New Jersey Semi-Conductor Products, Inc.

20 STERN AVE.

SPRINGFIELD, NEW JERSEY 07081

U.S.A.

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

NPN PNP BDX33 BDX34 BDX33A BDX34A BDX33B BDX34B BDX33C BDX34C

10 AMPERE
DARLINGTON
COMPLEMENTARY SILICON
POWER TRANSISTORS
45-100 VOLTS
70 WATTS

DARLINGTON COPLEMENTARY SILICON POWER TRANSISTORS

..designed for general-purpose amplifier and low speed switching applications

FEATURES:

* Collector-Emitter Sustaining Voltage-

V_{ceo(eue)} = 45 V (Min) - BDX33,BDX34

= 60 V (Min) - BDX33A, BDX34A

= 80 V (Min) - BDX33B,BDX34B

= 100 V(Min) - BDX33C,BDX34C

* Monolithic Construction with Built-in Base-Emitter Shunt Resistor

MAXIMUM RATINGS

Characteristic	Symbol	BDX33 BDX34	BDX33A BDX34A	BDX33B BDX34B	BDX33C BDX34C	Unit
Collector-Emitter Voltage	V _{CEO}	45	60	80	100	V
Collector-Base Voltage	V _{CBO}	45	60	80	100	٧
Emitter-Base Voltage	V _{EBC}	5.0				٧
Collector Current - Continuous Peak	I _C	10 15				Α
Base Current	l _B		0.	25		Α
Total Power Dissipation @T _C = 25°C Derate above 25°C	P _D	70 0,56			w w/°c	
Operating and Storage Junction Temperature Range	T _J ,T _{STQ}	-65 to +150			°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction to Case	Rejc	1.78	°C/W

IN 1.BASE 2.COLLECTOR 3.EMITTER 4.COLLECTOR(CASE)

DIM	MILLIMETERS			
CHIN	MIN	MAX		
Α	14.68	15.31		
В	9.78	10.42		
С	5.01	6.52		
D	13.08	14.62		
Ε	3.57	4.07		
F	2.42	3.66		
G	1.12	1.36		
Н	0.72	0.96		
ı	4.22	4.98		
J	1.14	1.38		
K	2.20	2.97		
L	0.33	0.55		
М	2.48	2.98		
0	3.70	3.90		

NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

ELECTRICAL CHARACTERISTICS (T_c = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage(1) (I _C = 100 mA, I _B = 0)	BDX33, BDX34 BDX33A, BDX34A BDX33B, BDX34B BDX33C, BDX34C	V _{CEO(sus)}	45 60 80 100		V
Collector Cutoff Current ($V_{CB}^{=}$ 22 V, $I_{B}^{=}$ 0) ($V_{CB}^{=}$ 30 V, $I_{B}^{=}$ 0) ($V_{CB}^{=}$ 40 V, $I_{B}^{=}$ 0) ($V_{CB}^{=}$ 50 V, $I_{B}^{=}$ 0)	BDX33, BDX34 BDX33A, BDX34A BDX33B, BDX34B BDX33C, BDX34C	I _{CEO}		0.5 0.5 0.5 0.5	mA
Collector-Base Cutoff Current (V _{CB} = Rated V _{CB} , I _E = 0)		I _{CBO}		200	uА
Emitter-Base Cutoff Current (V _{EB} = 5.0 V, I _C = 0)		IEBO		10	mA
ON CHARACTERISTICS (1)					
(ic nord ce on)	BDX33/33A/34/34A BDX33B/33C/34B/34C	hFE	750 750		
(ic i.o. 4 ig o.o.i.	BDX33/33A/34/34A BDX33B/33C/34B/34C	V _{CE(set)}		2.5 2.5	>
('C '', 'CE '')	BDX33/33A/34/34A BDX33B/33C/34B/34C	V _{BE(on)}		2.5 2.5	٧

(1) Pulse Test: Pulse Width =300 us, Duty Cycle ≤ 2.0%

There are two limitation on the power handling ability of a transistor:average junction temperature and second breakdown safe operating area curves indicate. $\rm I_{C^{-}}V_{CE}$ limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than curves indicate.

The data of FIG-2 is base onT $_{\rm MPQ}^{\rm as}150~{\rm ^{\circ}C}$; $T_{\rm C}$ isvariable depending on conditions, second breakdown pulse limits are valid for duty cycles to 10% provided $T_{\rm MPNQ}<150^{\rm ^{\circ}C}$. At high case temperatures, thermal limitation will reduce the power that can be handled to values less than the limitations imposed by second breakdown.