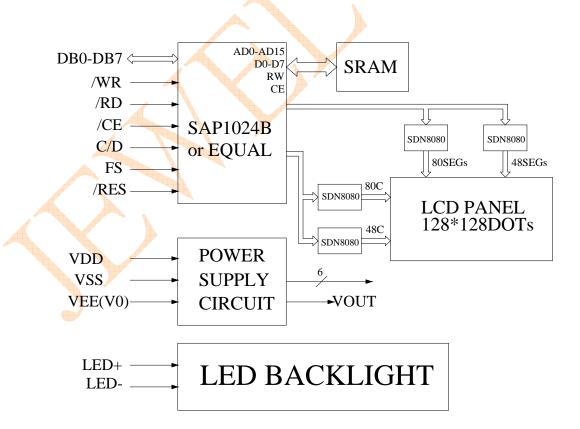

Item	Symbol	Test Conditions	Min	Max	Unit
C / D Set-up Time	tcos	-	100	_	ns
C / D Hold Time	tcDH	ı	10	ı	ns
CE, RD, WR Pulse Width	$t_{\text{CE}}, t_{\text{RD}}, t_{\text{WR}}$	-	80	1	ns
Data Set-up Time	t _{DS}	-	80	_	ns
Data Hold Time	t _{DH}	ı	40	ı	ns
Access Time	tacc	_	-	150	ns
Output Hold Time	t _{OH}	-	10	50	ns



Switching Characteristics (3)

(1) External RAM Read mode

(2) External RAM Write mode


JHB128128A VER: 5.01 - 9 - Issue date: 2013/08/01

Test Conditions (Unless Otherwise Noted, V_{DD} = 5.0 V ± 10%, V_{SS} = 0 V, Ta = -20 to 70°C)

Item	Symbol	Test Conditions	Min	Max	Unit
Address Delay Time	t _{d1}	_	-	250	ns
ce Fall Delay Time (Read)	t _{d2}	-	١	180	ns
ce Rise Delay Time (Read)	t _{d3}	_	١	180	ns
Data Set-up Time	t _{DS}	_	0	-	ns
Data Hold Time	t _{DH}	-	30	ı	ns
ce Fall Delay Time (Write)	t _{d4}	-	١	200	ns
ce Rise Delay Time (Write)	t _{d5}	_	١	200	ns
r / w Fall Delay Time	t _{d6}	-	ı	180	ns
r / w Rise Delay Time	t _{d7}	-	١	180	ns
Data Stable Time	t _{d8}	_	١	450	ns
Data Hold Time	t _{d9}	_	ı	200	ns

7.3 APPLICATION OF LCM

■Circuit Block Diagram

JHB128128A VER: 5.01 - 10 - Issue date: 2013/08/01

7.4 TABLE OF COMMAND

Command	Code	D1	D2	Function
REGISTERS SETTING	00100001 00100010 00100100	X address Data Low address	Y address 00H High address	Set Cursor Pointer Set Offset Register Set Address Pointer
SET CONTROL WORD	01000000 01000001 01000010 01000011	Low address Columns Low address Columns	High address 00H High address 00H	Set Text Home Address Set Text Area Set Graphic Home Address Set Graphic Area
MODE SET	1000X000 1000X001 1000X011 1000X100 10000XXX 10001XXX	11111		OR mode EXOR mode AND mode Text Attribute mode Internal CG ROM mode External CG RAM mode
DISPLAY MODE	10010000 1001XX10 1001XX11 100101XX 100110XX 100111XX	11111		Display off Cursor on, blink off Cursor on, blink on Text on, graphic off Text off, graphic on Text on, graphic on
CURSOR PATTERN SELECT	10100000 10100001 10100010 10100011 1010010	1111111		1-line cursor 2-line cursor 3-line cursor 4-line cursor 5-line cursor 6-line cursor 7-line cursor 8-line cursor
DATA AUTO READ / WRITE	10110000 10110001 10110010	=	=	Set Data Auto Write Set Data Auto Read Auto Reset
DATA READ / WRITE	11000000 11000001 11000010 11000011 11000100 11000101	Data — Data — Data —	-	Data Write and Increment ADP Data Read and Increment ADP Data Write and Decrement ADP Data Read and Decrement ADP Data Write and Nonvariable ADP Data Read and Nonvariable ADP
SCREEN PEEK	11100000	_	_	Screen Peek
SCREEN COPY	11101000			Screen Copy

