

LD1970

16 SEGMENT X 12 GRID VFD DRIVER

with KEYSCAN

Ver. 4.0 / Dec. 2012

This document is a general product description and is subject to change without notice. LDT Inc. does NOT assume any responsibility for use of circuits described.

Description

LD1970 is a Vacuum Fluorescent Display (VFD) Controller driven on a 1/4 to 1/12 duty factor. 16 segment output lines, 4 grid output lines, 8 segment/grid output drive lines, one display memory, control circuit and key scan circuit are all incorporated into a single chip to build a highly reliable peripheral device for a single chip micro computer. Serial data is fed to LD1970 via a three-line serial interface. It is housed in a 48QFN, 44LQFP & 44MQFP package.

Device name	Package Type
LD1970	48 QFN, 44LQFP, 44MQFP

Features

- CMOS Technology
- Low Power Consumption
- Key Scanning (16X2) Matrix
- Multiple Display Modes (16 segments, 12 digits to 24 segments, 4 digits)
- 8-Step Dimming Circuitry
- LED Ports Provide (4 channels, 20mA max.)
- Serial Interface for Clock, Data Input, Data Output, Strobe Pins
- No External Resistors Needed for Driver Outputs
- Available in 48 QFN , 44LQFP, 44MQFP

Device name	LD1970
Package Type	48 QFN (include 4NC), 44LQFP, 44MQFP
Power / Ground	VDD1, VDD2, VEE / VSS(2)
DI / DO / AIO	DI:3 EA, DO:1EA, AIO:1EA
FIP Output	34 EA (LED1~4, K1,K2,SG1~24, GR1~4)

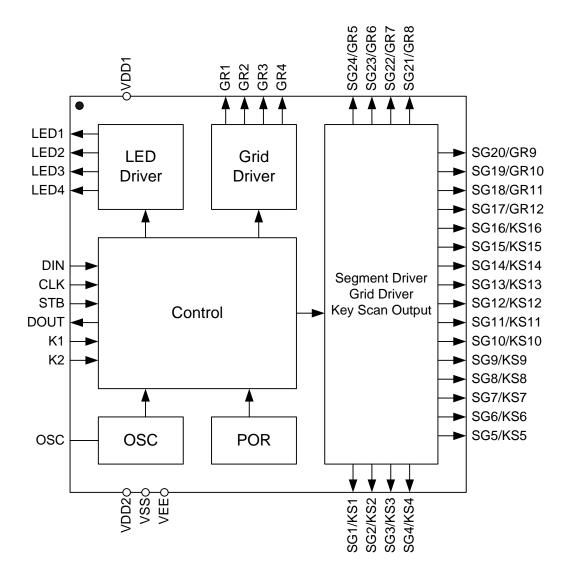
Applications

- Microcomputer Peripheral Devices
- Digital Audio/Video System : CD/MD/VCD/DVD players
- Car Audio
- VCR
- Electric scale meter
- P.O.S
- Electronic equipment with instructional display

ORDERING INFORMATION

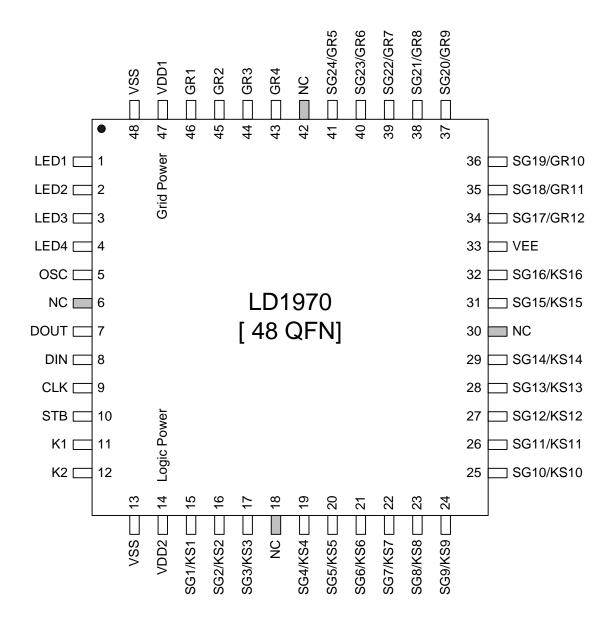
Device name	Segment	Grid	Key Scanning	PKG Type
LD1970-QFN	16~ 24 Segment	12~4Grid	16X2 matrix	48QFN
LD1970-LQFP	16~24 Segment	12~4Grid	16X2 matrix	44LQFP
LD1970-MQFP	16~24 Segment	12~4Grid	16X2 matrix	44MQFP

