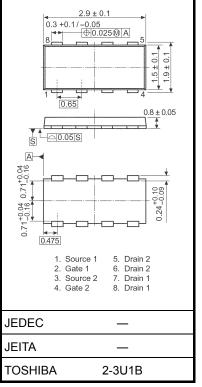
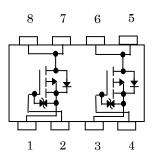
**TOSHIBA** 

TOSHIBA Field Effect Transistor Silicon P-Channel MOS Type (U-MOS IV)


# **TPCF8304**

#### Notebook PC Applications Portable Equipment Applications

- Low drain-source ON resistance:  $R_{DS}$  (ON) = 60 m $\Omega$  (typ.)
- High forward transfer admittance:  $|Y_{fs}| = 5.9 \text{ S} (typ.)$
- Low leakage current:  $I_{DSS} = -10 \ \mu A \ (max) \ (V_{DS} = -30 \ V)$
- Enhancement model:  $V_{th} = -0.8$  to -2.0 V, ( $V_{DS} = -10$  V,  $I_D = -1$  mA)


| Cha                                                   | Symbol                                          | Rating               | Unit              |    |  |
|-------------------------------------------------------|-------------------------------------------------|----------------------|-------------------|----|--|
| Drain-source voltage                                  | ge                                              | V <sub>DSS</sub> -30 |                   |    |  |
| Drain-gate voltage                                    | $(R_{GS} = 20 \text{ k}\Omega)$                 | V <sub>DGR</sub>     | -30               | V  |  |
| Gate-source voltage                                   | tage V <sub>GSS</sub> ±20                       |                      |                   |    |  |
| Drain current                                         | DC (Note 1)                                     | I <sub>D</sub>       | -3.2              | А  |  |
| Drain current                                         | Pulse (Note 1)                                  | I <sub>DP</sub>      | -30<br>-30<br>±20 | A  |  |
| Drain power<br>dissipation<br>(t = 5 s) (Note 2a)     | Single-device operation<br>(Note 3a)            | P <sub>D (1)</sub>   | 1.35              | W  |  |
|                                                       | Single-device value at dual operation (Note 3b) | P <sub>D (2)</sub>   | 1.12              |    |  |
| Drain power<br>dissipation<br>(t = 5 s) (Note 2b) Sin | Single-device operation<br>(Note 3a)            | P <sub>D (1)</sub>   | 0.53              |    |  |
|                                                       | Single-device value at dual operation (Note 3b) | P <sub>D (2)</sub>   | 0.33              |    |  |
| Single-pulse avala                                    | nche energy (Note 4)                            | E <sub>AS</sub>      | 0.67              | mJ |  |
| Avalanche current                                     |                                                 | I <sub>AR</sub>      | -1.6              | А  |  |
| Repetitive avalance<br>Single-device value            | E <sub>AR</sub>                                 | NR 0.11              |                   |    |  |
| Channel temperatu                                     | ire                                             | T <sub>ch</sub>      | 150               | °C |  |
| Storage temperatu                                     | re range                                        | T <sub>stg</sub>     | -55~150           | °C |  |

#### Absolute Maximum Ratings (Ta = 25°C)



Weight: 0.011 g (typ.)

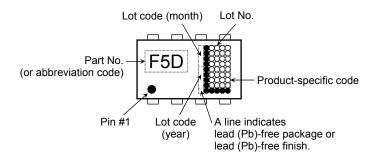
#### **Circuit Configuration**



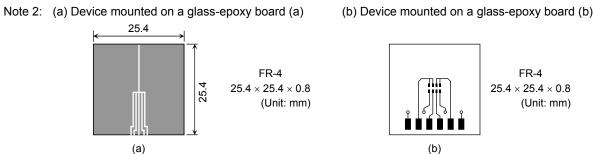
Note: For Notes 1 to 6, see the next page.

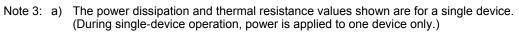
Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Caution: This transistor is an electrostatic-sensitive device. Handle with care.


