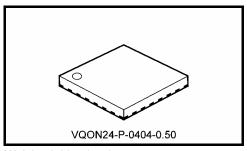
TOSHIBA Digital Integrated Circuit Silicon Monolithic

TC7MPN3245FTG

Low Voltage/Low Power 4-Bit × 2 Dual Supply Bus Transceiver


The TC7MPN3245FTG is an advanced high-speed CMOS 8-bit dual supply voltage interface bus transceiver, fabricated with silicon gate CMOS technology.

It is also designed with over-voltage tolerant inputs and outputs up to 3.6 $\rm V.$

Designed for use as an interface between a 1.2-V, 1.5-V, 1.8-V, or 2.5-V bus and a 1.8-V, 2.5-V or 3.6-V bus in mixed 1.2-V, 1.5-V, 1.8-V or 2.5-V/1.8-V, 2.5-V or 3.6-V supply systems.

The A-port interfaces with the 1.2-V, 1.5-V, 1.8-V or 2.5-V bus, the B-port with the 1.8-V, 2.5-V, 3.3-V bus.

The direction of data transmission is determined by the level of the DIR input. The enable input ($\overline{\rm OE}$) can be used to disable the device so that the buses are effectively isolated.

Weight: 0.03 g (typ.)

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features

- Bidirectional interface between 1.2-V and 1.8-V, 1.2-V and 2.5-V, 1.2-V and 3.3-V, 1.5-V and 2.5-V, 1.5-V and 3.3-V, 1.8-V and 2.5-V, 1.8-V and 3.3-V or 2.5-V and 3.3-V buses.
- High-speed operation : t_{pd} = 13.7 ns (max) (V_{CCA} = 2.5 \pm 0.2 V, V_{CCB} = 3.3 \pm 0.3 V)

 t_{pd} = 14.8 ns (max) (V_{CCA} = 1.8 \pm 0.15 V, V_{CCB} = 3.3 \pm 0.3 V)

 \dot{t}_{pd} = 16.0 ns (max) (V_{CCA} = 1.5 ± 0.1 V, V_{CCB} = 3.3 ± 0.3 V)

 $t_{pd} = 61 \text{ ns (max) (V}_{CCA} = 1.2 \pm 0.1 \text{ V, V}_{CCB} = 3.3 \pm 0.3 \text{ V)}$

 t_{pd} = 18.5 ns (max) (V_{CCA} = 1.8 \pm 0.15 V, V_{CCB} = 2.5 \pm 0.2 V)

 $t_{pd} = 19.7 \text{ ns (max) (V}_{CCA} = 1.5 \pm 0.1 \text{ V, V}_{CCB} = 2.5 \pm 0.2 \text{ V)}$

 $t_{\mbox{\scriptsize pd}} = 60$ ns (max) (V_{CCA} = 1.2 \pm 0.1 V, V_{CCB} = 2.5 \pm 0.2 V)

 $t_{pd} = 58$ ns (max) (V_{CCA} = 1.2 \pm 0.1 V, V_{CCB} = 1.5 \pm 0.1 V)

• Output current : $I_{OHB}/I_{OLB} = \pm 3 \text{ mA (min) (V}_{CCB} = 3.0 \text{ V)}$

 $I_{OHB}/I_{OLB} = \pm 2 \text{ mA (min)} (V_{CCB} = 2.3 \text{ V})$

 $I_{OHB}/I_{OLB} = \pm 0.5 \text{ mA (min) (V}_{CCB} = 1.65 \text{ V)}$

 $I_{OHA}/I_{OLA} = \pm 9 \text{ mA (min) (V}_{CCA} = 2.3 \text{ V)}$

 $I_{OHA}/I_{OLA} = \pm 3 \text{ mA (min)} (V_{CCA} = 1.65 \text{ V})$

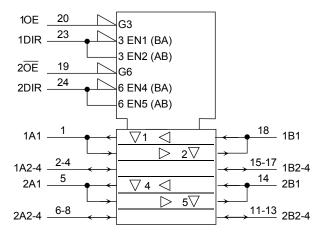
10HA/10LA = ±0 HI/ (HIII) (VCCA = 1.00 V)

 $I_{OHA}/I_{OLA} = \pm 1 \text{ mA (min) } (V_{CCA} = 1.4 \text{ V})$

- Latch-up performance: ±300 mA
- ESD performance: Machine model $\geq \pm 200 \text{ V}$

Human body model ≥ ±2000 V

- Ultra-small package: VQON24
- Low current consumption : Using the new circuit significantly reduces current consumption when OE = "H". Suitable for battery-driven applications such as PDAs and cellular phones.
- Floating A-bus and B-bus are permitted. (when OE = "H")
 3.6-V tolerant function and power-down protection provided on all inputs and outputs.
 - Note 1: Do not apply a signal to any bus pin when it is in the output mode. Damage may result.
 - Note 2: RA or RMA flux is recommended when mounting the VQON package.


Start of commercial production 2006-09

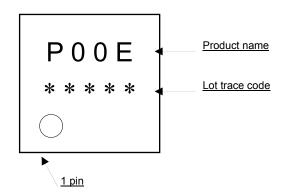
Pin Assignment (top view)

2DIR 1DIR V_{CCA} GND 1OE 2OE 23 22 21 20 19 1A1 1 18 1B1 1A2 2 17 1B2 1A3 3 16 1B3 1A4 4 15 1B4 2A1 5 2B1 14 2A2 6 13 2B2 9 10 11 12 8

2A3 2A4 GND V_{CCB} 2B4 2B3

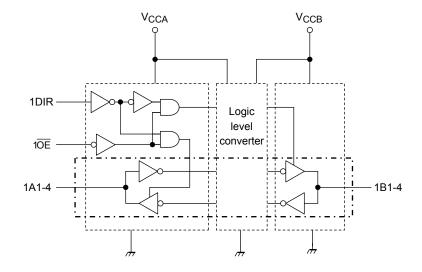
IEC Logic Symbol

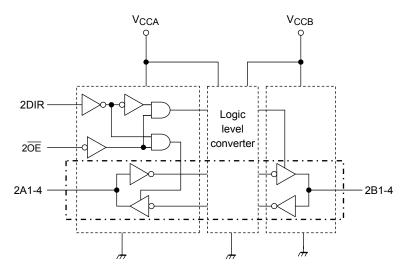
Truth Table


Inp	outs	Func	ction			
1OE	1DIR	Bus 1A1-1A4	Bus 1B1-1B4	Outputs		
L	L	Output	Input	A = B		
L	Н	Input	Output	B = A		
Н	Х	Z	7	Z		