LDT(주)엘디티

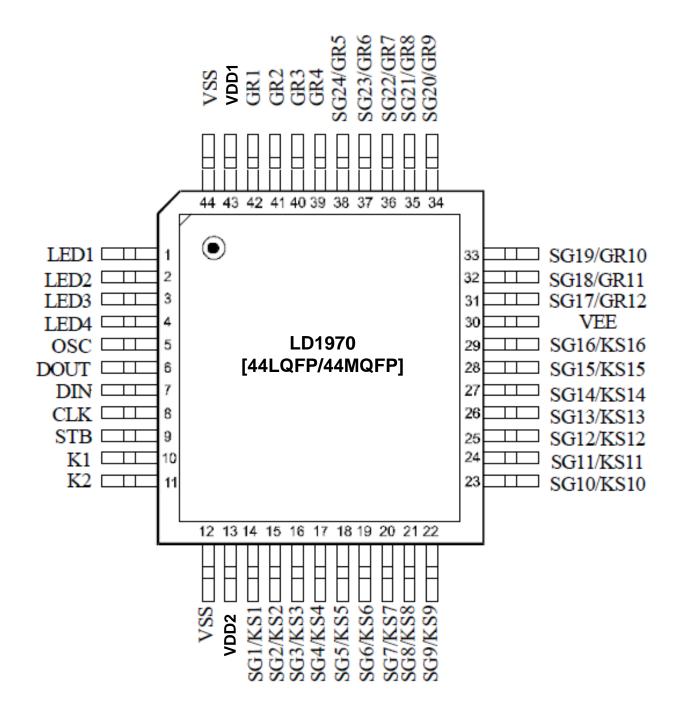


Pin Description

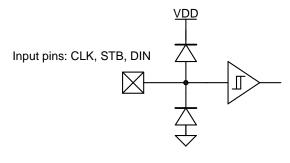
Din nome	T	Decembring		Pin No.
Pin name	Pin name Type Description		QFN	LQFP,MQFP
LED1 ~ LED4	0	LED Output Pin	1~4	1~4
osc	I/O	Oscillator I/O Pin A resistor is connected to this pin to determine the oscillation frequency.	5	5
DOUT	0	Data Output Pin (N-Channel, Open-Drain) This pin outputs serial data at the falling edge of the shift clock (starting from the lower bit)	7	6
DIN (Schmitt Trigger)	Schmitt Trigger) This pin inputs serial data at the rising edge of the shift clock (starting from the lower bit) CLK Clock Input Pin This pin reads serial data at the rising edge and outputs data at the falling		8	7
CLK (Schmitt Trigger)			9	8
STB (Schmitt Trigger)	I	Serial Interface Strobe Pin The data input after the STB has fallen is processed as a command. When this pin is "HIGH", CLK is ignored.	10	9
K1, K2	I	Key Data Input Pins The data inputted to these pins is latched at the end of the display cycle.	11,12	10,11
VSS	G	Logic Ground Pin	13,48	12,44
VDD1, VDD2	P(+)	Logic Positive Power Pin	47,14	43, 13
SG1/KS1 ~ SG16/KS16	0	High-Voltage Segment Output Pins, Also acts as the Key Source.	15~32	14~29
VEE	P(-)	Pull-Down Level / Negative Power Pin	33	30
SG17/GR12 ~ SG24/GR5	I O I High-Voltage Segment/Grid Output Pins		34~41	31~38
GR1~GR4	0	High-Voltage Grid Output Pins	43~46	39~42

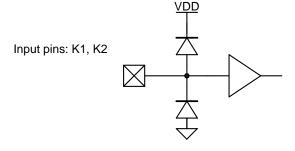


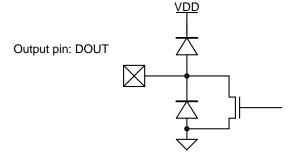
Block Diagram

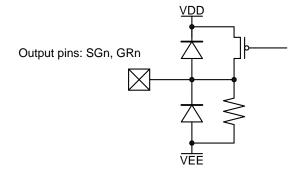


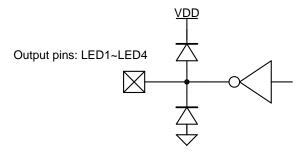
Pin Configuration 48 QFN




Pin Configuration 44 LQFP & 44MQFP






I/O Pins Schematic Diagram

Absolute Maximum Ratings

(Unless otherwise stated, Ta=25°C, GND=0V)

Parameters	Symbol	Ratings	Unit
Logic Supply Voltage	VDD	-0.3 ~ +7.0	٧
Driver Supply Voltage	VEE	VDD+0.3 ~ VDD-40	V
Logic Input Voltage	VI	-0.3 ~ VDD+0.3	V
VFD Driver Output Voltage	VO	VEE-0.3 ~ VDD+0.3	V
LED Driver Output Current	IOLED	± 20	mA
VFD Drive Output Current	IOVFD	-40 @ Grid, -15 @ Segment	mA
Operating Temperature	Topr	-40 ~ 85	°C
Storage Temperature	Tstg	-65 ~ 150	°C

