

Aluminum electrolytic capacitors

Capacitors with screw terminals

Series/Type: B43700, **B43720**Date: December 2014

© EPCOS AG 2014. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Capacitors with screw terminals

B43700, B43720

High voltage - 85 °C

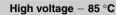
Long-life grade capacitors

Applications


- Frequency converters
- Wind power converters
- Solar inverters
- Uninterruptible power supplies
- Professional power supplies

- High voltage up to 600 V DC
- High reliability and high ripple current capability
- All-welded constructions ensures reliable electrical contact
- PAPR terminals available (Protection Against Polarity Reversal)
- Version available with an optimized base cooling design (heat sink mounting) and featuring up to 2 times the ripple current capability
- RoHS-compatible

Construction


- Charge-discharge proof, polar
- Aluminum case with insulating sleeve
- Poles with screw terminal connections
- Mounting with ring clips, clamps or threaded stud
- The bases of types with threaded stud are not insulated

Specifications and characteristics in brief

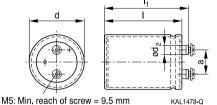
550 600	550 600 V DC					
$1.10 \cdot V_R$						
680 680	0 μF					
±20% ≙ M						
≤ 0.20	0.20					
	/C _R	$V_R \setminus 0.85$				
$I_{leak} \leq 0.0$	⁾²⁰ μΑ •\ μ Ε	· \(\) \\ + 4	μА			
d ≥ 64.3 m	m: approx. 2	0 nH				
550 V	600 V	Requiremen	nts:			
> 8000 h	> 6000 h	∆C/C	≤ 15% of initial value			
		tan δ	≤ 1.75 times initial specified limit			
		I _{leak}	≤ initial specified limit			
	•	Post test requirements:				
2000 h		∆C/C	≤ 10% of initial value			
		tan δ	≤ 1.3 times initial specified limit			
		I _{leak}	≤ initial specified limit			
To IEC 600	068-2-6, test	Fc:				
Frequency	range 10	55 Hz, displa	cement amplitude 0.75 mm,			
acceleration	n max. 10 <i>g</i> ,	duration 3 \times	2 h. Capacitor mounted by its			
body which	n is rigidly cla	mped to the	work surface.			
		7 / 7	3			
ratio at 100) Hz		, , ,			
		2 -40°C / 2 20°C	<u> </u>			
To IEC 600	068-1:		_			
40/085/56 (-40 °C/+85 °C/56 days damp heat test)						
Similar to 0	Similar to CECC 30301-803, CECC 30301-807					
IEC 60384	EC 60384-4					
	$1.10 \cdot V_{R}$ $680 \dots 680$ $\pm 20\% \triangleq M$ ≤ 0.20 I $_{leak} \leq 0.0$ $d \geq 64.3 \text{ m}$ 550 V $> 8000 \text{ h}$ To IEC 600 Frequency acceleration body which Max. imperation at 1000 To IEC 60040/085/56 Similar to 0	680 6800 µF $\pm 20\% \triangleq M$ ≤ 0.20	$\begin{array}{c} 1.10 \cdot V_{R} \\ 680 \dots 6800 \ \mu F \\ \pm 20\% \triangleq M \\ \leq 0.20 \\ \hline \\ I_{ eak} \leq 0.020 \ \mu A \cdot \left(\frac{C_{R}}{\mu F} \cdot \frac{V_{R}}{V}\right)^{0.85} + 4 \\ d \geq 64.3 \ mm: \ approx. \ 20 \ nH \\ \hline 550 \ V \qquad 600 \ V \qquad Requirement \\ > 8000 \ h \qquad > 6000 \ h \qquad \Delta C/C \\ \tan \delta \\ I_{ eak} \\ \hline \\ 2000 \ h \qquad \Delta C/C \\ \tan \delta \\ I_{ eak} \\ \hline \\ To \ IEC \ 60068-2-6, \ test \ Fc: \\ Frequency \ range \ 10 \ \dots 55 \ Hz, \ displaced celeration \ max. \ 10 \ g, \ duration \ 3 \times 6000 \ h \\ \hline Max. \ impedance \\ ratio \ at \ 100 \ Hz \qquad \Delta C/C \\ \hline \\ To \ IEC \ 60068-1: \\ 40/085/56 \ (-40 \ ^{\circ}C/+85 \ ^{\circ}C/56 \ days \ 60008-1: \\ \hline \\ 40/085/56 \ (-40 \ ^{\circ}C/+85 \ ^{\circ}C/56 \ days \ 60008-1: \\ \hline \\ Similar \ to \ CECC \ 30301-803, \ CECC \\ \hline \end{array}$			

