P3PSL450A

Low Voltage, Timing-Safe ${ }^{\mathrm{TM}}$ Peak EMI Reduction IC

Functional Description

P3PSL450A/AH is a versatile low voltage peak EMI reduction IC based on Timing-Safe technology. P3PSL450A/AH accepts one input from an external reference, and locks on to it delivering a 1 x Timing-Safe output clock. P3PSL450A/AH has a Frequency Selection (FS) control that facilitates selecting one of the two frequency ranges within the operating frequency range. Refer frequency Selection table. The device has an SSEXTR pin to select different deviations depending upon the value of an external resistor connected at this pin to GND. P3PSL450A/AH has an MR pin for selecting one of the two Modulation Rates. PD\# provides the Power Down option.

P3PSL450A is a Low drive part and P3PSL450AH is a High drive part. Refer to DC/AC Electrical characteristic table.

P3PSL450A/AH operates over a supply voltage range of $1.8 \mathrm{~V} \pm$ 0.2 V , and is available in an 8 Pin WDFN ($2 \mathrm{~mm} \times 2 \mathrm{~mm}$) Package.

General Features

- 1x, LVCMOS Timing-Safe Peak EMI Reduction
- Input Clock Frequency: $15 \mathrm{MHz}-60 \mathrm{MHz}$
- Output Clock Frequency (Timing-Safe): 15 MHz - 60 MHz
- Analog Frequency Deviation Selection
- Two different Modulation Rate Selection Option
- Power Down option for Power Save
- Low and High Drive Parts
- Supply Voltage: $1.8 \mathrm{~V} \pm 0.2 \mathrm{~V}$
- 8 Pin WDFN (2 mm X 2 mm) Package
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Application

- P3PSL450A/AH is targeted for use in consumer electronic applications like mobile phones, Camera modules, MFP and DPF

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

MARKING DIAGRAM

WDFN8
CASE 511AQ

XX = Specific Device Code
M = Date Code

- = Pb-Free Device

PIN CONFIGURATION

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

Figure 1. Block Diagram

Table 1. PIN DESCRIPTION

Pin \#	Pin Name	Type	
1	CLKIN	I	External reference Clock input.
2	FS	I	Frequency Select. Has an internal pull-down resistor. see Frequency Selection table
3	PD\#	I	Power Down. Pull LOW to enable Power Down. Pull HIGH to disable power down. Output Clock will be LOW when power down is enabled. Has an internal pull-up resistor
4	GND	P	Ground
5	ModOUT	O	Buffered modulated Timing-Safe clock output
6	MR	I	Modulation Rate Select. When LOW selects Low Modulation Rate. Selects High Modulation Rate when pulled HIGH. Has an internal pull-up resistor.
7	SSEXTR	I	Analog Frequency Deviation Selection through external resistor to GND.
8	VDD	P	1.8 V Supply Voltage

Table 2. FREQUENCY SELECTION TABLE

FS	Frequency (MHz)
0	$15-30$
1	$30-60$

Table 3. ABSOLUTE MAXIMUM RATING

Parameter	Min	Max	Unit
Supply Voltage to Ground Potential	-0.3	+2.7	V
DC Input Voltage(CLKIN)	-0.3	+2.7	V
DC Input Voltage (Except CLKIN)	-0.3	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Storage Temperature	-65	+150	${ }^{\circ} \mathrm{C}$
Max. Soldering Temperature (10 sec)		260	${ }^{\circ} \mathrm{C}$
Junction Temperature		150	${ }^{\circ} \mathrm{C}$
Static Discharge Voltage (As per JEDEC STD22-A114-B)		2000	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 4. OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{DD}	Supply Voltage	1.6	2	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-20	+85	${ }^{\circ} \mathrm{C}$
C_{L}	Load Capacitance		15	pF
C_{IN}	Input Capacitance		7	pF

Table 5. DC ELECTRICAL CHARACTERISTICS FOR $V_{D D}=1.8 \mathrm{~V} \pm 0.2 \mathrm{~V}$

Table 6. AC ELECTRICAL CHARACTERISTICS FOR $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.2 \mathrm{~V}$