Recommended Operating Range

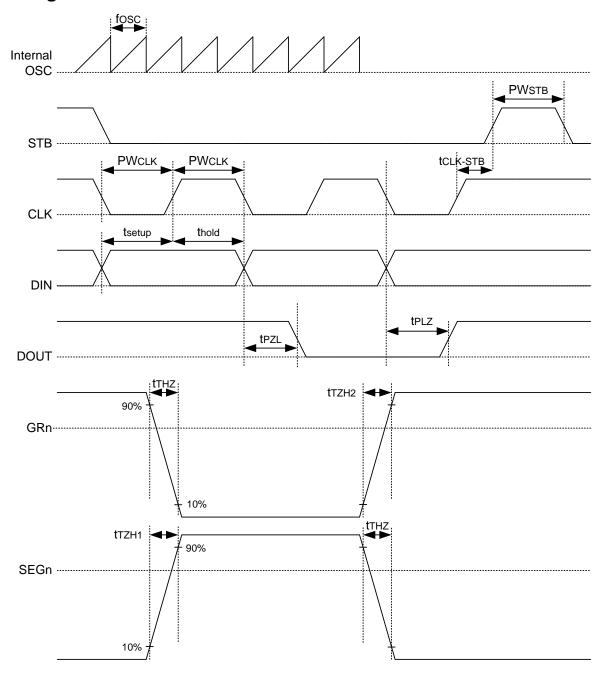
(Unless otherwise stated, Ta=25°C, GND=0V)

Doromotoro	Cumbal	Ratings				
Parameters	Symbol	Min.	Тур.	Max.	Unit	
Logic Supply Voltage	VDD	3.0	5.0	5.5	V	
High-Level Input Voltage	VIH	0.7*VDD	-	VDD	V	
Low-Level Input Voltage	VIL	0	-	0.3*VDD	V	
Driver Supply Voltage	VEE	VDD-35	-	0	V	

Electrical Characteristics

(Unless otherwise stated, VDD=5.0V, GND=0V, VEE=VDD-35V, Ta=25°C)

Parameters	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
High-Level Output Voltage	VOHLED	IOHLED=-12mA LED1 ~ LED4	VDD-1	-	-	V
Low-Level Output Voltage	VOLLED	IOHLED=+15mA LED1 ~ LED4	-	-	1	V
Low-Level Output Voltage	VOLDOUT	IOLDOUT=4mA DOUT	-	-	0.4	V
High-Level Output Current	IOHSG	VO=VDD-2V SG1/KS1~SG16/KS16	-3	-	-	mA
High-Level Output Current	IOHGR	VO=VDD-2V GR1~GR4 SG17/GR12~SG24/GR5	-15	-	-	mA
Oscillation Frequency	fosc	R=82KΩ	350	500	650	KHz
Schmitt-Trigger Transfer Voltage(+)	VT+	VDD=5V DIN, CLK, STB	2.7	3.0	3.3	V
Schmitt-Trigger Transfer Voltage(-)	VT-	VDD=5V DIN, CLK, STB	0.7	1.0	1.3	V
Hysteresis Voltage	Vhys	VDD=5V DIN, CLK, STB	1.4	2.0	-	V
Input Current	II	VI=VDD or VSS	-	-	±1	uA
Dynamic Current Consumption	IDDdyn	Under no load Display Off	-	-	5	mA


Electrical Characteristics

(Unless otherwise stated, VDD=3.3V, GND=0V, VEE=VDD-35V, Ta=25°C)

Parameters	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
High-Level Output Voltage	VOHLED	IOHLED=-6mA LED1 ~ LED4	VDD-1	-	-	V
Low-Level Output Voltage	VOLLED	IOHLED=+15mA LED1 ~ LED4	-	-	1	V
Low-Level Output Voltage	VOLDOUT	IOLDOUT=4mA DOUT	-	-	0.4	V
High-Level Output Current	IOHSG	VO=VDD-2V SG1/KS1~SG16/KS16	-1.5	-	-	mA
High-Level Output Current	IOHGR	VO=VDD-2V GR1~GR4 SG17/GR12~SG24/GR5	-6	-	-	mA
Oscillation Frequency	fosc	R=82KΩ	350	500	650	KHz
Schmitt-Trigger Transfer Voltage(+)	VT+	VDD=3.3V DIN, CLK, STB	1.8	2.0	2.2	V
Schmitt-Trigger Transfer Voltage(-)	VT-	VDD=3.3V DIN, CLK, STB	0.2	0.4	0.6	V
Hysteresis Voltage	Vhys	VDD=3.3V DIN, CLK, STB	1.0	1.6	-	V
Input Current	II	VI=VDD or VSS	-	-	±1	uA
Dynamic Current Consumption	IDDdyn	Under no load Display Off	-	-	3	mA