Ripple current capability

Due to the ripple current capability of the contact elements, the following current upper limits must not be exceeded:

Capacitor diameter	51.6 mm	64.3 mm	76.9 mm	90 mm
I _{AC,max}	45 A	60 A	67 A	80 A

¹⁾ Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.



High voltage - 85 °C

Dimensional drawings

B43700 Ring clip/clamp mounting

M6: Min. reach of screw = 9.5 min

B43720 Threaded stud mounting

Positive pole marking: +

For types with threaded stud the base is not insulated. Also refer to the mounting instructions in chapter "Capacitors with screw terminals — Accessories".

Screw terminals with UNF threads are available upon request.

Dimensions and weights (Standard capacitors, without heat sink)

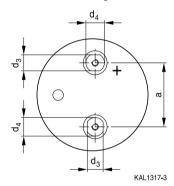
Ter-	Dimensions (mm) with insulating sleeve						Approx.	
minal	d	l±1	I ₁ ±1	$I_2 + 0/-1$	d ₁	d ₂ max.	a +0.2/-0.4	weight (g)
M5	51.6 +0.5/-1	96.7	103.2	17	M12	10.2	22.2	250
M5	51.6 +0.5/-1	105.7	112.2	17	M12	10.2	22.2	280
M5	51.6 +0.5/-1	118.2	124.7	17	M12	10.2	22.2	320
M5	64.3 +0.5/-1	96.7	103.2	17	M12	13.2	28.5	400
M5	64.3 +0.5/-1	105.7	112.2	17	M12	13.2	28.5	440
M5	64.3 +0.5/-1	118.2	124.7	17	M12	13.2	28.5	510
M5	64.3 +0.5/-1	130.7	137.2	17	M12	13.2	28.5	600
M6	76.9 +0.5/-1	96.7	102.5	17	M12	17.7	31.7	570
M6	76.9 +0.5/-1	105.7	111.5	17	M12	17.7	31.7	620
M6	76.9 +0.5/-1	118.2	124.0	17	M12	17.7	31.7	700
M6	76.9 +0.5/-1	130.7	136.5	17	M12	17.7	31.7	800
M6	76.9 +0.5/-1	143.2	149.0	17	M12	17.7	31.7	840
M6	76.9 +0.5/-1	168.7	174.5	17	M12	17.7	31.7	1000
M6	76.9 +0.5/-1	190.7	196.5	17	M12	17.7	31.7	1150
M6	76.9 +0.5/-1	220.7	226.5	17	M12	17.7	31.7	1300
M6	90.0 +0.5/-1.5	144.5	149.8	17	M12	17.7	31.7	1200
M6	90.0 +0.5/-1.5	170.0	175.3	17	M12	17.7	31.7	1400
M6	90.0 +0.5/-1.5	191.0	196.3	17	M12	17.7	31.7	1650
M6	90.0 +0.5/-1.5	221.0	226.3	17	M12	17.7	31.7	1900

High voltage − 85 °C

Packing

Capacitor	length I	Packing units	
diameter d (mm)	(mm)	(pcs.)	
64.3	all	25	
76.9	≤ 168.7	16	
	> 168.7	12	
90.0	all	9	

For ecological reasons the packing is pure cardboard.