2006-11-17 www.DataSheet4U.com

Unit: mm


#### **Thermal Characteristics**


| Chara                                                            | Symbol                                          | Max                        | Unit  |      |  |
|------------------------------------------------------------------|-------------------------------------------------|----------------------------|-------|------|--|
| Thermal resistance,<br>channel to ambient<br>(t = 5 s) (Note 2a) | Single-device operation<br>(Note 3a)            | R <sub>th (ch-a) (1)</sub> | 92.6  | °C/W |  |
|                                                                  | Single-device value at dual operation (Note 3b) | R <sub>th (ch-a) (2)</sub> | 111.6 | 0,11 |  |
| Thermal resistance, channel to ambient                           | Single-device operation<br>(Note 3a)            | R <sub>th (ch-a) (1)</sub> | 235.8 | °C/W |  |
| (t = 5 s) (Note 2b)                                              | Single-device value at dual operation (Note 3b) | R <sub>th (ch-a) (2)</sub> | 378.8 |      |  |

#### Marking (Note 6)

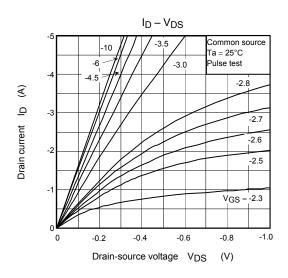


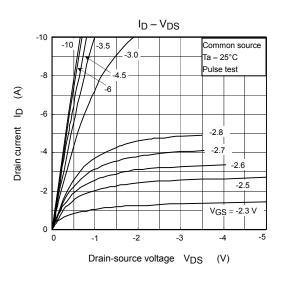
Note 1: Ensure that the channel temperature does not exceed 150°C.

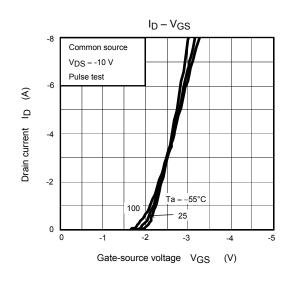


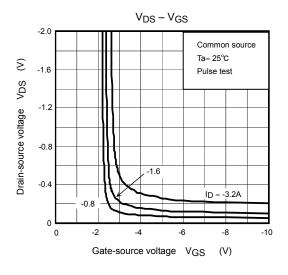


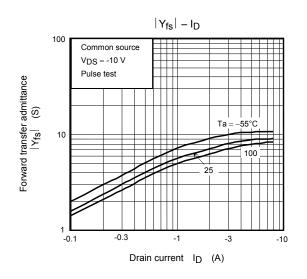
- b) The power dissipation and thermal resistance values shown are for a single device. (During dual operation, power is evenly applied to both devices.)
- Note 4:  $V_{DD}$  = -24 V,  $T_{ch}$  = 25°C (initial), L = 0.2 mH,  $R_G$  = 25  $\Omega$ ,  $I_{AR}$  = -1.6 A
- Note 5: Repetitive rating; pulse width limited by max channel temperature
- Note 6: to the lower left of the Part No. marking indicates Pin 1.

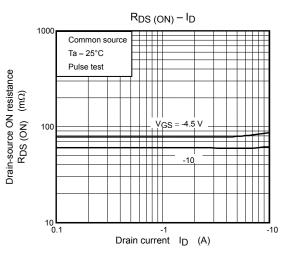

Electrical Characteristics (Ta = 25°C)


| Ch                                                 | aracteristic   | Symbol               | Test Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min       | Тур. | Max  | Unit   |
|----------------------------------------------------|----------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|------|--------|
| Gate leakage cur                                   | rent           | I <sub>GSS</sub>     | $V_{GS}=\pm 16~V,~V_{DS}=0~V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _         | —    | ±10  | μΑ     |
| Drain cut-off curre                                | ent            | I <sub>DSS</sub>     | $V_{DS} = -30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | _    | -10  | μA     |
| Drain-source brea                                  | akdown voltago | V (BR) DSS           | $I_D = -10 \text{ mA}, V_{GS} = 0 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -30       | -    |      | V      |
| Drain-source brea                                  | ardown voltage | V (BR) DSX           | $I_D = -10 \text{ mA}, V_{GS} = 20 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -15 — —   |      | v    |        |
| Gate threshold ve                                  | oltage         | V <sub>th</sub>      | $V_{DS} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.5 — -1 |      | -1.2 | V      |
| Drain-source ON resistance                         |                | R <sub>DS (ON)</sub> | $V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -1.6 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ١         | 80   | 105  | mΩ     |
|                                                    | resistance     | R <sub>DS (ON)</sub> | $V_{GS} = -10 \text{ V}, \text{ I}_{D} = -1.6 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -         | 60   | 72   | 1115.2 |
| Forward transfer                                   | admittance     | Y <sub>fs</sub>      | $V_{DS} = -10 \text{ V}, \text{ I}_{D} = -1.6 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.9       | 5.9  |      | S      |
| Input capacitance                                  |                | C <sub>iss</sub>     | V <sub>DS</sub> = -10 V, V <sub>GS</sub> = 0 V, f = 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ١         | 600  | _    | pF     |
| Reverse transfer capacitance                       |                | C <sub>rss</sub>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 60   | _    |        |
| Output capacitance                                 |                | C <sub>oss</sub>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -         | 70   |      |        |
|                                                    | Rise time      | tr                   | $V_{GS} = -1.6 A$<br>-10 V<br>G = -1.6 A<br>C = |           | 5.3  | _    |        |
| Switching time                                     | Turn-on time   | t <sub>on</sub>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _         | 12   | _    | ns     |
| Switching time                                     | Fall time      | t <sub>f</sub>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 8.4  | _    | 115    |
|                                                    | Turn-off time  | t <sub>off</sub>     | $V_{DD}\simeq -15 \ V \label{eq:VDD}$ Duty $\leq 1\%, \ t_W=10 \ \mu s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _         | 34   | _    |        |
| Total gate charge<br>(gate-source plus gate-drain) |                | Qg                   | V <sub>DD</sub> ≃ -24 V, V <sub>GS</sub> = -10 V,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _         | 14   | _    |        |
| Gate-source charge 1                               |                | Q <sub>gs1</sub>     | $I_{\rm D} = -3.2 \rm{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | —         | 1.4  | —    | nC     |
| Gate-drain ("Mille                                 | er") charge    | Q <sub>gd</sub>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _         | 2.7  | _    |        |