Switching Characteristic Waveform

fosc = Oscillation Frequency

PWCLK (Clock Pulse Width) ≥ 400ns

tsetup (Data Setup Time) ≥ 100ns

tPZL (Propagation Delay Time) ≤ 100ns

tTHZ (Grid Fall Time) ≤ 150us

tTZH1 (Segment Rise Time) < 2.0us(VDD=5.0V)

tTZH1 (Segment Rise Time) < 4.0us(VDD=3.3V)

PWSTB (Strobe Pulse Width) \geq 1us tclk-Stb (Clock-Strobe Time) \geq 1us thold (Data Hold Time) \geq 100ns tplz (Propagation Delay Time) \leq 400ns tthz (Segment Fall Time) \leq 150us ttzh2 (Grid Rise Time) \leq 0.5us(VDD=5.0V) ttzh2 (Grid Rise Time) \leq 1.2us(VDD=3.3V)

Functional Description

Commands

Commands determine the display mode and status of LD1970. A command is the first byte (b0 to b7) inputted to LD1970 via the DIN pin after STB pin has changed from "High" to "Low" state. If for some reason the STB pin is set to "High" while data or commands are being transmitted, the serial communication is initialized, and the data/commands being transmitted are considered invalid.

Command 1: Display Mode Setting command

LD1970 provides 8 display mode settings as shown in the diagram below: As stated earlier a command is the first one byte(b0 to b7) transmitted to LD1970 via the DIN pin when STB pin is "Low". However, for this command, the bits 5 to 6 (b4 to b5) are ignored, bits 7 & 8 (b6 to b7) are given a value of "0".

The Display Mode Setting command determines the number of segments and grids to be used(1/4 to 1/12 duty, 16 to 24 segments). When this command is executed, the display is forcibly turned off, the key scanning stops. A display command "ON" must be executed in order to resume display. If the same mode setting is selected, no command execution is taken place, therefore nothing happens.

When Power is turned "ON", the 12-grid, 16-segment mode is selected.

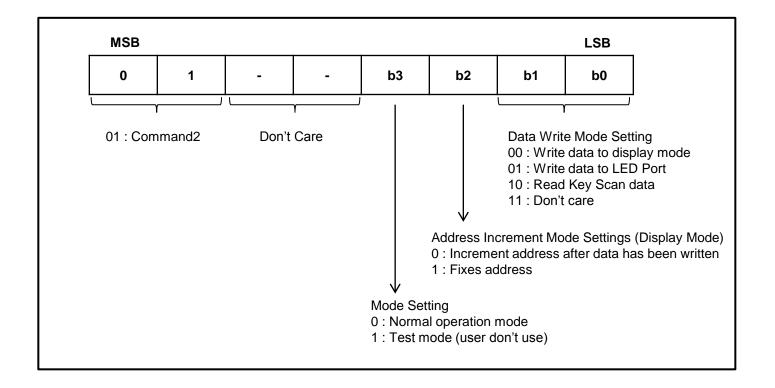
0 0	-	-	b3	b2	b1	b0
Y D : Command1	Don't	Y Care		Display Mod 0000 : 4Grid 0001 : 5Grid 0010 : 6Grid 0011 : 7Grid 0100 : 8Grid 0101 : 9Grid 0110 : 10Grid 0111 : 11Grid 1XXX : 12Grid	d, 24Segme d, 23Segme d, 22Segme d, 21Segme d, 20Segme d, 19Segme rid, 18Segm	ent ent ent ent ent ent ent

Display Mode and Memory Address

Data transmitted from an external device to LD1970 via the serial interface are stored in the Display Memory and are assigned addresses. The Memory Addresses of LD1970 are given below in the 8bits unit.

SG1 SG4	SG5 SG8	SG9 SG12	SG13 SG16	SG17 SG20	SG21 SG24	
00H∟	00Нн	01H∟	01Нн	02H∟	02Нн	Grid1
03H∟	03Нн	04H∟	04Нн	05H∟	05Нн	Grid2
06H∟	06Нн	07H∟	07Нн	08H∟	08Нн	Grid3
09H∟	09Нн	0AH _L	0АНн	0BH∟	0ВНн	Grid4
0CH∟	0СНн	0DH∟	0DH _H	0EH∟	0ЕНн	Grid5
0FH∟	0FH _H	10H∟	10Нн	11H∟	11Нн	Grid6
12H∟	12Нн	13H∟	13Нн	14H∟	14Нн	Grid7
15H∟	15Нн	16H∟	16Н⊦	17H∟	17Нн	Grid8
18H∟	18Нн	19H∟	19H _H	1AH∟	1АНн	Grid9
1BH∟	1ВНн	1CH∟	1СНн	1DH∟	1DH _H	Grid10
1EH∟	1ЕНн	1FH∟	1FH _H	20H∟	20Нн	Grid11
21H∟	21Нн	22H∟	22Нн	23H∟	23Нн	Grid12