High voltage - 85 °C

Special designs

■ PAPR terminal style

With our PAPR terminal style (**P**rotection **A**gainst **P**olarity **R**eversal) we offer an optional mechanical feature in addition to the visual polarity marking on the cover disk and the sleeve, which prevents from mounting in reverse polarity. The non-circular shape of the terminals and their arrangement perpendicular to each other enables the user to definitely prevent wrong mounting with respect to polarity (Poka Yoke).

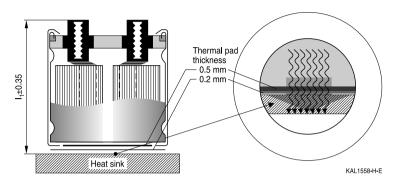
Dimensional drawing of PAPR terminal configuration

Dimensions for PAPR terminal style (mm)

Can diameter d	Terminal	d ₃ ±0.1	d ₄ ±0.1	a +0.2/-0.4	Min. reach of	screw
					Standard design #050	For heat sink mounting #057
64.3	M5	13	15	28.5	9.5	7.3
76.9	M6	13	15	31.7	12.0	9.7
90.0	M6	13	15	31.7	12.0	9.7

All other dimensions of the capacitor such as diameter d, case length I and overall length I_1 are identical with those of standard capacitors of this series. Please refer to the tables "Dimensions and weights" (standard types) and "Dimensions and weights for heat sink mounting" (special designs).

For heat sink mounting


Please refer to chapter "General technical information, 5.2.2 Base cooling with heat sink". This version is available only for capacitors without threaded stud and for diameters ≥ 64.3 mm. Regarding ripple current and useful life, please refer to chapter "General technical information, 5 Useful life".

Dimensions and weights for heat sink mounting:

Terminal	Dimensions (mm	Approx. weight						
	d	d $ 1 \pm 1 $ $ 1_1 \pm 0.35 $ $ d_2 \text{ max.} a + 0.2/-0.4 $						
M5	64.3 +0.5/-1	96.7	102.3	13.2	28.5	400		
M5	64.3 +0.5/-1	105.7	111.3	13.2	28.5	440		
M6	76.9 +0.5/-1	96.7	101.6	17.7	31.7	570		
M6	76.9 +0.5/-1	105.7	110.6	17.7	31.7	620		
M6	76.9 +0.5/-1	118.2	123.1	17.7	31.7	700		
M6	90.0 +0.5/-1.5	144.5	148.9	17.7	31.7	1200		

Dimensions for other sizes are available upon request.

Ordering codes:

Design	Identification in third	Remark
	block of ordering code	
For heat sink mounting	M007	For capacitors without threaded stud
PAPR terminal style	M050	
PAPR terminal style and	M057	For capacitors without threaded stud
heat sink mounting		

High voltage - 85 °C

Accessories

The following items are included in the delivery package, but are not fastened to the capacitors:

	Thread	Toothed washers	Screws/nuts	Maximum torque
For terminals	M5	A 5.1 DIN 6797	DIN 7985 / ISO 7045-M5 × 10-5.6-Z	2.5 Nm thread depth t ≥ 8 mm
	M6	A 6.4 DIN 6797	DIN 7985 / ISO 7045-M6 × 12-5.6-Z	4.0 Nm thread depth t ≥ 9.5 mm
For mounting	M12	J 12.5 DIN 6797	Hex nut BM 12 DIN 439	10 Nm

The following items must be ordered separately. For details, refer to chapter "Capacitors with screw terminals – Accessories".