Parameter	Test Conditions			Min	Typ	Max	Unit
Input Frequency	FS $=0$			15		30	MHz
	$\mathrm{FS}=1$			30		60	
ModOUT	FS $=0$			15		30	
	FS = 1			30		60	
Duty Cycle (Notes 1 and 2)	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$			45	50	55	\%
Rise Time (Notes 1 and 2)	Measured between 20\% to 80\%	P3PSL450A			1.3	2.1	ns
		P3PSL450AH			1	1.7	
Fall Time (Notes 1 and 2)	Measured between 80\% to 20\%	P3PSL450A			1.3	2.1	ns
		P3PSL450AH			1	1.7	
Cycle-to-Cycle Jitter (Note 2)	Unloaded output with SSEXTR pin OPEN	$\mathrm{FS}=0$	15 MHz		± 150	± 250	ps
			24 MHz		± 100	± 150	
			30 MHz		± 80	± 150	
		$F S=1$	30 MHz		± 150	± 250	
			60 MHz		± 100	± 150	
PLL Lock Time ${ }^{2}$	Stable power supply, valid clock presented on CLKIN pin, PD\# toggled from Low to High					1	ms

1. All parameters are specified with 15 pF loaded output.
2. Parameter is guaranteed by design and characterization. Not 100% tested in production

SWITCHING WAVEFORMS

OUTPUT

Figure 2. Duty Cycle Timing

Figure 3. Output Rise/Fall Time

TSKEW represents input-output skew when spread spectrum is ON

$$
\begin{aligned}
\text { For example, } \mathrm{T}_{\text {SKEW } / 2}= & \pm 0.20 * \mathrm{~T} \text { for an Input clock of } 24 \mathrm{MHz} \text {, translates in to } \\
& (1 / 24 \mathrm{MHz}) * 0.20=8.33 \mathrm{~ns}
\end{aligned}
$$

Figure 4. Input-Output Skew

Figure 5. Typical Example of Timing-Safe Waveform

DEVIATION VERSUS SSEXTR RESISTANCE CHARTS

Figure 6. Deviation vs SSEXTR Chart
(CLKIN = $\mathbf{1 5} \mathbf{~ M H z}$)

Figure 8. Deviation vs SSEXTR Chart (CLKIN = $\mathbf{2 4}$ MHz)

Figure 10. Deviation vs SSEXTR Chart (CLKIN = $\mathbf{3 0} \mathrm{MHz}$)

Figure 7. Deviation vs SSEXTR Chart
(CLKIN = $\mathbf{1 5}$ MHz)

Figure 9. Deviation vs SSEXTR Chart
(CLKIN = $\mathbf{2 4}$ MHz)

Figure 11. Deviation vs SSEXTR Chart (CLKIN = $\mathbf{3 0} \mathrm{MHz}$)

DEVIATION VERSUS SSEXTR RESISTANCE CHARTS

Figure 12. Deviation vs SSEXTR Chart (CLKIN = $\mathbf{3 0} \mathbf{~ M H z) ~}$

Figure 14. Deviation vs SSEXTR Chart (CLKIN = 48 MHz)

Figure 16. Deviation vs SSEXTR Chart (CLKIN = 60 MHz)

Figure 13. Deviation vs SSEXTR Chart (CLKIN = $\mathbf{3 0} \mathrm{MHz}$)

Figure 15. Deviation vs SSEXTR Chart (CLKIN = 48 MHz)

Figure 17. Deviation vs SSEXTR Chart (CLKIN = $\mathbf{6 0} \mathrm{MHz}$)

P3PSL450A

NOTE: Refer to Pin Description table for Functionality details
Figure 18. Typical Application Schematic

P3PSL450A

PCB LAYOUT RECOMMENDATION

For optimum device performance, following guidelines are recommended.

- Dedicated V_{DD} and GND planes.
- The device must be isolated from system power supply noise. A $0.1 \mu \mathrm{~F}$ and a $2.2 \mu \mathrm{~F}$ decoupling capacitor should be mounted on the component side of the board as close to the V_{DD} pin as possible. No vias should be used between the decoupling capacitor and V_{DD} pin. The PCB trace to V_{DD} pin and the ground via should be kept as short as possible. All the V_{DD} pins should have decoupling capacitors.
- In an optimum layout all components are on the same side of the board, minimizing vias through other signal layers. A typical layout is shown in the Figure below:

ORDERING INFORMATION

Ordering Code	Marking	Temperature	Package Type	Shipping †
P3PSL450AG-08CR	FA	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-\operatorname{pin}(2 \mathrm{~mm} \times 2 \mathrm{~mm})$ WDFN	Tape \& Reel
P3PSL450AHG-08CR	FC	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-\operatorname{pin}(2 \mathrm{~mm} \times 2 \mathrm{~mm})$ WDFN	Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*A "microdot" placed at the end of last row of marking or just below the last row toward the center of package indicates $\mathrm{Pb}-\mathrm{Free}$.

PACKAGE DIMENSIONS

WDFN8 2x2, 0.5P
CASE 511AQ-01
ISSUE A

Timing-Safe is a trademark of Semiconductor Components Industries, LLC (SCILLC).

> ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