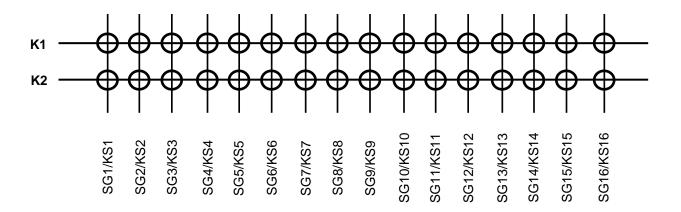
b0		b3	b4		b7
	xxH∟			ххНн	
Lo	ower 4bi	ts	Hi	gher 4bi	ts



Command 2: Data Setting command

The Data Setting command executes the Data Write or Data Read Modes for LD1970. The Data Setting Command, the bits 5 and 6 (b4, b5) are ignored, bit 7 (b6) is given the value of "1" while bit 8 (b7) is given the value of "0".

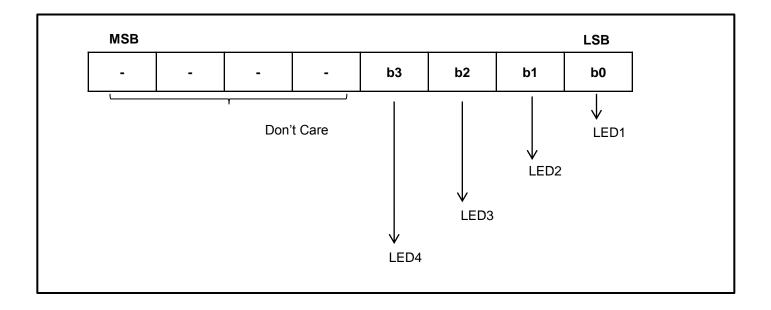
Please refer to the diagram below.


When Power is turned "ON", the bit 4 to bit1 (b3 to b0) are given the value of "0".

LD1970 Key Matrix & Key Input Data Storage Memory

LD1970 Key Matrix consists of 16 x 2 array as shown below.

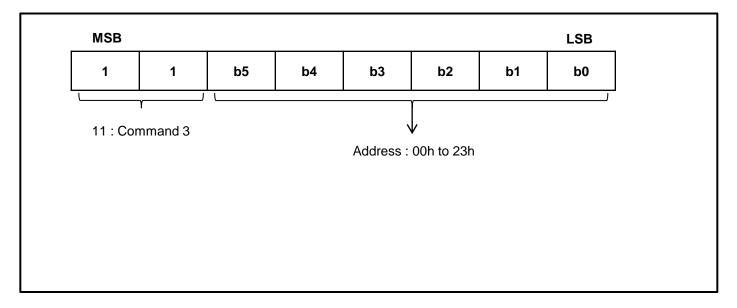
Each data inputted by each key are stored as follows. They are read by a READ command, starting from the least significant bit. When the most significant bit of the data (SG16, b7) has been read, the least significant bit if the next data (SG1, b0) is read.


K1	K2	K1	K2	K1	K2	K1	K2		
SG1/KS1 SG2		G2/KS2 SG3/KS3		/KS3	SG4/KS4				
SG5/KS5 SG6/KS6		SG7	SG7/KS7 SG8/k		KS8		Reading Sequence		
SG9/KS9		SG10/KS10		SG11/KS11		SG12/KS12			
SG13/KS13		SG14/	KS14	SG15/KS15		SG16/KS16			/
b0	h1	h2	h3	h4	h5	h6	h7	_	

LED Display

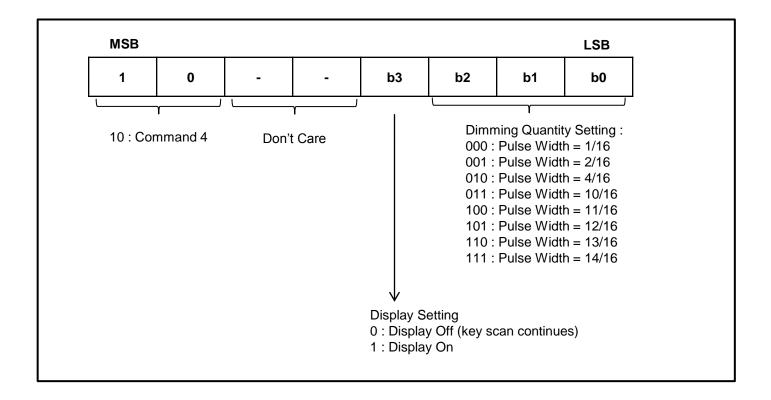
LD1970 provides 4 LED Display Terminals, namely LED1 to LED4. Data is written to the LED Port starting from the least significant bit (b0) of the port using a Write Command. Each bit starting from the least significant (b0) activates a specific LED Display Terminal – b0 corresponds LED1 Display,b1 activates LED2 and so forth. Since there are only 4 LED Display Terminals, bit5 to bit8 (b4 ~ b7) are not used and therefore ignored. This means that b4 to b7 does not in anyway activate any LED Display and they are totally ignored.