Inp	uts	Fun	ction			
2OE	2DIR	Bus 2A1-2A4	Bus 2B1-2B4	Outputs		
L	L	Output	Input	A = B		
L	Н	Input	Output	B=A		
Н	Х	2	Z			

X: Don't care


Z: High impedance


Marking

Block Diagram

Absolute Maximum Rating (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage (Note 2	V _{CCA}	-0.5 to 4.6	V	
Tower supply voltage (Note 2	V _{CCB}	−0.5 to 4.6	V	
DC input voltage $(DIR, \ \overline{OE}\)$	V _{IN}	-0.5 to 4.6	V	
	Vuo	-0.5 to 4.6 (Note 3)		
DC bus I/O voltage	V _{I/OA}	-0.5 to V _{CCA} + 0.5 (Note 4)	V	
DC bus I/O Vollage	V _{I/OB}	-0.5 to 4.6 (Note 3)	v	
	VI/OB	-0.5 to V _{CCB} + 0.5 (Note 4)		
Input diode current	I _{IK}	-50	mA	
Output diode current	I _{I/OK}	±50 (Note 5)	mA	
DC output current	Iouta	±25	mA	
Do output current	Гоитв	±6	ША	
DC V _{CC} /ground current per supply pi	ICCA	±50	mA	
DO VOO/ground current per supply pr	I _{CCB}	±50	ША	
Power dissipation	P _D	180	mW	
Storage temperature	T _{stg}	-65 to 150	°C	

Note 1: Exceeding any of the absolute maximum ratings, even briefly, may lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: Do not supply a voltage to V_{CCB} pin when V_{CCA} is in the OFF state.

Note 3: Output in OFF state

Note 4: High or Low state. IOUT absolute maximum rating must be observed.

Note 5: $V_{OUT} < GND$, $V_{OUT} > V_{CC}$

Operating Ranges (Note1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V_{CCA}	1.1 to 2.7	V	
(Note 2)	V _{CCB}	1.65 to 3.6	V	
Input voltage (DIR, \overline{OE})	V _{IN}	0 to 3.6	٧	
	V _{I/OA}	0 to 3.6 (Note 3)		
Bus I/O voltage	VI/OA	0 to V _{CCA} (Note 4)	V	
Bus 1/0 Voltage	V _{I/OB}	0 to 3.6 (Note 3)	V	
	VI/OB	0 to V _{CCB} (Note 4)		
		±9 (Note 5)		
	I _{OUTA}	±3 (Note 6)		
Output current		±1 (Note 7)	mA	
Sulput current		±3 (Note 8)	1117 (
	I _{OUTB}	±2 (Note 9)		
		±0.5 (Note 10)		
Operating temperature	T_{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 11)	ns/V	

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs and bus inputs must be tied to either V_{CC} or GND. Please connect both bus inputs and the bus outputs with V_{CC} or GND when the I/O of the bus terminal changes by the function. In this case, please note that the output is not short-circuited.

- Note 2: Do not use when $V_{CCA} > V_{CCB}$
- Note 3: Output in OFF state
- Note 4: High or low state
- Note 5: $V_{CCB}= 2.3 \text{ to } 2.7 \text{ V}$
- Note 6: $V_{CCB} = 1.65 \text{ to } 1.95 \text{ V}$
- Note 7: $V_{CCB} = 1.4 \text{ to } 1.6 \text{ V}$
- Note 8: $V_{CCA} = 3.0 \text{ to } 3.6 \text{ V}$
- Note 9: $V_{CCA} = 2.3 \text{ to } 2.7 \text{ V}$
- Note 10: $V_{CCA} = 1.65$ to 1.95 V
- Note 11: $V_{IN} = 0.8$ to 2.0 V, $V_{CCA} = 2.5$ V, $V_{CCB} = 3.0$ V

Electrical Characteristics

DC Characteristics (2.3 V \leq V_{CCA} \leq 2.7 V, 2.7 V < V_{CCB} \leq 3.6 V)

Chanastanistica	C: make al	Tool C		.,		Ta = -40) to 85°C	l lmi4
Characteristics	Symbol	l est Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
III laval innut valta sa	V _{IHA}	DIR, \overline{OE} , An		2.3 to 2.7	2.7 to 3.6	1.6	_	V
H-level input voltage	V _{IHB}	Bn		2.3 to 2.7	2.7 to 3.6	2.0		V
I level innut valte se	V _{ILA}	DIR, OE, An	DIR, OE, An		2.7 to 3.6	_	0.7	.,
L-level input voltage	V _{ILB}	Bn		2.3 to 2.7	2.7 to 3.6	_	0.8	V
	V _{OHA}		I _{OHA} = -100 μA	2.3 to 2.7	2.7 to 3.6	V _{CCA} - 0.2	_	
H-level output voltage		V _{IN} = V _{IH} or V _{IL}	$I_{OHA} = -9 \text{ mA}$	2.3	2.7 to 3.6	1.7		V
The level output voltage	V _{OHB}	VIN - VIH OI VIL	I _{OHB} = -100 μA	2.3 to 2.7	2.7 to 3.6	V _{CCB} – 0.2	١	V
			$I_{OHB} = -3 \text{ mA}$	2.3 to 2.7	3.0	2.2		
	Vola		$I_{OLA} = 100 \mu A$	2.3 to 2.7	2.7 to 3.6	_	0.2	
L-level output voltage	V _{OLA}	V _{IN} = V _{IH} or V _{IL}	I _{OLA} = 9 mA	2.3	2.7 to 3.6	_	0.6	V
	V _{OLB}	AIN = AIH OL AIF	$I_{OLB} = 100 \mu A$	2.3 to 2.7	2.7 to 3.6	_	0.2	
	VOLB		I _{OLB} = 3 mA	2.3 to 2.7	3.0	_	0.55	
2 state subsuit OFF state surrent	I _{OZA}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6 V		2.3 to 2.7	2.7 to 3.6	_	±5.0	4
3-state output OFF state current	I _{OZB}	V _{IN} = V _{IH} or V _{IL} V _{OUT} = 0 to 3.6 V		2.3 to 2.7	2.7 to 3.6	_	±5.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	2.3 to 2.7	2.7 to 3.6	_	±5.0	μΑ
	I _{OFF1}			0	0	_	5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	2.3 to 2.7	0	_	5.0	μΑ
	I _{OFF3}			2.3 to 2.7	Open	_	5.0	
	ICCA	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or		2.3 to 2.7	2.7 to 3.6	_	5.0	^
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or		2.3 to 2.7	2.7 to 3.6	_	5.0	μА
	ICCA	$V_{CCA} \le (V_{IN}, V_{CI})$	_{OUT}) ≤ 3.6 V	2.3 to 2.7	2.7 to 3.6	_	±5.0	^
	ICCB	$V_{CCB} \le (V_{IN}, V_{CI})$	ouT) ≤ 3.6 V	2.3 to 2.7	2.7 to 3.6	_	±5.0	μΑ
	Ісств	$V_{INA} = V_{CCB} - 0$	0.6 V per input	2.3 to 2.7	2.7 to 3.6	_	750.0	μА