Item	Туре
Ring clips	B44030
Clamps for capacitors with d ≥ 64.3 mm	B44030
Insulating parts	B44020

High voltage - 85 °C

Overview of available types

V _R (V DC)	550	600					
	Case dimensions d × I (mm)	Case dimensions d × I (mm)					
C _R (μF)							
680	51.6 × 96.7						
820	51.6 × 96.7						
1000	51.6 × 105.7						
1200	51.6 × 118.2	64.3 × 105.7					
1500	64.3× 96.7	64.3 × 118.2					
		76.9 × 96.7					
1800	64.3 × 118.2	64.3 × 130.7					
	76.9 × 96.7	76.9×105.7					
2200	64.3 × 130.7	76.9 × 118.2					
	76.9×105.7						
2700	76.9 × 130.7	76.9 × 130.7					
3300	76.9 × 143.2	76.9 × 168.7					
3900		76.9 × 190.7					
		90.0×144.5					
4700		76.9 × 220.7					
		90.0×170.0					
5600		90.0 × 191.0					
6800		90.0 × 221.0					

The capacitance and voltage ratings listed above are available in different cases upon request.

Other voltage and capacitance ratings are also available upon request.

High voltage - 85 °C

Technical data and ordering codes

C _R	Case	ESR _{typ}	ESR _{typ}	Z _{max}	I _{AC,max}	I _{AC,R}	Ordering code
100 Hz	dimensions	100 Hz	300 Hz	10 kHz	100 Hz	100 Hz	(composition see
20 °C	$d \times I$	20 °C	60 °C	20 °C	60 °C	85 °C	below)
μF	mm	mΩ	mΩ	mΩ	Α	Α	,
$V_{R} = 550$	V DC						
680	51.6× 96.7	130	36	200	8.05	3.87	B437*0A7687M0##
820	51.6 × 96.7	110	30	170	9.56	4.40	B437*0A7827M0##
1000	51.6 × 105.7	90	24	140	10.9	5.05	B437*0A7108M0##
1200	51.6 × 118.2	75	20	120	12.4	5.74	B437*0A7128M0##
1500	64.3 × 96.7	60	17	90	14.6	6.74	B437*0A7158M0##
1800	64.3 × 118.2	50	14	75	16.5	7.60	B437*0A7188M0##
1800	76.9 × 96.7	50	14	75	17.4	8.02	B437*0B7188M0##
2200	64.3×130.7	40	12	65	18.9	8.73	B437*0A7228M0##
2200	76.9×105.7	40	12	65	19.7	9.09	B437*0B7228M0##
2700	76.9×130.7	34	9.6	50	22.4	10.3	B437*0A7278M0##
3300	76.9×143.2	28	8.0	45	25.6	11.7	B437*0A7338M0##
$V_{R} = 600$	V DC						
1200	64.3 × 105.7	80	22	120	12.0	6.63	B437*0B8128M0##
1500	64.3 × 118.2	65	17	95	13.9	7.71	B437*0C8158M0##
1500	76.9×96.7	65	17	95	14.7	8.15	B437*0D8158M0##
1800	64.3×130.7	55	15	80	15.8	8.76	B437*0C8188M0##
1800	76.9×105.7	55	15	80	16.5	9.13	B437*0D8188M0##
2200	76.9×118.2	45	12	65	18.8	10.3	B437*0C8228M0##
2700	76.9×130.7	36	10	55	21.5	11.8	B437*0B8278M0##
3300	76.9×168.7	30	8.2	45	24.5	13.9	B437*0B8338M0##
3900	76.9×190.7	26	7.0	38	27.5	15.7	B437*0C8398M0##
3900	90.0×144.5	26	7.0	38	28.8	16.4	B437*0D8398M0##
4700	76.9×220.7	22	5.9	32	31.5	17.9	B437*0C8478M0##
4700	90.0×170.0	22	5.9	32	32.4	18.5	B437*0D8478M0##
5600	90.0 × 191.0	18	5.0	28	36.5	20.8	B437*0B8568M0##
6800	90.0 × 221.0	15	4.2	22	41.8	23.8	B437*0B8688M0##

