

100V N-Channel Power MOSFET

Pb RoHS

COMI LIANGE

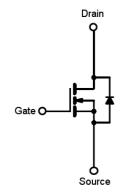
TO-220

Pin Definition:

- 1. Gate
- 2. Drain
- 3. Source

PRODUCT SUMMARY

V _{DS} (V)		$R_{DS(on)}(m\Omega)$	I _D (A)		
	100	5.5 @ V _{GS} =10V	160		


Features

- Advanced Trench Technology
- Low $R_{DS(ON)} 5.5 m\Omega$ (Max.)
- Low gate charge typical @ 154nC (Typ.)
- Low Crss typical @ 260pF (Typ.)

Ordering Information

Part No.	Package	Packing
TSM160N10CZ C0	TO-220	50pcs / Tube

Block Diagram

N-Channel MOSFET

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	100	V	
Gate-Source Voltage		V_{GS}	±20	V	
	T _C =25°C		160		
Continuous Drain Current	T _C =70°C		127	Α	
Continuous Drain Current	T _A =25°C	l _D	14.2		
	T _A =70°C		11.4		
Drain Current-Pulsed Note 1		I _{DM}	620	Α	
Avalanche Current, L=0.5mH		I _{AS} , I _{AR}	40	Α	
Avalanche Energy, L=0.5mH		E _{AS} , E _{AR}	400	mJ	
	T _C =25°C		300		
Mayimya Dayar Dissipation	T _C =70°C		210	W	
Maximum Power Dissipation	T _A =25°C	P_{D}	2.4		
	T _A =70°C		1.68	r	
Storage Temperature Range	·	T _{STG}	-55 to +175	°C	
Operating Junction Temperature Range		TJ	-55 to +175	°C	

^{*} Limited by maximum junction temperature

Thermal Performance

Parameter	Symbol	Limit	Unit	
Thermal Resistance - Junction to Case	R⊖ _{JC}	0.5	°C/W	
Thermal Resistance - Junction to Ambient	$R\Theta_{JA}$	62.5	°C/W	

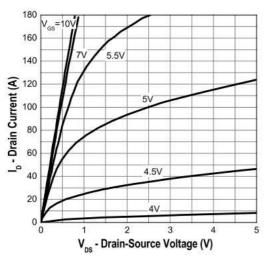
Notes: Surface mounted on FR4 board t ≤ 10sec

100V N-Channel Power MOSFET

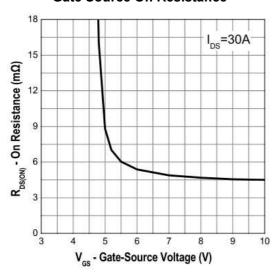
Electrical Specifications (Ta = 25°C unless otherwise noted)

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250uA$	BV _{DSS}	100			V
Drain-Source On-State Resistance	$V_{GS} = 10V, I_D = 30A$	R _{DS(ON)}		4.5	5.5	mΩ
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250uA$	$V_{GS(TH)}$	2	3	4	V
Zero Gate Voltage Drain Current	$V_{DS} = 80V, V_{GS} = 0V$	I _{DSS}			1	uA
Gate Body Leakage	$V_{GS} = \pm 20V, V_{DS} = 0V$	I _{GSS}			±100	nA
Dynamic						
Total Gate Charge	$V_{DS} = 30V, I_{D} = 30A,$ $V_{GS} = 10V$	Q_g		154		nC
Gate-Source Charge		Q_{gs}		35		
Gate-Drain Charge		Q_{gd}		40		
Input Capacitance	V _{DS} = 30V, V _{GS} = 0V,	C _{iss}		9840		
Output Capacitance		C_{oss}		750		pF
Reverse Transfer Capacitance	f = 1.0MHz	C_{rss}		260		
Switching						
Turn-On Delay Time		$t_{d(on)}$		25		
Turn-On Rise Time	$V_{GS} = 10V, V_{DS} = 30V,$	t _r		40		20
Turn-Off Delay Time	$R_G = 3.3\Omega$	$t_{d(off)}$		85		nS
Turn-Off Fall Time		t _f		45		
Drain-Source Diode Characteristics and Maximum Rating						
Drain-Source Diode Forward Voltage	V _{GS} =0V, I _S =30A	V _{SD}	-	0.8	1.3	V
Reverse Recovery Time	I _S = 30A, T _J =25 °C dI/dt = 100A/us	t _{fr}		120		nS
Reverse Recovery Charge		Q _{fr}		160		nC

