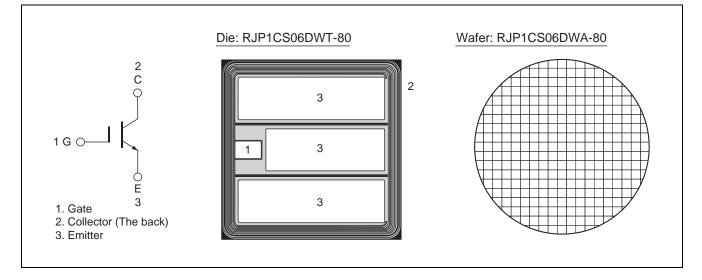


RJP1CS06DWT / RJP1CS06DWA


1250V - 100A - IGBT Application: Inverter

R07DS0829EJ0300 Rev.3.00 Oct 20, 2014

Features

- Low collector to emitter saturation voltage $V_{CE(sat)}$ = 1.8 V typ. (at I_C = 100 A, V_{GE} = 15 V, Tc = 25°C)
- High speed switching
- Short circuit withstands time (10 μs min.)

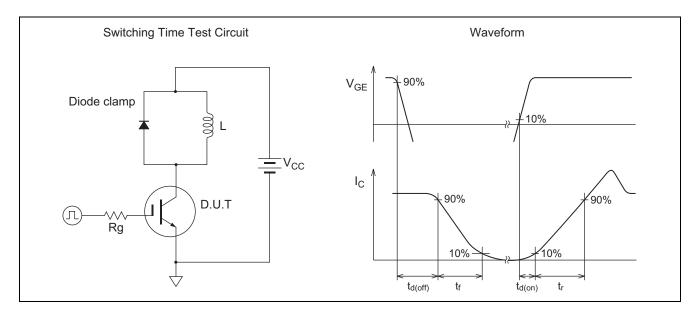
Outline

Absolute Maximum Ratings

(Tc = 25°C unless otherwise noted)

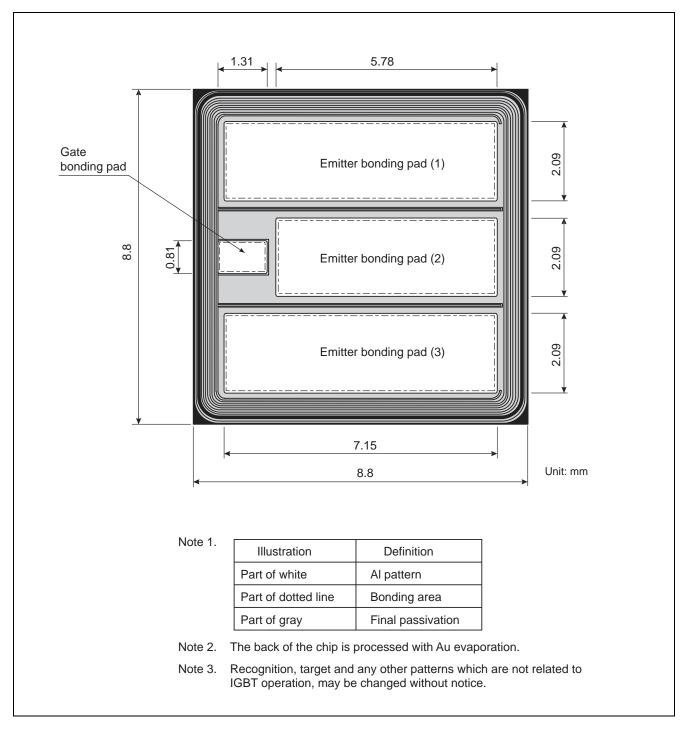
			(,
Item		Symbol	Ratings	Unit
Collector to emitter voltage		V _{CES}	1250	V
Gate to emitter voltage		V _{GES}	±30	V
Collector current	$Tc = 25^{\circ}C$	Ι _C	200	A
	Tc = 100°C	Ic	100	A
Junction temperature		Тј	175 Note1	°C

Notes: 1. Please use this device in the thermal conditions where the junction temperature does not exceed 175° C. IGBT Application Note is disclosed about reliability test and application condition up to Tj = 175° C.



Electrical Characteristics (Datas below are measured values on a package configuration.)

					(Tc = 25°C unless otherwise noted)	
ltem	Symbol	Min	Тур	Max	Unit	Test Conditions
Zero gate voltage collector current	I _{CES}	—	—	1	μA	$V_{CE} = 1250 \text{ V}, \text{ V}_{GE} = 0$
Gate to emitter leak current	I _{GES}	—	—	±1	μA	$V_{GE} = \pm 30 \text{ V}, V_{CE} = 0$
Gate to emitter cutoff voltage	$V_{\text{GE(off)}}$	5.0	_	6.8	V	$V_{CE} = 10 \text{ V}, I_{C} = 3.3 \text{mA}$
Collector to emitter saturation voltage	V _{CE(sat)}	_	1.8	2.25	V	I_{C} = 100 A, V_{GE} = 15 V ^{Note2}
Input capacitance	Cies	_	10.0	_	nF	$V_{CE} = 25 V$ $V_{GE} = 0$ $f = 1 MHz$
Output capacitance	Coes	_	0.28	_	nF	
Reveres transfer capacitance	Cres	—	0.23	_	nF	
Switching time Note3	t _{d(on)}	_	70	_	ns	$V_{CC} = 600 V$ $I_C = 100 A$ $V_{GE} = \pm 15 V$ $Rg = 10 \Omega$, $Tc = 150 °C$ Inductive load
	tr	_	60	_	ns	
	t _{d(off)}	_	420	_	ns	
	t _f	—	160	—	ns	
Short circuit withstand time Note4	t _{sc}	10	—	—	μs	$V_{CC} \leq 720 \mbox{ V}$, V_{GE} = 15 $\mbox{ V}$ Tc = 150 $^{\circ}\mbox{C}$


Notes: 2. Pulse test.

- 3. Switching time test circuit and waveform are shown below.
- 4. Verified by design.

Die Dimension

Ordering Information

Orderable Part Number		
RJP1CS06DWA-80#W0		
RJP1CS06DWT-80#X0		