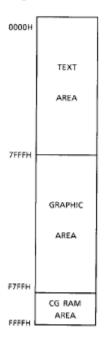
X: invalid

Command	Code	D1	D2	Function
BIT SET / RESET	11110XXX 11111XXX 1111X000 1111X001 1111X010 1111X011 1111X100 1111X101 1111X110 1111X110	11111111	111111111	Bit Reset Bit Set Bit 0 (LSB) Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 (MSB)

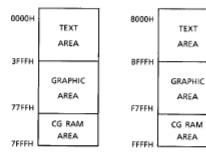
X: invalid

JHB128128A VER: 5.01 - 11 - Issue date: 2013/08/01

7.5 RAM INTERFACE


RAM Interface

The external RAM is used to store display data (text, graphic and external CG data). With single—scan, text data, graphic data and external CG data can be freely allocated to the memory area (64 KB max).


With dual—scan, LCD I is allocated to 0000H to 7FFFH (32 KB max), LCD II is allocated to 8000H to FFFFH (32 KB max). Text data, graphic data and external CG data can be freely allocated in LCD I. In LCDII, the same addresses must be allocated as in LCD I, except ad15. ad15 determines selection of LCD I or LCD II. It can be use the address decoded signals $\overline{\text{ce0}}$ (0000 to 07FFH), $\overline{\text{ce1}}$ (0800 to 0FFFH) within 4 KB. $\overline{\text{ce0}}$ and $\overline{\text{ce1}}$ allow decoding of addresses in the ranges (0000 to 07FFH) and (0800 to 0FFFH) respectively within a 4–KB memory space.

(Example)

(1) Single-Scan

(2) Dual-Scan

CG : Character Generator

JHB128128A VER: 5.01 - 12 - Issue date: 2013/08/01

7.6 FLOWCHART OF COMMUNICATION WITH MPU

. Flowchart of communications with MPU

(1) Status Read

A status check must be performed before data is read or written.

Status check

The Status of 'SAP1024 can be read from the data lines.

 RD
 L

 WR
 H

 CE
 L

 C/D
 H

D0 to D7 Status word

The SAP1024 status word format is as follows:

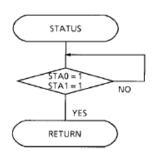
MSB							LSB
STA7	STA6	STA5	STA4	STA3	STA2	STA1	STA0
D7	D6	D5	D4	D3	D2	D1	D0

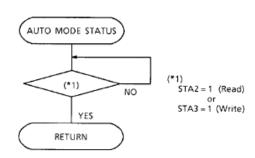
STA0	Check command execution capability	0: Disable 1: Enable
STA1	Check data read / write capability	0: Disable 1: Enable
STA2	Check Auto mode data read capability	0: Disable 1: Enable
STA3	Check Auto mode data write capability	0: Disable 1: Enable
STA4	Not used	
STA5	Check controller operation capability	0: Disable 1: Enable
STA6	Error flag. Used for Screen Peek and Screen copy commands.	0: No error 1: Error
STA7	Check the blink condition	0: Display off 1: Normal display

Note 1: It is necessary to check STA0 and STA1 at the same time.

There is a possibility of erroneous operation due to a hardware interrupt.

Note 2: For most modes STA0 / STA1 are used as a status check.


Note 3: STA2 and STA3 are valid in Auto mode; STA0 and STA1 are invalid.


JHB128128A VER: 5.01 - 13 - Issue date: 2013/08/01

Status checking flow

a)

b)

Note 4: When using the MSB = 0 command, a Status Read must be performed.

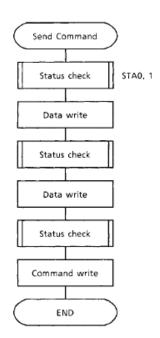
If a status check is not carried out, the LSI cannot operate normally, even after a delay time.

The hardware interrupt occurs during the address calculation period (at the end of each line).

If a MSB = 0 command is sent to the LSI during this period, the LSI enters Wait status.

If a status check is not carried out in this state before the next command is sent, there is the possibility that the command or data will not be received.

(2) Setting data


When using the SAP1024, first set the data, then set the command.