Composition of ordering code

* = Mounting style

0 = for capacitors with ring clip/clamp mounting

2 = for capacitors with threaded stud

= Design

00 = for standard capacitors

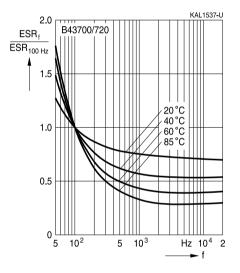
07 = for heat sink mounting (only without threaded stud)

50 = for terminals with PAPR style

57 = for terminals with PAPR style and heat sink mounting (only without threaded stud)

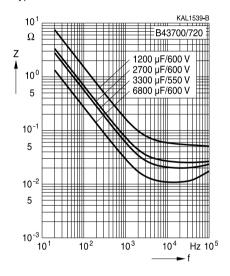
High voltage - 85 °C

Useful life1)


For useful life calculations, please use our web-based "AlCap Useful Life Calculation Tool", which can be found on the Internet under the following link

http://www.epcos.com/designtools/alu useful life/Useful life.swf.

The AlCap Useful Life Calculation Tool provides calculations of useful life as well as additional data for selected capacitor types under operating conditions defined by the user.


Frequency characteristics of ESR

Typical behavior

Impedance Z versus frequency f

Typical behavior at 20 °C

¹⁾ Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.

B43700. B43720

High voltage - 85 °C

Cautions and warnings

Personal safety

The electrolytes used by EPCOS have been optimized both with a view to the intended application and with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).

Furthermore, some of the high-voltage electrolytes used by EPCOS are self-extinguishing.

As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes. However, in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no alternative materials are currently known. However, the amount of dangerous materials used in our products is limited to an absolute minimum.

Materials and chemicals used in EPCOS aluminum electrolytic capacitors are continuously adapted in compliance with the EPCOS Corporate Environmental Policy and the latest EU regulations and guidelines such as RoHS, REACH/SVHC, GADSL, and ELV.

MDS (Material Data Sheets) are available on the EPCOS website for all types listed in the data book. MDS for customer specific capacitors are available upon request.

MSDS (Material Safety Data Sheets) are available for all of our electrolytes upon request.

Nevertheless, the following rules should be observed when handling aluminum electrolytic capacitors: No electrolyte should come into contact with eyes or skin. If electrolyte does come into contact with the skin, wash the affected areas immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment. Avoid inhaling electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.

Product safety

The table below summarizes the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

Topic	Safety information	Reference chapter "General technical information"
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of aluminum electrolytic capacitors"
Reverse voltage	Voltages of opposite polarity should be prevented by connecting a diode.	3.1.6 "Reverse voltage"
Mounting position of screw-terminal capacitors	Screw terminal capacitors must not be mounted with terminals facing down unless otherwise specified.	11.1. "Mounting positions of capacitors with screw terminals"
Robustness of terminals	The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2.5 Nm M6: 4.0 Nm	11.3 "Mounting torques"
Mounting of single-ended capacitors	The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.	11.4 "Mounting considerations for single-ended capacitors"
Soldering	Do not exceed the specified time or temperature limits during soldering.	11.5 "Soldering"
Soldering, cleaning agents	Do not allow halogenated hydrocarbons to come into contact with aluminum electrolytic capacitors.	11.6 "Cleaning agents"
Upper category temperature	Do not exceed the upper category temperature.	7.2 "Maximum permissible operating temperature"
Passive flammability	Avoid external energy, e.g. fire.	8.1 "Passive flammability"