DC Characteristics (1.65 V \leq V_{CCA} < 2.3 V, 2.7 V < V_{CCB} \leq 3.6 V)

Characteristics	Council of	Took C		V 00	V 00	Ta = -40) to 85°C	l lmi4
Characteristics	Symbol	l est Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
H-level input voltage	V _{IHA}	DIR, \overline{OE} , An		1.65 to 2.3	2.7 to 3.6	0.65 × V _{CCA}		V
	V _{IHB}	Bn		1.65 to 2.3	2.7 to 3.6	2.0		
L-level input voltage	V _{ILA}	DIR, $\overline{\text{OE}}$, An		1.65 to 2.3	2.7 to 3.6	_	0.35 × V _{CCA}	٧
	V _{ILB}	Bn		1.65 to 2.3	2.7 to 3.6		0.8	
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.65 to 2.3	2.7 to 3.6	V _{CCA} - 0.2		
H-level output voltage		V _{IN} = V _{IH} or V _{IL}	$I_{OHA} = -3 \text{ mA}$	1.65	2.7 to 3.6	1.25	_	V
Thevel output voltage	V _{OHB}	VIN - VIH OI VIL	I _{OHB} = -100 μA	1.65 to 2.3	2.7 to 3.6	V _{CCB} – 0.2		V
			$I_{OHB} = -3 \text{ mA}$	1.65 to 2.3	3.0	2.2		
	V _{OLA}		$I_{OLA} = 100 \mu A$	1.65 to 2.3	2.7 to 3.6	_	0.2	V
L-level output voltage		$V_{IN} = V_{IH}$ or V_{IL}	I _{OLA} = 3 mA	1.65	2.7 to 3.6		0.3	
	V _{OLB}		$I_{OLB} = 100 \mu A$	1.65 to 2.3	2.7 to 3.6	—	0.2	
	VOLB		I _{OLB} = 3 mA	1.65 to 2.3	3.0	—	0.55	
2 state output OFF state ourrent	l _{OZA}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6 V		1.65 to 2.3	2.7 to 3.6	_	±5.0	^
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$	V	1.65 to 2.3	2.7 to 3.6	_	±5.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	1.65 to 2.3	2.7 to 3.6	_	±2.0	μΑ
	I _{OFF1}			0	0	—	5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.65 to 2.3	0	_	5.0	μΑ
	I _{OFF3}			1.65 to 2.3	Open		5.0	
	ICCA	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or $V_{INB} = V_{CCB}$		1.65 to 2.3	2.7 to 3.6	_	5.0	μА
Quiescent supply current	ICCB	V _{INA} = V _{CCA} or v V _{INB} = V _{CCB} or v		1.65 to 2.3	2.7 to 3.6	_	5.0	μΑ
,	ICCA	$V_{CCA} \le (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.65 to 2.3	2.7 to 3.6	_	±5.0	μА
	ICCB	$V_{CCB} \le (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.65 to 2.3	2.7 to 3.6	_	±5.0	μΛ
	Ісств	$V_{INB} = V_{CCB} - 0$.6 V per input	1.65 to 2.3	2.7 to 3.6	_	750.0	μА

DC Characteristics (1.4 V \leq V_{CCA} < 1.65 V, 2.7 V < V_{CCB} \leq 3.6 V)

Characteristics	Symbol	Tost C	ondition	Vaa. (\/)	Voor (V)	Ta = -40) to 85°C	Unit
Characteristics	Symbol	Test O	ondition	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Offic
H-level input voltage	V _{IHA}	DIR, \overline{OE} , An		1.4 to 1.65	2.7 to 3.6	0.65 × V _{CCA}	_	V
	V _{IHB}	Bn		1.4 to 1.65	2.7 to 3.6	2.0	_	
L-level input voltage	V _{ILA}	DIR, $\overline{\text{OE}}$, An		1.4 to 1.65	2.7 to 3.6	_	0.30 × V _{CCA}	V
	V _{ILB}	Bn		1.4 to 1.65	2.7 to 3.6	_	0.8	
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.4 to 1.65	2.7 to 3.6	V _{CCA} - 0.2		
H-level output voltage		V _{IN} = V _{IH} or V _{IL}	I _{OHA} = -1 mA	1.4	2.7 to 3.6	1.05	_	V
Thever output voltage	V _{OHB}	VIN - VIH OI VIL	I _{OHB} = -100 μA	1.4 to 1.65	2.7 to 3.6	V _{CCB} – 0.2		V
			I _{OHB} = -3 mA	1.4 to 1.65	3.0	2.2	_	
	V _{OLA}		$I_{OLA} = 100 \ \mu A$	1.4 to 1.65	2.7 to 3.6	_	0.2	V
L-level output voltage		$V_{IN} = V_{IH}$ or V_{IL}	I _{OLA} = 1 mA	1.4	2.7 to 3.6	_	0.35	
	V _{OLB}		$I_{OLB} = 100 \mu A$	1.4 to 1.65	2.7 to 3.6	_	0.2	
	VOLB		I _{OLB} = 3 mA	1.4 to 1.65	3.0	_	0.55	
2 state output OFF state ourrest	I _{OZA}	V _{IN} = V _{IH} or V _{IL} V _{OUT} = 0 to 3.6 V		1.4 to 1.65	2.7 to 3.6	_	±5.0	^
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$	V	1.4 to 1.65	2.7 to 3.6	_	±5.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	1.4 to 1.65	2.7 to 3.6	_	±2.0	μА
	I _{OFF1}			0	0	_	5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.4 to 1.65	0	_	5.0	μΑ
	I _{OFF3}			1.4 to 1.65	Open	_	5.0	
	ICCA	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or		1.4 to 1.65	2.7 to 3.6	_	5.0	4
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or		1.4 to 1.65	2.7 to 3.6	_	5.0	μА
,	I _{CCA}	V _{CCA} ≤ (V _{IN} , V _C	_{OUT}) ≤ 3.6 V	1.4 to 1.65	2.7 to 3.6	_	±5.0	^
	I _{CCB}	V _{CCB} ≤ (V _{IN} , V _C	ouT) ≤ 3.6 V	1.4 to 1.65	2.7 to 3.6	_	±5.0	μ Α
	Ісств	$V_{INB} = V_{CCB} - 0$	0.6 V per input	1.4 to 1.65	2.7 to 3.6	_	750.0	μА