Procedure for sending a command

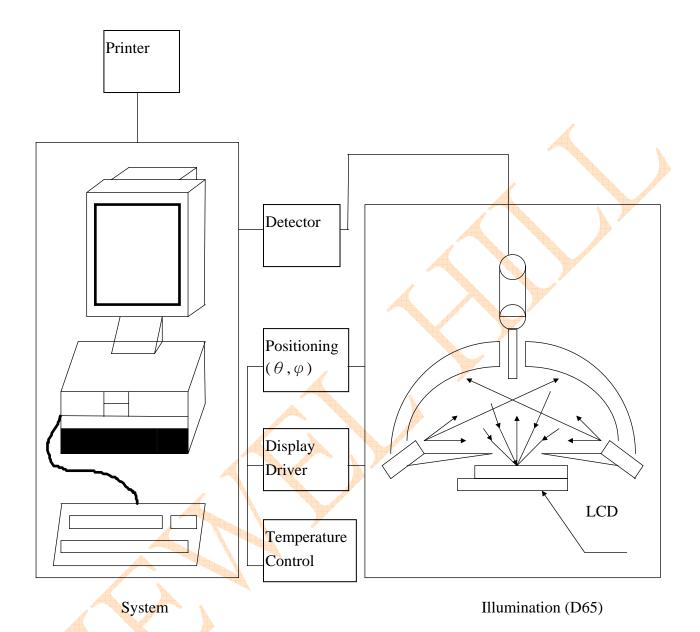
a) The case of 1 data

b) The case of 2 data

Note: When sending more than two data, the last datum (or last two data) is valid.

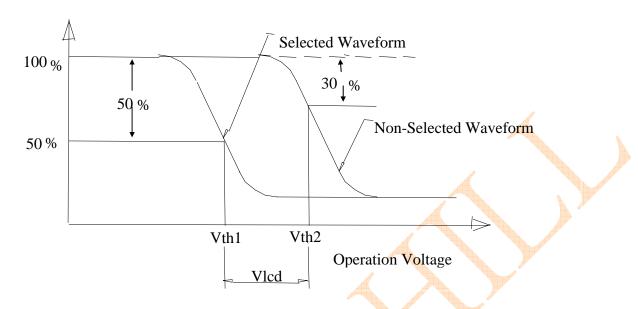
8. ELECTRO-OPTICAL CHARACTERISTICS

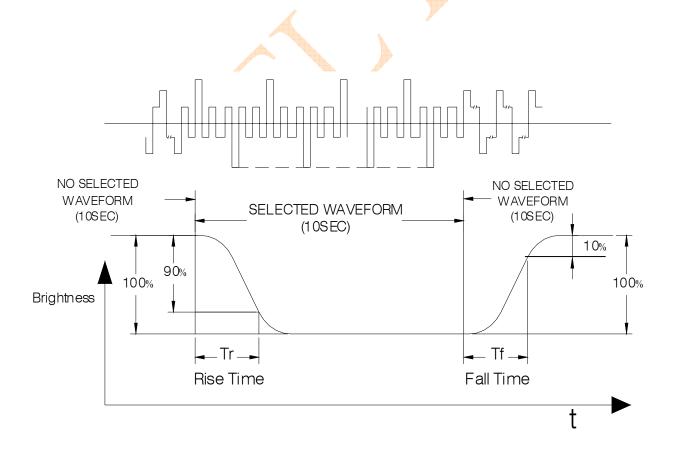
Item	Symbol	Condition	Temp	Min	Тур.	Max	Units	Note
LCD driving voltage			0℃		17.8			
	VLCD 6	$\theta = \phi = 0$	25°C	17.0	17.5	18.0	V	NOTE1
			50°C		17.2			
	Rise Time (Tr)	$\theta = \phi = 0$	0 °C				msec	
	Decay Time (Tf)					-		NOTE2
	Rise Time (Tr)		25 °C		225	340		
Response Time	Decay Time (Tf)				240	360		
	Rise Time (Tr)		50°℃					
	Decay Time (Tf)			_		2		
Contrast Ratio	Cr	$\theta = \phi = 0$	25℃	5	10			NOTE4


Viewing Angle Range	$\theta (\phi = 0^{\circ})$ (6'')	$\phi = 90^{\circ}$ (3")	$\phi = 180^{\circ}$ (12")	φ=270° (9")	備註
θ (25°C) CR≥2	45	30	25	40	Deg NOTE3