High voltage - 85 °C

Topic	Safety information	Reference chapter "General technical information"
Active flammability	Avoid overload of the capacitors.	8.2 "Active flammability"
Maintenance	Make periodic inspections of the capacitors. Before the inspection, make sure that the power supply is turned off and carefully discharge the electricity of the capacitors. Do not apply excessive mechanical stress to the capacitor terminals when mounting.	10 "Maintenance"
Storage	Do not store capacitors at high temperatures or high humidity. Capacitors should be stored at $+5$ to $+35$ °C and a relative humidity of $\leq 75\%$.	7.3 "Shelf life and storage conditions"
		Reference chapter "Capacitors with screw terminals"
Breakdown strength of insulating sleeves	Do not damage the insulating sleeve, especially when ring clips are used for mounting.	"Screw terminals – accessories"

Display of ordering codes for EPCOS products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.epcos.com/orderingcodes

High voltage - 85 °C

Symbols and terms

Symbol	English	German
С	Capacitance	Kapazität
C_R	Rated capacitance	Nennkapazität
C_S	Series capacitance	Serienkapazität
$C_{S,T}$	Series capacitance at temperature T	Serienkapazität bei Temperatur T
C_{f}	Capacitance at frequency f	Kapazität bei Frequenz f
d	Case diameter, nominal dimension	Gehäusedurchmesser, Nennmaß
d_{max}	Maximum case diameter	Maximaler Gehäusedurchmesser
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatzserienwiderstand
ESR _f	Equivalent series resistance at frequency f	Ersatzserienwiderstand bei Frequenz f
ESR _T	Equivalent series resistance at temperature T	Ersatzserienwiderstand bei Temperatur T
f	Frequency	Frequenz
1	Current	Strom
I_{AC}	Alternating current (ripple current)	Wechselstrom
I _{AC,RMS}	Root-mean-square value of alternating current	Wechselstrom, Effektivwert
$I_{AC,f}$	Ripple current at frequency f	Wechselstrom bei Frequenz f
$I_{AC,max}$	Maximum permissible ripple current	Maximal zulässiger Wechselstrom
$I_{AC,R}$	Rated ripple current	Nennwechselstrom
l _{leak}	Leakage current	Reststrom
I _{leak,op}	Operating leakage current	Betriebsreststrom
1	Case length, nominal dimension	Gehäuselänge, Nennmaß
I _{max}	Maximum case length (without	Maximale Gehäuselänge (ohne Anschlüsse
	terminals and mounting stud)	und Gewindebolzen)
R	Resistance	Widerstand
R_{ins}	Insulation resistance	Isolationswiderstand
R_{symm}	Balancing resistance	Symmetrierwiderstand
T	Temperature	Temperatur
ΔT	Temperature difference	Temperaturdifferenz
T_A	Ambient temperature	Umgebungstemperatur
T_{c}	Case temperature	Gehäusetemperatur
T_B	Capacitor base temperature	Temperatur des Gehäusebodens
t	Time	Zeit
Δt	Period	Zeitraum
t _b	Service life (operating hours)	Brauchbarkeitsdauer (Betriebszeit)

B43700, B<u>43720</u>

High voltage - 85 °C

Symbol	English	German
V	Voltage	Spannung
V_{F}	Forming voltage	Formierspannung
V_{op}	Operating voltage	Betriebsspannung
V_R	Rated voltage, DC voltage	Nennspannung, Gleichspannung
V_s	Surge voltage	Spitzenspannung
X_{C}	Capacitive reactance	Kapazitiver Blindwiderstand
X_L	Inductive reactance	Induktiver Blindwiderstand
Z	Impedance	Scheinwiderstand
Z_T	Impedance at temperature T	Scheinwiderstand bei Temperatur T
$tan \ \delta$	Dissipation factor	Verlustfaktor
λ	Failure rate	Ausfallrate
$\epsilon_{\scriptscriptstyle 0}$	Absolute permittivity	Elektrische Feldkonstante
ϵ_{r}	Relative permittivity	Dielektrizitätszahl
ω	Angular velocity; 2 · π · f	Kreisfrequenz; $2 \cdot \pi \cdot f$

Note

All dimensions are given in mm.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed guestions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).

Important notes

7. The trade names EPCOS, Alu-X, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.vvv