DC Characteristics (1.1 V \leq V_{CCA} < 1.4 V, 2.7 V < V_{CCB} \leq 3.6 V)

Oh ana stanistica	O make al	T+0				Ta = -40) to 85°C	Unit
Characteristics	Symbol	l est Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
H-level input voltage	V _{IHA}	DIR, $\overline{\text{OE}}$, An		1.1 to 1.4	2.7 to 3.6	0.65 × V _{CCA}	_	V
	V _{IHB}	Bn		1.1 to 1.4	2.7 to 3.6	2.0	_	
L-level input voltage	V _{ILA}	DIR, OE, An		1.1 to 1.4	2.7 to 3.6	_	0.30 × V _{CCA}	V
	V _{ILB}	Bn	Bn -		2.7 to 3.6	_	0.8	
	V _{OHA}		I _{OHA} = -100 μA	1.1 to 1.4	2.7 to 3.6	V _{CCA} - 0.2	_	
H-level output voltage	V _{OHB}	$V_{IN} = V_{IH}$ or V_{IL}	I _{OHB} = -100 μA	1.1 to 1.4	2.7 to 3.6	V _{CCB} - 0.2	_	V
			$I_{OHB} = -3 \text{ mA}$	1.1 to 1.4	3.0	2.2	_	
	V _{OLA}		$I_{OLA} = 100 \mu A$	1.1 to 1.4	2.7 to 3.6	_	0.2	V
L-level output voltage	V _{OLB}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OLB} = 100 \mu A$	1.1 to 1.4	2.7 to 3.6	_	0.2	
			I _{OLB} = 3 mA	1.1 to 1.4	3.0	_	0.55	
2 state output OFF state outrept	loza	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ or } 0.6 or $	V	1.1 to 1.4	2.7 to 3.6	_	±5.0	^
3-state output OFF state current	I _{OZB}	V _{IN} = V _{IH} or V _{IL} V _{OUT} = 0 to 3.6 V		1.1 to 1.4	2.7 to 3.6	_	±5.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	1.1 to 1.4	2.7 to 3.6	_	±2.0	μΑ
	I _{OFF1}			0	0	_	5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.1 to 1.4	0	_	5.0	μΑ
	I _{OFF3}			1.1 to 1.4	Open	_	5.0	
	ICCA	V _{INA} = V _{CCA} or 0 V _{INB} = V _{CCB} or 0		1.1 to 1.4	2.7 to 3.6	_	5.0	^
Quiescent supply current	ICCB	V _{INA} = V _{CCA} or (V _{INB} = V _{CCB} or (1.1 to 1.4	2.7 to 3.6	_	5.0	μА
	ICCA	$V_{CCA} \le (V_{IN}, V_{O})$	uT) ≤ 3.6 V	1.1 to 1.4	2.7 to 3.6	_	±5.0	
	ICCB	$V_{CCB} \le (V_{IN}, V_{O})$	_{UT}) ≤ 3.6 V	1.1 to 1.4	2.7 to 3.6	_	±5.0	μА
	Ісств	$V_{INB} = V_{CCA} - 0$.6 V per input	1.1 to 1.4	2.7 to 3.6	_	750.0	

DC Characteristics (1.65 V \leq V_{CCA} < 2.3 V, 2.3 V \leq V_{CCB} \leq 2.7 V)

Characteristics	Symbol	Toot Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Ta = -40) to 85°C	Unit
Characteristics	Symbol	1651 01	oridition	VCCA (V)	ACCB (A)	Min	Max	5
H-level input voltage	V _{IHA}	DIR, $\overline{\text{OE}}$, An		1.65 to 2.3	2.3 to 2.7	0.65 × V _{CCA}		٧
	V _{IHB}	Bn		1.65 to 2.3	2.3 to 2.7	1.6	_	
L-level input voltage	V _{ILA}	DIR, $\overline{\text{OE}}$, An		1.65 to 2.3	2.3 to 2.7	_	0.35 × V _{CCA}	٧
	V _{ILB}	Bn		1.65 to 2.3	2.3 to 2.7	_	0.7	
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.65 to 2.3	2.3 to 2.7	V _{CCA} - 0.2		
H-level output voltage		V _{IN} = V _{IH} or V _{IL}	$I_{OHA} = -3 \text{ mA}$	1.65	2.3 to 2.7	1.25	_	V
	V _{OHB}	VIN - VIH OI VIL	$I_{OHB} = -100 \mu A$	1.65 to 2.3	2.3 to 2.7	V _{CCB} – 0.2		V
	- 0115		$I_{OHB} = -2 \text{ mA}$	1.65 to 2.3	2.3	1.7	_	
L-level output voltage	V _{OLA}		$I_{OLA} = 100 \mu A$	1.65 to 2.3	2.3 to 2.7	_	0.2	0.2 0.3 0.2 0.6
	VOLA	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OLA} = 3 mA	1.65	2.3 to 2.7	_	0.3	
L-icver output voltage	V _{OLB}		$I_{OLB} = 100 \mu A$	1.65 to 2.3	2.3 to 2.7	_	0.2	
	VOLB		$I_{OLB} = 2 \text{ mA}$	1.65 to 2.3	2.3	_	0.6	
3-state output OFF state current	loza	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$		1.65 to 2.3	2.3 to 2.7	_	±5.0	^
3-State output Of F State current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ or } 0.6 or $	V	1.65 to 2.3	2.3 to 2.7	_	±5.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	1.65 to 2.3	2.3 to 2.7	_	±2.0	μА
	I _{OFF1}			0	0	_	5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.65 to 2.3	0	_	5.0	μΑ
	I _{OFF3}			1.65 to 2.3	Open	_	5.0	
	I _{CCA}	V _{INA} = V _{CCA} or (1.65 to 2.3	2.3 to 2.7	_	5.0	^
Quiescent supply current	ICCB	V _{INA} = V _{CCA} or (1.65 to 2.3	2.3 to 2.7	_	5.0	μΑ
	ICCA	$V_{CCA} \le (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.65 to 2.3	2.3 to 2.7	_	±5.0	
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.65 to 2.3	2.3 to 2.7	_	±5.0	μΑ