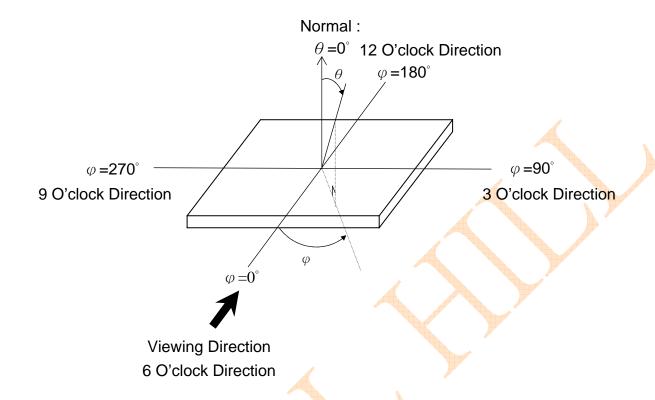
• For panel only

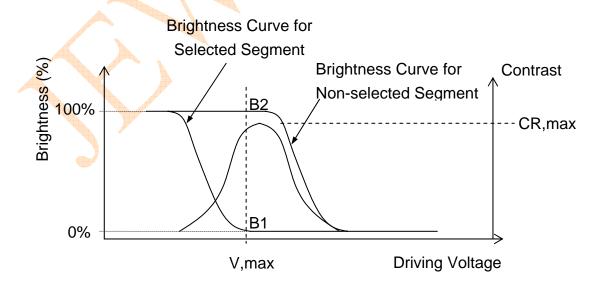
JHB128128A VER: 5.01 - 15 - Issue date: 2013/08/01


• Electro-Optical Characteristics Measuring Equipment(DMS501)


JHB128128A VER: 5.01 - 16 - Issue date: 2013/08/01

• Note 1. Definition of Driving Voltage(Vlcd):


• Note 2. Definition of Optical Response Time :


JHB128128A VER: 5.01 - 17 - Issue date: 2013/08/01

ullet Note 3. Definition of Viewing Angle $\, heta\,$ and $\,\phi\,$:

• Note 4. Definition of Contrast ratio(CR):

JHB128128A VER: 5.01 - 18 - Issue date: 2013/08/01

9. RELIABILITY

9.1. MTBF

The LCD module shall be designed to meet a minimum MTBF value of 30000 hours with normal. (25°C in the room without sunlight)

9.2. TESTS

NO.	ITEM	CONDITION	CRITERION
1	High Temperature Operating	70°C 120Hrs	 No Defect Of
			Operational Function In
			Room Temperature Are
2	Low Temperature Operating	-20°C 120Hrs	Allowable.
			∘ IDD of LCM in
3	High Temperature/	60℃ ,90%RH ,120 Hrs	Pre-and post-test should
	Humidity Non-Operating		follow specification
4	High Temperature	80°C 120Hrs	
	Non-Operating		
		P	
5	Low Temperature	-30°C 120Hrs	
	Non-Operating		
6	Temperature Cycling	-20° C (30Min) \leftrightarrow 60°C (30Min)	
	Non-Operating	10 CYCLES	

Notes: Judgments should be mode after exposure in room temperature for two hours.

10. PRECAUTIONS FOR USING LCD MODULES

10.1. HANDLING PRECAUTIONS

- (1) The display panel is made of glass. Do not subject it to a mechanical shock or impact by dropping it.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten a cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol
- (6) Solvents other than those above mentioned may damage the polarizer.

Especially, do not use the following:

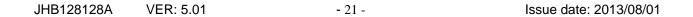
- Water
- Ketone
- Aromatic solvents
- (7) Extra care to minimize corrosion of the electrode. Water droplets, moisture condensation or a current flow in a high-humidity environment accelerates corrosion of the electrode.
- (8) Install the LCD Module by using the mounting holes. When mounting the LCD Module, make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.
- (9) Do not attempt to disassemble or process the LCD Module.
- (10) NC terminal should be open. Do not connect anything.
- (11) If the logic circuit power is off, do not apply the input signals.
- (12) To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - Be sure to ground the body when handling he LCD Module.
 - Tools required for assembling, such as soldering irons, must be properly grounded.
 - -To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions.

JHB128128A VER: 5.01 - 20 - Issue date: 2013/08/01

-The LCD Module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

10.2. STORAGE CONDITIONS

When storing, avoid the LCD module to be exposed to direct sunlight of fluorescent lamps. For stability, to keep it away form high temperature and high humidity environment (The best condition is : 23 ± 5 °C, 45 ± 20 %RH). ESD protection is necessary for long-term storage also.


10.3. OTHERS

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD Module have been operating for a long time showing the same display patterns the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be recovered by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD Module resulting from destruction caused by static electricity etc. exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.
- Terminal electrode sections.

11. Using LCD modules

11.1 LIQUID CRYSTAL DISPLAY MODULES

LCD is composed of glass and polarizer. Pay attention to the following items when handling.

