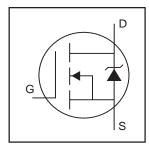
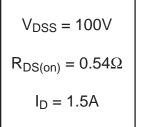
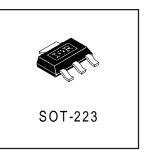
International Rectifier

IRLL110PbF


HEXFET® Power MOSFET


- Surface Mount
- Available in Tape & Reel
- Dynamic dv/dt Rating
- Repetitive Avalanche Rated
- Logic-Level Gate Drive
- RDS(on)Specified at VGS= 4V & 5V
- Fast Switching
- Lead-Free


Description

Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The SOT-223 package is designed for surface-mount using vapor phase, infra red, or wave soldering techniques. Its unique package design allows for easy automatic pick-and-place as with other SOT or SOIC packages but has the added advantage of improved thermal performance due to an enlarged tab for heatsinking. Power dissipation of grreater than 1.25W is possible in a typical surface mount application.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ Tc = 25°C	Continuous Drain Current, V _{GS} @ 5.0 V	1.5	
I _D @ Tc = 100°C	Continuous Drain Current, V _{GS} @ 5.0 V	inuous Drain Current, V _{GS} @ 5.0 V 0.93	
I _{DM}	Pulsed Drain Current ①	12	Α
P _D @Tc = 25°C	Power Dissipation	3.1	
P _D @T _A = 25°C	Power Dissipation (PCB Mount)**	20	W
	Linear Derating Factor	0.025	
	Linear Derating Factor (PCB Mount)**	0.017	W/°C
V_{GS}	Gate-to-Source Voltage	-/+10	V
E _{AS}	Single Pulse Avalanche Energy ②	50	mJ
I _{AR}	Avalanche Current ①	1.5	А
E _{AR}	Repetitive Avalanche Energy①	0.31	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.5	V/ns
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	℃
	Soldewring Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

Document Number: 91320

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-PCB		40	°C/W
$R_{\theta JA}$	Junction-to-Ambient. (PCB Mount)**		60	C/VV

^{**} When mounted on 1" square PCB (FR-4 or G-10 Material).
For recommended footprint and soldering techniques refer to application note #AN-994.

04/27/04

IRLL110PbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.12		V/°C	Reference to 25°C, I _D = 1mA
D	Static Drain-to-Source On-Resistance			0.54		$V_{GS} = 5.0V, I_D = 0.90A$ @
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.76	Ω	$V_{GS} = 4.0V, I_D = 0.75A$
V _{GS(th)}	Gate Threshold Voltage	1.0		2.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
9fs	Forward Transconductance	0.57			S	$V_{DS} = 25V, I_D = 0.90 A$
1	Drain-to-Source Leakage Current			25		V _{DS} = 100V, V _{GS} = 0V
I _{DSS}	Diali-to-Source Leakage Current			250	μA	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 125$ °C
1	Gate-to-Source Forward Leakage			100	^	V _{GS} = 10V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -10V
Qq	Total Gate Charge			6.1		I _D = 5.6A
Q _{gs}	Gate-to-Source Charge			2.6	nC	$V_{DS} = 80V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			3.3		V _{GS} = 5.0V, See Fig. 6 and 13 ④
t _{d(on)}	Turn-On Delay Time		9.3	_		$V_{DD} = 50V$
t _r	Rise Time		47	_		$I_D = 5.6A$
t _{d(off)}	Turn-Off Delay Time		16	_	ns	$R_G = 12 \Omega$
t _f	Fall Time		18			$R_D = 8.4 \Omega$
L _D	Internal Drain Inductance		4.0		nH	Between lead, 6mm(0.25in) from package and center
L _S	Internal Source Inductance		6.0			of die contact.
C _{iss}	Input Capacitance		250			$V_{GS} = 0V$
Coss	Output Capacitance		80	_	pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		15	_	1	f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current		1.5		MOSFET symbol P	
	(Body Diode)				showing the	
I _{SM}	Pulsed Source Current			10	_ A	integral reverse G \(\frac{1}{2} \)
	(Body Diode) ①			12		p-n junction diode.
V_{SD}	Diode Forward Voltage			2.5	V	$T_J = 25$ °C, $I_S = 1.5$ A, $V_{GS} = 0$ V ④
t _{rr}	Reverse Recovery Time		110	130	ns	$T_J = 25^{\circ}C, I_F = 5.6A$
Q _{rr}	Reverse RecoveryCharge		0.50	0.65	μC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L_S+L_D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② V_{DD} =25V, starting T_J = 25°C, L = 25 mH R_G = 25 Ω , I_{AS} = 1.5A. (See Figure 12)
- $\label{eq:loss_def} \begin{tabular}{ll} \begin{tabular}{ll} $I_{SD} \le 5.6A$, $di/dt \le 75A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, \\ $T_{J} \le 150 ^{\circ}C$ \end{tabular}$
- 4 Pulse width \leq 300 μ s; duty cycle \leq 2%.