When a bit (b0 \sim b3) in the LED Port is "1", the corresponding LED is Off. Conversely, when the bit is "0", the LED Display is turned On. For example, Bit1 (as designated by b0) has the value of "1", then this means that LED1 is Off. It must be noted that when power is turned on, bit1 to bit4 (b0 to b3) are given the value of "0" (All LEDs are turned On). Please refer to the diagram below.

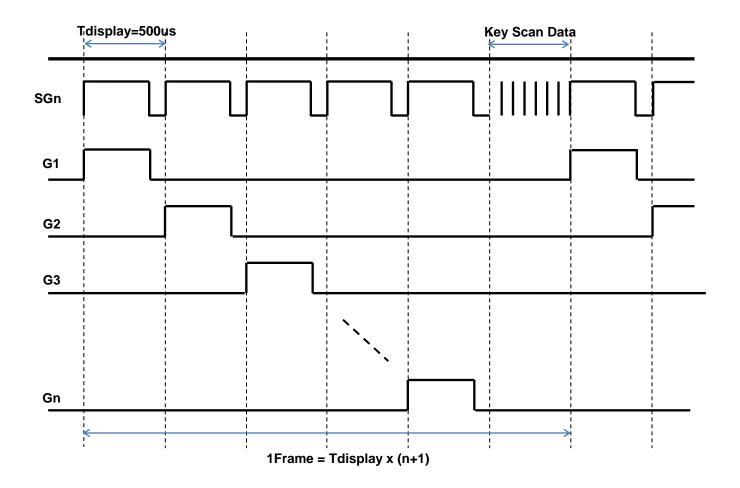


Command 3: Address Setting command

The display memory is addressed by Address Setting command. The valid address range is from "00h" to "23h". If the address is set to 24h or higher, the data is ignored until a valid address is set. When the power is turned On, the address is set at "00h".

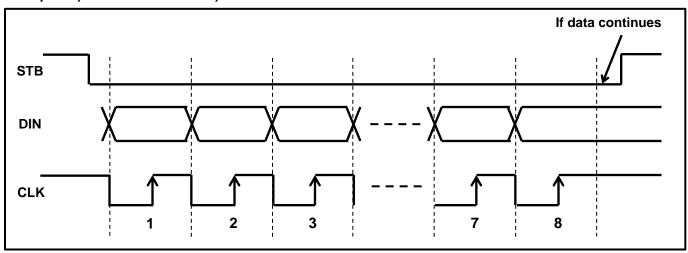

Please refer to the diagram below.

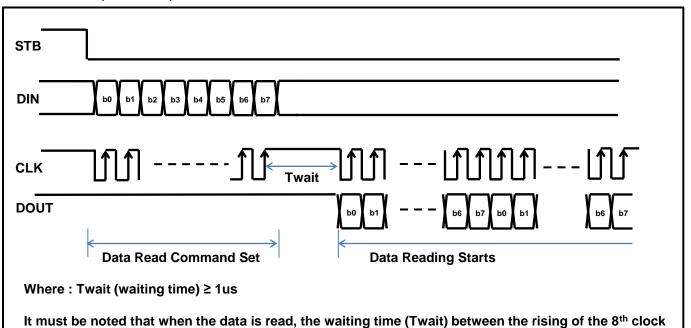
Command 4: Display Control command


The Display Control command is used to turn On or Off a display. It is also used to set the pulse width. Please refer to the diagram below. When the power is turned On, a 1/16 pulse width is selected and the display is turned Off (the key scanning is stopped).

Scanning and Display Timing

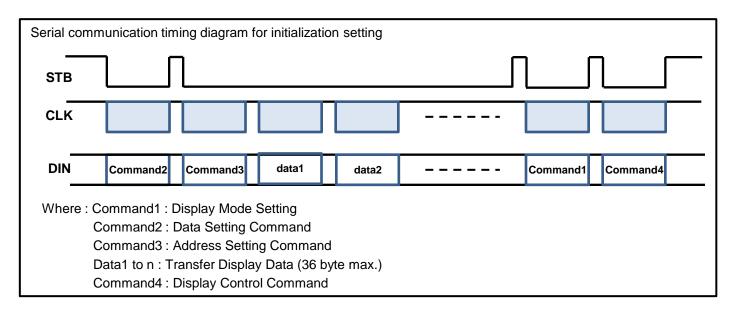
The key scanning and display timing diagram is given below. One cycle of key scanning consists of 2 frames. The data of the 16 x 2 matrix is stored in the Memory.