- (1) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
- (2) Do not touch, push or rub the exposed polarizers with anything harder than a HB pencil lead (glass, tweezers, etc).
- (3) N-hexane is recommended for cleaning the adhesives used to attach front/rear polarizers and reflectors made of organic substances, which will be damaged by chemicals such as acetone, toluene, toluene, ethanol and isopropyl alcohol.
- (4) When the display surface becomes dusty, wipe gently with absorbent cotton or other soft material like chamois soaked in petroleum ether. Do not scrub hard to avoid damaging the display surface.
- (5) Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.
- (6) Avoid contacting oil and fats.
- (7) Condensation on the surface and contact with terminals due to cold will damage, stain or polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- (8) Do not put or attach anything on the display area to avoid leaving marks on.
- (9) Do not touch the display with bare hands. This will stain the display area and degrade insulation between terminals (some cosmetics are determinate to the polarizers).
- (10)As glass is fragile, it tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring.

11.2 INSTALLING LCD MODULE

Attend to the following items when installing the LCM.

- (1) Cover the surface with a transparent protective plate to protect the polarizer and LC cell.
- (2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be ± 0.1 mm.

11.3 ELECTRO-STATIC DISCHARGE CONTROL

Since this module uses a CMOS LSI, the same careful attention should be paid for electrostatic discharge as for an ordinary CMOS IC.

JHB128128A VER: 5.01 - 22 - Issue date: 2013/08/01

- (1) Make certain that you are grounded when handing LCM.
- (2) Before removing LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential.
- (3) When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.
- (4) When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.
- (5) As far as possible, make the electric potential of your work clothes and that of the workbenches to the ground potential.
- (6) To reduce the generation of electro-static discharge, be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended.

11.4 PRECAUTIONS FOR OPERATION

- (1) Viewing angle varies with the change of liquid crystal driving voltage (Vo). Adjust Vo to show the best contrast.
- (2) Driving the LCD in the voltage above the limit will shorten its lifetime.
- (3) Response time is greatly delayed at temperature below the operating temperature range. However, this does not mean the LCD will be out of the order. It will recover when it returns to the specified temperature range.
- (4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then on.
- (5) Condensation on terminals can cause an electrochemical reaction disrupting the terminal circuit. Therefore, this product must be used and stored within the specified condition of 23±5°C, 45±20%RH.
- (6) When turning the power on, input each signal after the positive/negative voltage becomes stable.

11.5 SAFETY

- (1) It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- (2) If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

JHB128128A VER: 5.01 - 23 - Issue date: 2013/08/01

12. REVISION HISTORY

Version	Revise record	Date
1.0	Original version	06-05-09
2.0	Change Backlight Polarity	06-05-11
3.0	Change LCM thickness	06-05-12
4.0	Change Back-Light Polarity	06-07-03
5.0	Change module temperature from normal to wide temperature	09-12-05
5.01	Perfect the VER5.0 spec, Commany internal modify.	13-08-01

JHB128128A VER: 5.01 - 24 - Issue date: 2013/08/01

SAMPLE APPROVED REPORT

(样品确认单)

SAMPLE MODEL NO. (样品型号)	JHB128128A				
SAMPLE SERIES NUMBER NO. (样品序号)					
SAMPLE QUANTITY (样品数量)					
COLOR/TYPE (底色/类型)	STN/BLUE				
VIEWING DIRECTION (视角)	6:00				
DRIVING METHOD (驱动参数)	1/128Duty, 1/12Bias				
LOGIC VOLTAGE (工作电压)	5.0V				
LCD VOP (LCD 驱动电压)	17.5V				
OPERATING TEMP. (操作温度) ℃	-20 ~ 70				
STORAGE TEMP. (储存温度) ℃	-30 ~ 80				
POLARIZERFRONT (首偏光片)	TRANSFLECTIVE				
POLARIZERBACK (后偏光片)	SAP1024B/SDN8080				
CONTROLLER/DRIVER IC(控制/驱动 IC)	LED/WHITE				
BACKLIGHT COLOR/TYPE (背光源类型/颜色)					
DRAWING REV/NO./QUANTITY (图纸版本/数量)					
SPECIFICATION (规格书 份数)					
REMARKS:					
(备注)					
WRIT BY: DATE: APROV BY: _	DATE:				
CUSTOMER'S APPROVAL (客户确认):					
1) FUNCTION (功能): □ OK □ N.G.					
2) DRIVER CONDITION (驱动条件): □ OK	□ N.G.				
3) DISPLAY MODE (显示模式): □ OK □ N.G.					
4) VIEWING ANGLE (视角): □ OK □ N.G.					
5) BACKLIGHT (背光源): □ OK	□ N.G.				
6) DISPLAYING PATTERN (显示效果): □ (OK □ N.G.				
CUSTOMER'S CONCLUSIONS (客户意见):					
CUSTOMER'S SIGNATURE(客户签名):	DATE (日期):				