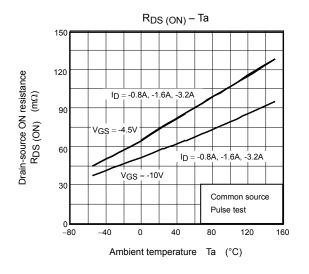

### Source-Drain Ratings and Characteristics (Ta = 25°C)

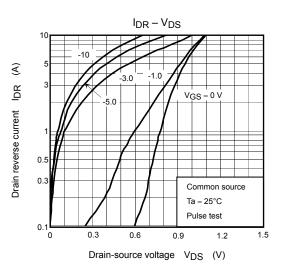

| Characteris             | tic            | Symbol           | Test Condition                                          | Min | Тур. | Max   | Unit |
|-------------------------|----------------|------------------|---------------------------------------------------------|-----|------|-------|------|
| Drain reverse current   | Pulse (Note 1) | I <sub>DRP</sub> | —                                                       | —   | _    | -12.8 | А    |
| Forward voltage (diode) |                | V <sub>DSF</sub> | $I_{DR} = -3.2 \text{ A}, \text{ V}_{GS} = 0 \text{ V}$ |     |      | 1.2   | V    |

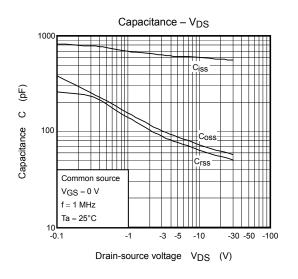

## **TOSHIBA**

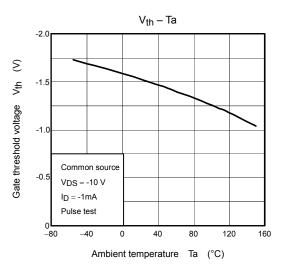


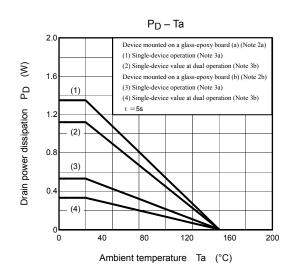


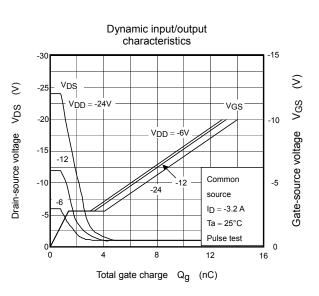



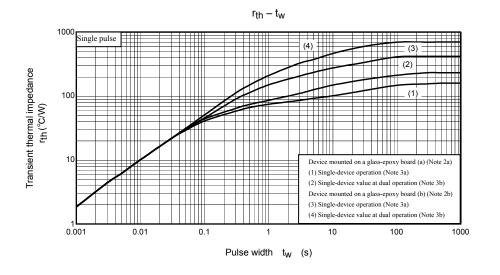



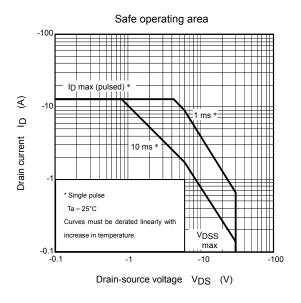





## **TOSHIBA**














#### **RESTRICTIONS ON PRODUCT USE**

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
   In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
  responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
  may result from its use. No license is granted by implication or otherwise under any patents or other rights of
  TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.