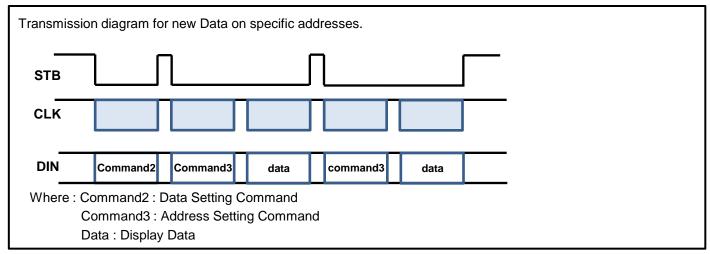

Note: Tdisplay is the width of segment only

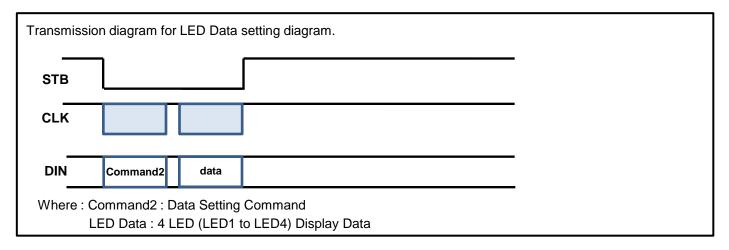

Serial Communication Format

The following diagram shows the LD1970 serial communication format. The DOUT pin is an N-channel open drain output pin, therefore , it is highly recommended that an external pull-up resistor ($1^{k\Omega} \sim 10^{k\Omega}$) must be connected to DOUT.

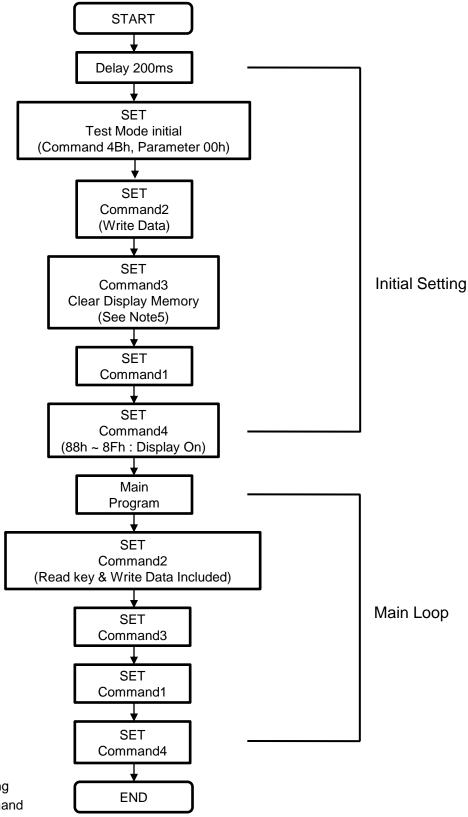
Reception (Data/Command Write)


Transmission (Data Read)




that has set the command and the falling of the 1st clock that has the data is greater or equal to 1us.

Serial Communication Example



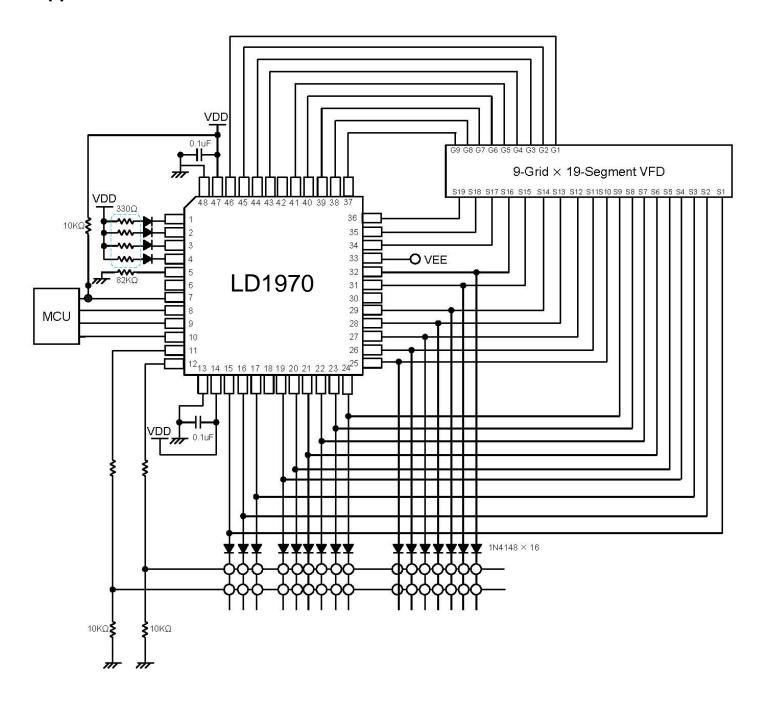
Recommended Software Programming Flow Chart