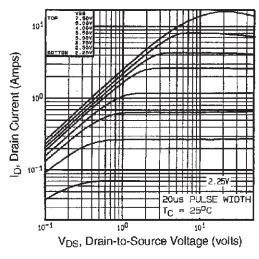
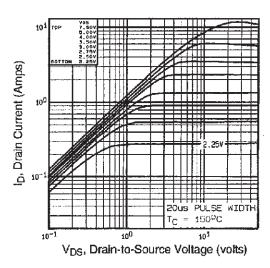



Fig 1. Typical Output Characteristics,

Flg 2. Typical Output Characteristics,

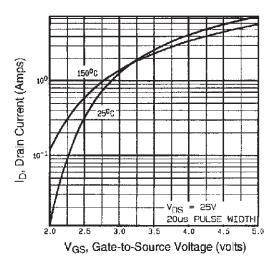


Fig 3. Typical Transfer Characteristics

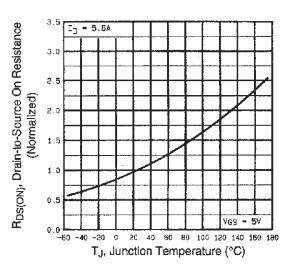


Fig 4. Normalized On-Resistance Vs. Temperature

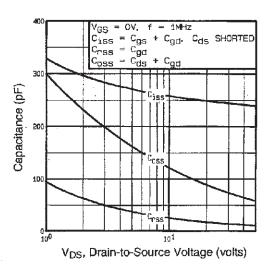


Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

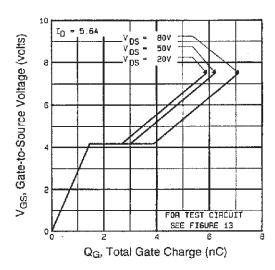


Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

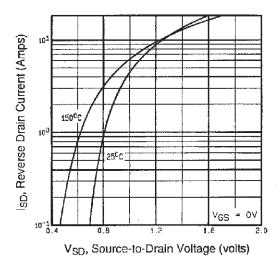


Fig 7. Typical Source-Drain Diode Forward Voltage

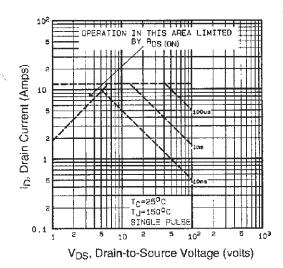


Fig 8. Maximum Safe Operating Area

International Rectifier

1.5 (Yumbol) 1.2 (

Fig 9. Maximum Drain Current Vs. Case Temperature

IRLL110PbF

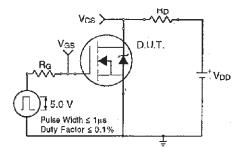


Fig 10a. Switching Time Test Circuit

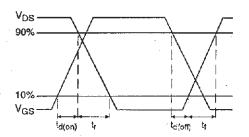


Fig 10b. Switching Time Waveforms

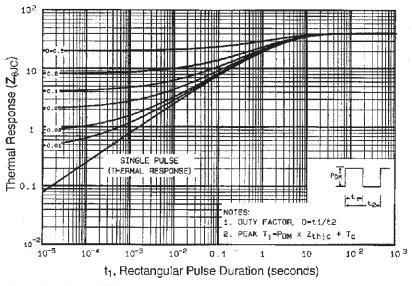


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

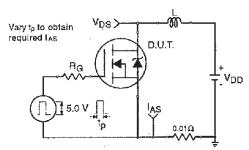


Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

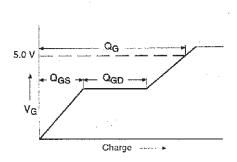