DC Characteristics (1.4 V \leq V_{CCA} < 1.65 V, 2.3 V \leq V_{CCB} \leq 2.7 V)

Characteristics	Cumbal	Toot Co	ondition	V (\(\)	\/ (\/)	Ta = -40) to 85°C	Unit
Characteristics	Symbol	rest Co	onanion	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Oill
H-level input voltage	V _{IHA}	DIR, $\overline{\text{OE}}$, An		1.4 to 1.65	2.3 to 2.7	0.65 × V _{CCA}		V
	V _{IHB}	Bn		1.4 to 1.65	2.3 to 2.7	1.6		
L-level input voltage	V _{ILA}			1.4 to 1.65	2.3 to 2.7	_	0.30 × V _{CCA}	V
	V _{ILB}			1.4 to 1.65	2.3 to 2.7		0.7	
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.4 to 1.65	2.3 to 2.7	V _{CCA} - 0.2		
H-level output voltage		V _{IN} = V _{IH} or V _{IL}	I _{OHA} = -1 mA	1.4	2.3 to 2.7	1.05		V
Ti-level output voltage	V _{OHB}	VIN - VIH OI VIL	$I_{OHB} = -100 \mu A$	1.4 to 1.65	2.3 to 2.7	V _{CCB} – 0.2		V
			$I_{OHB} = -2 \text{ mA}$	1.4 to 1.65	2.3	1.7		
	V _{OLA}		$I_{OLA} = 100 \mu A$	1.4 to 1.65	2.3 to 2.7	_	0.2	V
L-level output voltage	VOLA	$V_{IN} = V_{IH}$ or V_{IL}	I _{OLA} = 1 mA	1.4	2.3 to 2.7		0.35	
L-level output voltage	V _{OLB}		$I_{OLB} = 100 \mu A$	1.4 to 1.65	2.3 to 2.7	—	0.2	
	VOLB		$I_{OLB} = 2 \text{ mA}$	1.4 to 1.65	2.3	—	0.6	
3-state output OFF state current	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ or } 0.6 or $	V	1.4 to 1.65	2.3 to 2.7	_	±5.0	^
3-state output Of 1 state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ or } 0.6 or $	V	1.4 to 1.65	2.3 to 2.7	_	±5.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	1.4 to 1.65	2.3 to 2.7	_	±2.0	μΑ
	I _{OFF1}			0	0	_	5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.4 to 1.65	0	_	5.0	μΑ
	I _{OFF3}			1.4 to 1.65	Open	_	5.0	
	ICCA	V _{INA} = V _{CCA} or (1.4 to 1.65	2.3 to 2.7	_	5.0	μΑ
Quiescent supply current	ICCB	V _{INA} = V _{CCA} or (1.4 to 1.65	2.3 to 2.7		5.0	μА
	I _{CCA}	$V_{CCA} \le (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.4 to 1.65	2.3 to 2.7		±5.0	^
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.4 to 1.65	2.3 to 2.7	_	±5.0	μΑ

DC Characteristics (1.1 V \leq V_{CCA} < 1.4 V, 2.3 V \leq V_{CCB} \leq 2.7 V)

Characteristics	Symbol	Toot Co	ondition	\/aa. (\/)	\/a== (\/\)	Ta = -40) to 85°C	Unit
Characteristics	Symbol	Test Co	onanion	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
H-level input voltage	VIHA	DIR, \overline{OE} , An		1.1 to 1.4	2.3 to 2.7	0.65 × V _{CCA}	_	V
	V _{IHB}	Bn		1.1 to 1.4	2.3 to 2.7	1.6	_	
L-level input voltage	V _{ILA}	DIR, \overline{OE} , An		1.1 to 1.4	2.3 to 2.7	_	0.30 × V _{CCA}	V
	V _{ILB}	Bn		1.1 to 1.4	2.3 to 2.7	_	0.7	
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.1 to 1.4	2.3 to 2.7	V _{CCA} - 0.2		
H-level output voltage	V _{OHB}		I _{OHB} = -100 μA	1.1 to 1.4	2.3 to 2.7	V _{CCB} - 0.2	_	V
			$I_{OHB} = -2 \text{ mA}$	1.1 to 1.4	2.3	1.7	_	
	V _{OLA}		$I_{OLA} = 100 \mu A$		2.3 to 2.7	—	0.2	
L-level output voltage	V _{OLB}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OLB} = 100 \mu A$	1.1 to 1.4	2.3 to 2.7		0.2	V
	VOLB		I _{OLB} = 2 mA	1.1 to 1.4	2.3	_	0.6	
2 state output OFF state ourrent	loza	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6 V		1.1 to 1.4	2.3 to 2.7	_	±5.0	^
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 10^{-2}$	V	1.1 to 1.4	2.3 to 2.7	_	±5.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	1.1 to 1.4	2.3 to 2.7	_	±2.0	μА
	I _{OFF1}			0	0	_	5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.1 to 1.4	0	_	5.0	μА
	I _{OFF3}			1.1 to 1.4	Open	_	5.0	
	ICCA		V _{INA} = V _{CCA} or GND V _{INB} = V _{CCB} or GND		2.3 to 2.7	_	5.0	Δ
Quiescent supply current	Quiescent supply current $ V_{INA} = V_{CCA} \text{ or GND} $ $ V_{INB} = V_{CCB} \text{ or GND} $			1.1 to 1.4	2.3 to 2.7	_	5.0	- μΑ
	ICCA	$V_{CCA} \le (V_{IN}, V_{O})$	uT) ≤ 3.6 V	1.1 to 1.4	2.3 to 2.7	_	±5.0	μА
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{O})$	_{UT}) ≤ 3.6 V	1.1 to 1.4	2.3 to 2.7	_	±5.0	μΛ