Note: 1. Command1: Display Mode Setting

2. Command2: Data Setting Command

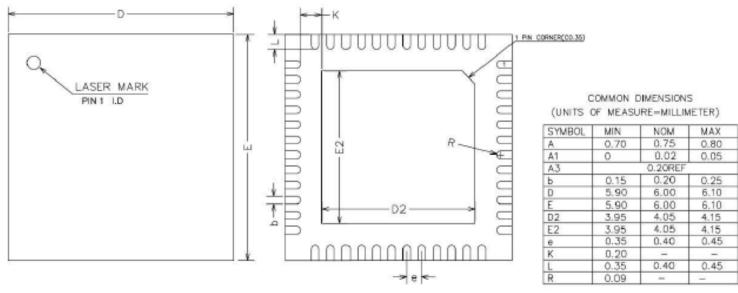
3. Command3: Address Setting Command

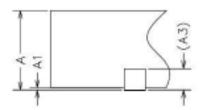
4. Command4: Display Control Command


5. When IC Power is applied for the first time, the contents of the Display Memory are not defined. Thus, it is strongly suggested that the contents of the Display Memory must be cleared during the initial setting.

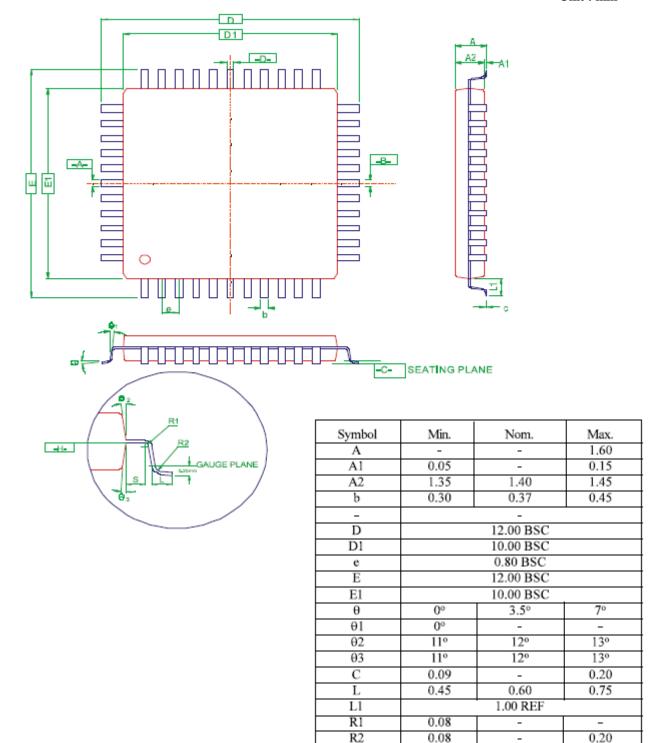
22

Application Circuit


Note: The capacitor (0.1 uF) connected between the GND and the VDD pins must be located as close as possible to the LD1970 chip.


PACKAGE INFORMATION

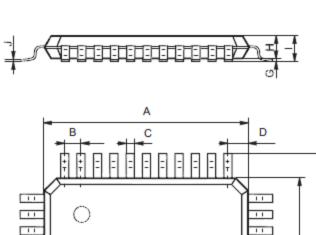
48 QFN Package (Bode Size: 6mm x 6mm; Pitch: 0.4mm; THK Body: 0.75mm)


NOTES

ALL DIMENSIONS REFER TO JEDEC STANDARD MO-220 (VJJE)

44-Pin LQFP Package (Bode Size: 10mm x 10mm; Pitch: 0.8mm; THK Body: 1.40mm)

Unit: mm


S


0.20

44-Pin MQFP Package (Bode Size: 10mm x 10mm; Pitch: 0.8mm; THK Body: 2.10mm)

Unit: mm

	_	
1		
ш	ш	
ļ		

[mm]			
	Min.	Max.	
Α	10 BSC		
В	0.80 BSC		
С	0.30	0.45	
D	1 REF		
Е	10 BSC		
F	13.20 BSC		
G	0.10	0.25	
Н	1.95	2.10	
1	-	2.35	
J	-	-	
K	12 DEG	16 DEG	
L	0.73	1.03	
M	0 DEG	7 DEG	