Fig 13a. Basic Gate Charge Waveform

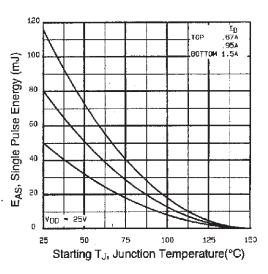


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

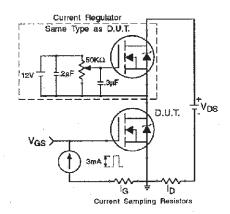
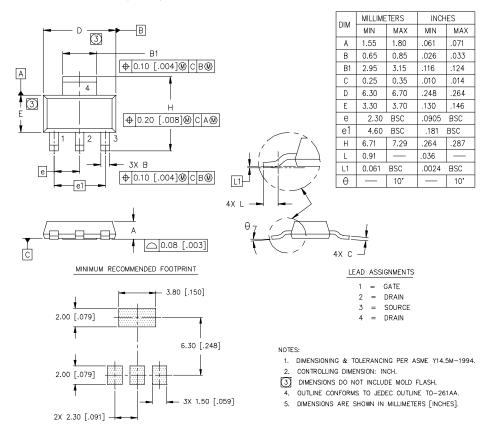
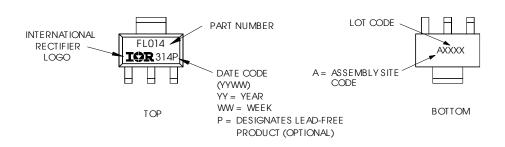



Fig 13b. Gate Charge Test Circuit

IRLL110PbF

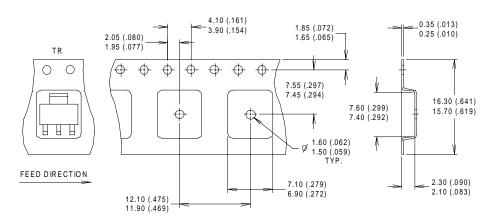
SOT-223 (TO-261AA) Package Outline


Dimensions are shown in milimeters (inches)

SOT-223 (TO-261AA) Part Marking Information

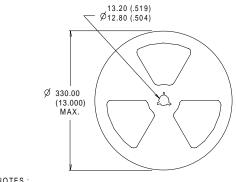
HEXFET PRODUCT MARKING

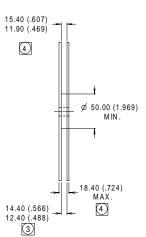
EXAMPLE: THIS IS AN IRFL014


Document Number: 91320 www.vishay.com

IRLL110PbF

International TOR Rectifier


SOT-223 (TO-261AA) Tape & Reel Information


Dimensions are shown in milimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541
- 3. EACH Ø330.00 (13.00) REEL CONTAINS 2,500 DEVICES.

NOTES:

- OUTLINE COMFORMS TO EIA-418-1. CONTROLLING DIMENSION: MILLIMETER..
- DIMENSION MEASURED @ HUB.
 INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

04/04

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products. Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com Revision: 12-Mar-07