DC Characteristics (1.1 V \leq V_{CCA} < 1.4 V, 1.65 V \leq V_{CCB} < 2.3 V)

Characteristics	Symbol	Toot Co	ondition	V (V)	\/a== (\/\)	Ta = -40	to 85°C	Unit
Characteristics	Symbol	Test Co	onunion	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Offic
H-level input voltage	V _{IHA}	DIR, \overline{OE} , An		1.1 to 1.4	1.65 to 2.3	0.65 × V _{CCA}		V
TT-level iliput voltage	V _{IHB}	Bn		1.1 to 1.4	1.65 to 2.3	0.65 × V _{CCB}		V
L-level input voltage	V _{ILA}	DIR, OE, An	DIR, \overline{OE} , An		1.65 to 2.3		0.30 × V _{CCA}	V
L-level iliput voltage	V _{ILB}	3n		1.1 to 1.4	1.65 to 2.3	_	$\begin{array}{c} 0.35 \times \\ V_{CCB} \end{array}$	V
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.1 to 1.4	1.65 to 2.3	V _{CCA} - 0.2		
H-level output voltage	V _{OHB}	$V_{IN} = V_{IH}$ or V_{IL}	I _{OHB} = -100 μA	1.1 to 1.4	1.65 to 2.3	V _{CCB} - 0.2		V
			$I_{OHB} = -0.5 \text{ mA}$	1.1 to 1.4	1.65	1.25	_	
	V _{OLA}		$I_{OLA} = 100 \mu A$	1.1 to 1.4	1.65 to 2.3	_	0.2	V
L-level output voltage	V_{OLB}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OLB} = 100 \ \mu A$	1.1 to 1.4	1.65 to 2.3	_	0.2	
	VOLB		$I_{OLB} = 0.5 \text{ mA}$	1.1 to 1.4	1.65	_	0.3	
2 state output OFF state ourrent	loza	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ or } 0.6 or $	V	1.1 to 1.4	1.65 to 2.3	_	±5.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 10^{-2}$	V	1.1 to 1.4	1.65 to 2.3	_	±5.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	1.1 to 1.4	1.65 to 2.3	_	±2.0	μΑ
	I _{OFF1}			0	0	_	5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.1 to 1.4	0	_	5.0	μΑ
	I _{OFF3}			1.1 to 1.4	Open	_	5.0	
	ICCA	V _{INA} = V _{CCA} or (1.1 to 1.4	1.65 to 2.3	_	5.0	μА
Quiescent supply current	ICCB	V _{INA} = V _{CCA} or (1.1 to 1.4	1.65 to 2.3	_	5.0	μΑ
	ICCA	$V_{CCA} \le (V_{IN}, V_{O})$	ouT) ≤ 3.6 V	1.1 to 1.4	1.65 to 2.3	_	±5.0	μА
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{O})$	_{OUT}) ≤ 3.6 V	1.1 to 1.4	1.65 to 2.3	_	±5.0	μΑ

AC Characteristics (Ta = -40 to 85° C, Input: $t_r = t_f = 2.0$ ns)

 $V_{CCA} = 2.5 \pm 0.2$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1 Figure 2	1.0	5.4	
$(Bn \rightarrow An)$	t _{pHL}	Figure 1, Figure 2	1.0	5.4	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	0.4	ns
$(\overline{OE} \to An)$	t _{pZH}	rigule 1, rigule 3	1.0	8.4	113
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	6.7	
$(\overline{OE} \to An)$	t _{pHZ}	rigule 1, rigule 3	1.0	0.7	
Propagation delay time	t _{pLH}	Figure 1 Figure 2	1.0	13.7	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	13.7	
3-state output enable time	t _{pZL}	Figure 4 Figure 2	1.0	10.0	ns
$(\overline{OE} \to Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	16.6	115
3-state output disable time	t _{pLZ}	Figure 4 Figure 2	1.0	7.0	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	7.2	
Outro data andre da la	t _{osLH}	(Note)		0.5	ns
Output-to-output skew	t _{osHL}	(Note)		0.5	115

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

 $V_{CCA} = 1.8 \pm 0.15$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	8.9	
$(Bn \rightarrow An)$	t _{pHL}	rigure 1, rigure 2	1.0	0.5	
3-state output enable time	t _{pZL}	Figure 1 Figure 2	1.0	13.4	ns
$(\overline{OE} \to An)$	t _{pZH}	Figure 1, Figure 3	1.0	13.4	113
3-state output disable time	t _{pLZ}	Figure 1 Figure 2	1.0	10.9	
$(\overline{OE} \to An)$	t _{pHZ}	Figure 1, Figure 3	1.0	10.9	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	14.8	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	14.0	
3-state output enable time	t _{pZL}	Figure 1 Figure 2	1.0	18.9	20
$(\overline{OE} \to Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	10.9	ns
3-state output disable time	t _{pLZ}	Figure 4 Figure 2	4.0	0.7	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	8.7	
Output to subsut allow	t _{osLH}	(NInte)			
Output-to-output skew	t _{osHL}	(Note)		0.5	ns

14

Note: Parameter guaranteed by design.