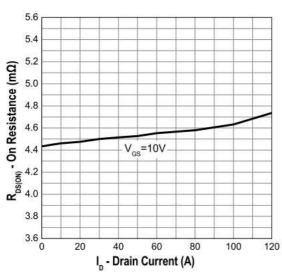
Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
 Rθ_{JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R\theta_{JC}$ is guaranteed by design while $R\theta_{CA}$ is determined by the user's board design. $R\theta_{JA}$ shown below for single device operation on FR-4 in still air

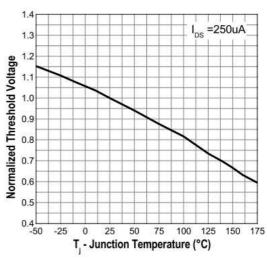


100V N-Channel Power MOSFET

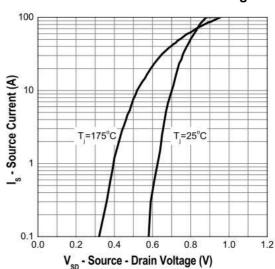


Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)


Output Characteristics

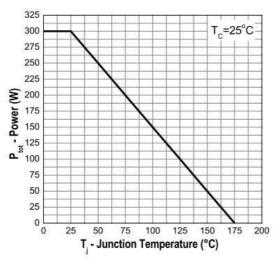

Gate Source On Resistance

Drain-Source On-Resistance

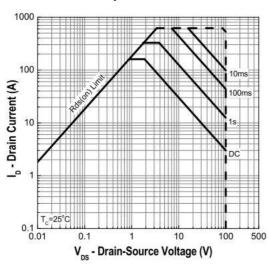

Gate Threshold Voltage

Drain-Source On Resistance

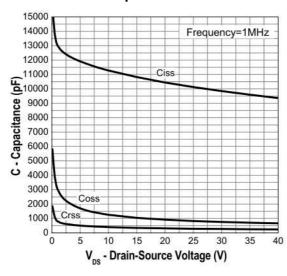
Source-Drain Diode Forward Voltage

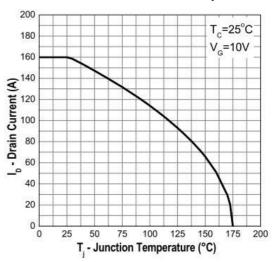


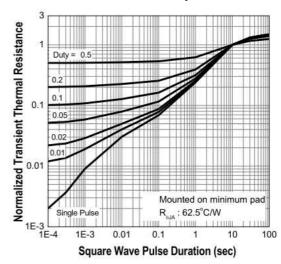
100V N-Channel Power MOSFET

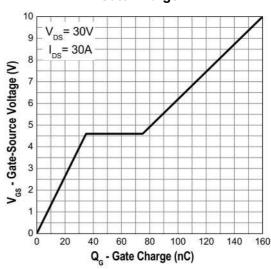


Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)



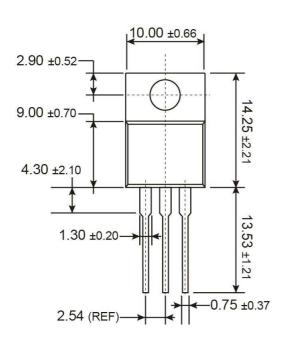

Safe Operation Area


Capacitance


Drain Current vs. Junction Temperature

Transient Thermal Impedance

Gate Charge





TO-220 Mechanical Drawing

Unit: Millimeters

Marking Diagram

Y = Year Code

M = Month Code

(A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep,

J=Oct, K=Nov, L=Dec)

L = Lot Code

TSM160N10 100V N-Channel Power MOSFET

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.