 $(t_{\text{OSLH}} = |t_{\text{pLHm}} - t_{\text{pLHn}}|, \, t_{\text{OSHL}} = |t_{\text{pHLm}} - t_{\text{pHLn}}|)$

 $V_{CCA} = 1.5 \pm 0.1$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	10.3	
$(Bn \rightarrow An)$	t _{pHL}	rigure 1, rigure 2	1.0	10.5	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	18.5	ns
$(\overline{OE} \to An)$	t _{pZH}	rigule 1, rigule 3	1.0	10.5	113
3-state output disable time	t _{pLZ}	Figure 1 Figure 2	1.0	13.0	
$(\overline{OE} \to An)$	t _{pHZ}	Figure 1, Figure 3	1.0	13.0	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	16.0	
$(An \rightarrow Bn)$	t _{pHL}	rigule 1, rigule 2	1.0	10.0	
3-state output enable time	t _{pZL}	Figure 1 Figure 2	1.0	22.0	ns
$(\overline{\sf OE} \ \to \sf Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	22.8	115
3-state output disable time	t _{pLZ}	Figure 1 Figure 2	1.0	10.0	
$(\overline{\sf OE} \ \to \sf Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	10.2	
Output to output skow	t _{osLH}	(Noto)		1.5	ns
Output-to-output skew	t _{osHL}	(Note)		1.5	118

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

 $V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	61	
$(Bn \rightarrow An)$	t _{pHL}	rigure 1, rigure 2	1.0	01	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	95	ns
$(\overline{OE} \to An)$	t _{pZH}	rigule 1, rigule 3	1.0	93	113
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	44	
$(\overline{OE} \to An)$	t _{pHZ}	rigule 1, rigule 3	1.0	44	
Propagation delay time	t _{pLH}	Figure 1 Figure 2	1.0	29	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	29	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	63	ns
$(\overline{OE} \to Bn)$	t _{pZH}	rigule 1, rigule 3	1.0	65	115
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	23	
$(\overline{OE} \to Bn)$	t _{pHZ}	rigule 1, rigule 3	1.0	23	
Output-to-output skew	t _{osLH}	(Note)		1.5	ns
Output-to-output skew	t _{osHL}	(Note)		1.0	115

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

 $V_{CCA} = 1.8 \pm 0.15$ V, $V_{CCB} = 2.5 \pm 0.2$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	9.1	
$(Bn \rightarrow An)$	t _{pHL}	Figure 1, Figure 2	1.0	9.1	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	13.5	ns
$(\overline{OE} \to An)$	t _{pZH}	Figure 1, Figure 3	1.0	13.5	113
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	11.8	
$(\overline{OE} \to An)$	t _{pHZ}	Figure 1, Figure 3	1.0	11.0	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	18.5	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	10.5	
3-state output enable time	t _{pZL}	Figure 4 Figure 2	1.0	22.0	ns
$(\overline{OE} \to Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	23.6	115
3-state output disable time	t _{pLZ}	Figure 4 Figure 2	1.0	0.0	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	6.9	
Output to output skow	t _{osLH}	(Note)		0.5	ns
Output-to-output skew	utput-to-output skew tosHL			0.5	110

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

 $V_{CCA} = 1.5 \pm 0.1$ V, $V_{CCB} = 2.5 \pm 0.2$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	10.8	
$(Bn \rightarrow An)$	t _{pHL}	rigure 1, rigure 2	1.0	10.6	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	18.3	ns
$(\overline{OE} \to An)$	t _{pZH}	rigule 1, rigule 3	1.0	10.3	113
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	14.2	
$(\overline{OE} \to An)$	t _{pHZ}	rigule 1, rigule 3	1.0	14.2	
Propagation delay time	t _{pLH}	Figure 1 Figure 2	1.0	19.7	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	19.7	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	26.6	ns
$(\overline{OE} \to Bn)$	t _{pZH}	rigule 1, rigule 3	1.0	20.0	115
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	8.3	
$(\overline{OE} \to Bn)$	t _{pHZ}	rigule 1, rigule 3	1.0	0.0	
Output-to-output skew	t _{osLH}	(Note)		1.5	ns
Output-to-output skew	t _{osHL} (N			1.0	115

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

 $V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 2.5 \pm 0.2$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	60	
$(Bn \rightarrow An)$	t_pHL	Figure 1, Figure 2	1.0	00	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	95	ns
$(\overline{OE} \to An)$	t _{pZH}	Figure 1, Figure 3	1.0	95	113
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	45	
$(\overline{OE} \to An)$	t _{pHZ}	Figure 1, Figure 3	1.0	45	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	33	
(An o Bn)	t_pHL	Figure 1, Figure 2	1.0	33	
3-state output enable time	t _{pZL}	Figure 4 Figure 2	1.0	66	ns
$(\overline{OE} \to Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	00	115
3-state output disable time	t _{pLZ}	Figure 4 Figure 2	1.0	20	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	20	
Output to output skow	t _{osLH}	(Note)		1.5	ns
Output-to-output skew	tput-to-output skew tosHL			1.0	115

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

 $V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 1.8 \pm 0.15$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	58	
$(Bn \rightarrow An)$	t _{pHL}	rigure 1, rigure 2	1.0	3	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	92	ns
$(\overline{OE} \to An)$	t _{pZH}	rigule 1, rigule 3	1.0	92	113
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	47	
$(\overline{OE} \to An)$	t _{pHZ}	rigule 1, rigule 3	1.0	47	
Propagation delay time	t _{pLH}	Figure 1 Figure 2	1.0	43	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	49	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	78	ns
$(\overline{OE} \to Bn)$	t _{pZH}	rigule 1, rigule 3	1.0	70	115
3-state output disable time	t _{pLZ}	Figure 1 Figure 2	1.0	20	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	20	
Output to output skow	t _{osLH}	(Noto)		1.5	20
Output-to-output skew	t _{osHL}	(Note)		1.0	ns

17

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

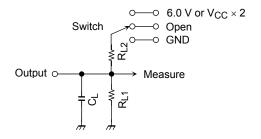
Dynamic Switching Characteristics (Ta = 25°C, Input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF)

Characteristics		Symbol	Test Condition				Tun	Unit				
Characteristics		Symbol	V _{CCA} (V) V _{CCB} (V		V _{CCB} (V)	Тур.	Offic					
					2.5	3.3	0.35					
	$A\toB$					1.8	3.3	0.35				
Quiet output maximum		V _{OLP}	$V_{IH} = V_{CC}, V_{IL} = 0 V$		1.8	2.5	0.25	V				
dynamic V _{OL}		VOLP		(Note)	2.5	3.3	0.6	V				
	$B\toA$				1.8	3.3	0.25					
					1.8	2.5	0.25					
					2.5	3.3	-0.35					
	$A\toB$				1.8	3.3	-0.35					
Quiet output minimum		V _{OLV}	V _{OLV}	V _{OLV}	$V_{IH} = V_{CC}, V_{IL} = 0 V$		1.8	2.5	-0.25	V		
dynamic V _{OL}					VOLV	▼ OLV	VOLV	VOLV		(Note)	2.5	3.3
	$B \rightarrow A$	$B\toA$				1.8	3.3	-0.25				
									1.8	2.5	-0.25	
					2.5	3.3	2.65					
	$A\toB$				1.8	3.3	2.65					
Quiet output maximum		V	$V_{IH} = V_{CC}, V_{IL} = 0 V$		1.8	2.5	2.05	V				
dynamic V _{OH}		V _{OHP}	VOHP	VOHP	VOHP	VOHP		(Note)	2.5	3.3	1.7	V
	$B\toA$				1.8	3.3	1.3					
					1.8	2.5	1.3					
					2.5	3.3	3.95					
Quiet output minimum dynamic V _{OH}	$A\toB$				1.8	3.3	3.95					
		V	$V_{IH} = V_{CC}, V_{IL} = 0 V$	(Note)	1.8	2.5	2.95	V				
	$B \rightarrow A$	V _{OHV}			2.5	3.3	3.3	V				
					1.8	3.3	2.3					
					1.8	2.5	2.3					

Note: Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)

Characteristics		Symbol Tes		Test Circuit			Тур.	Unit					
Characteristics		Symbol		rest Circuit		V _{CCB} (V)	τyp.	Offit					
Input capacitance		C _{IN}	DIR, OE		2.5	3.3	7	pF					
Bus I/O capacitance		C _{I/O}	An, Bn		2.5	3.3	8	pF					
								<u>OE</u> = "L"	$A \rightarrow B (DIR = "H")$	2.5	3.3	3	
		C _{PDA}	OE = L	$B \rightarrow A (DIR = "L")$	2.5	3.3	16						
			<u></u>	<u> </u>	OE = "H"	$A \rightarrow B (DIR = "H")$	2.5	3.3	0				
Power dissipation capacitance				OL = II	OE = H	$B \rightarrow A (DIR = "L")$	2.5	3.3	0	pΕ			
	(Note)		<u>OE</u> = "L"	$A \rightarrow B (DIR = "H")$	2.5	3.3	16	pF					
		C _{PDB}	OE = L	$B \rightarrow A (DIR = "L")$	2.5	3.3	5						
			OE = "H"	$A \rightarrow B (DIR = "H")$	2.5	3.3	0						
					UE = H	OE = H	OL = H	$B \rightarrow A (DIR = "L")$	2.5	3.3	0		


Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

18

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/4 \text{ (per bit)}$

AC Test Circuit

Parameter		Switch
t _{pLH} , t _{pHL}		Open
	6.0 V	@ $V_{CC} = 3.3 \pm 0.3 \text{ V}$
	$V_{CC} \times 2$	@ V_{CC} = 2.5 \pm 0.2 V
t_{pLZ}, t_{pZL}		$@V_{CC} = 1.8 \pm 0.15 \text{ V}$
		@ $V_{CC} = 1.5 \pm 0.1 \text{ V}$
		$@V_{CC} = 1.2 \pm 0.1 \text{ V}$
t _{pHZ} , t _{pZH}		GND

	V _{CC} (output)								
Symbol	$3.3 \pm 0.3 \text{ V} \\ 2.5 \pm 0.2 \text{ V}$	1.8 ± 0.15 V	1.5 ± 0.1 V	1.2 ± 0.1 V					
R _{L1/2A}	500 Ω	1 kΩ	2 kΩ	10 kΩ					
C _{LA}	30 pF	30 pF	15 pF	15 pF					
R _{L1B}	_	_	_	_					
R _{L2B}	1 kΩ	1 kΩ	1 kΩ	1 kΩ					
C _{LB}	30 pF	30 pF	30 pF	30 pF					

Figure 1

AC Waveform

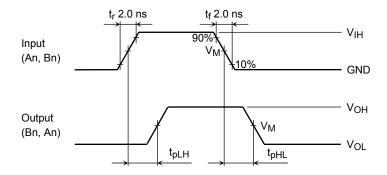


Figure 2 t_{pLH}, t_{pHL}

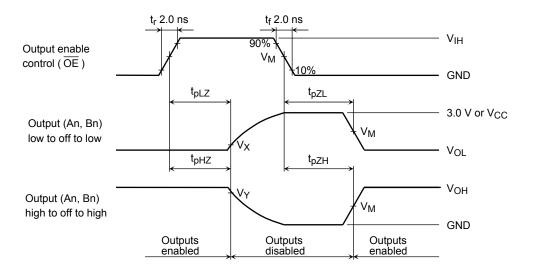
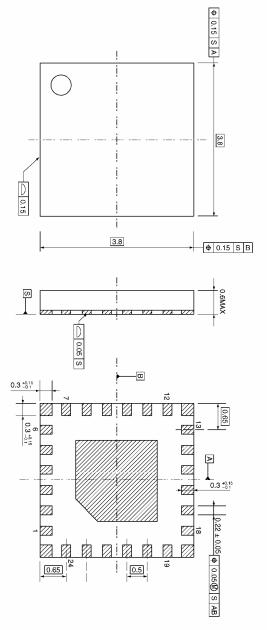


Figure 3 t_{pLZ} , t_{pHZ} , t_{pZL} , t_{pZH}

Symbol	V _{CC}		
	$3.3\pm0.3~\textrm{V}$	$2.5 \pm 0.2 \text{ V} \\ 1.8 \pm 0.15 \text{ V}$	$\begin{array}{c} 1.5 \pm 0.1 \ \text{V} \\ 1.2 \pm 0.1 \ \text{V} \end{array}$
V _{IH}	2.7 V	V _{CC}	V _{CC}
V _M	1.5 V	V _{CC} /2	V _{CC} /2
VX	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.1 V
VY	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.1 V


20 2014-03-01

Unit: mm

Unit: mm

Package Dimensions

VQON24-P-0404-0.50 VQON24-P-0404-0.50

Weight: 0.03 g (typ.)

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
 automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
 safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.