

TIC246B, TIC246C, TIC246D, TIC246E, TIC246M, TIC246N, TIC246S

SILICON BIDIRECTIONAL TRIODE THYRISTOR

- High current triacs
- 16 A RMS
- 70 A Peak
- Glass Passivated Wafer
- 200 V to 800 V Off-State Voltage
- Max I_{GT} of 50 mA (Quadrants 1-3)
- 125 A peak current
- Compliance to ROHS

DESCRIPTION

This device is a bidirectional triode thyristor (triac) which may be triggered from the off-state to the on-state by either polarity of gate signal with main Terminal 2 at either polarity.

Symbol	Ratings	Value						Unit	
- ,		В	С	D	Е	М	S	N	
V _{DRM}	Repetitive peak off-state voltage (see Note1)	200	300	400	500	600	700	800	V
I _{T(RMS)}	Full-cycle RMS on-state current at (or below) 70°C case temperature (see note2)	16			A				
I _{TSM}	Peak on-state surge current full-sine-wave (see Note3)		125					А	
I _{GM}	Peak gate current		± 1						Α
Tc	Operating case temperature range		-40 to +110					°C	
T _{stg}	Storage temperature range		-40 to +125					°C	
TL	Lead temperature 1.6 mm from case for 10 seconds	230			°C				

ABSOLUTE MAXIMUM RATINGS

THERMAL CHARACTERISTICS

Symbol	Ratings	Value	Unit		
R ∂JC	Junction to case thermal resistance	≤ 1.9	1.9 °C/W		
R∂JA	Junction to free air thermal resistance	≤ 62.5	0/11		

TIC246B, TIC246C, TIC246D, TIC246E, TIC246M, TIC246N, TIC246S

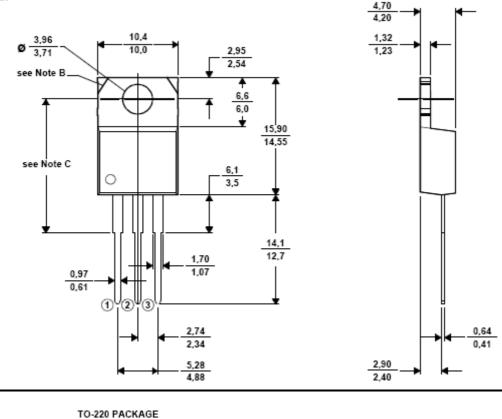
ELECTRICAL CHARACTERISTICS

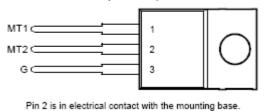
TC=25°C unless otherwise noted

Symbol	Ratings	Test Condition(s)	Min	Тур	Мах	Unit	
I _{DRM}	Repetitive peak off-state current	V_D = Rated V_{DRM} , , I_G = 0 T_C = 110°C	-	-	±2	mA	
I _{GT}	Gate trigger current	$V_{supply} = +12 V_{\uparrow}^{+}, R_{L} = 10 \Omega, t_{p(g)} = > 20 \mu s$	-	12	50		
		V_{supply} = +12 V†, R _L = 10 Ω , $t_{p(g)}$ = > 20 µs	-	-19	-50	m	
		$V_{supply} = -12 V_{\uparrow}^{+}, R_{L} = 10 \Omega, t_{p(g)} = > 20 \mu s$	-	-16	-50	mA	
		$V_{supply} = -12 V_{T}^{+}, R_{L} = 10 \Omega, t_{p(g)} = > 20 \mu s$	-	34	-		
V _{GT}	Gate trigger voltage	V_{supply} = +12 V†, R _L = 10 Ω , t _{p(g)} = > 20 µs	-	0.8	2		
		V_{supply} = +12 V†, R_L = 10 Ω , $t_{p(g)}$ = > 20 µs	-	-0.8	-2		
		$V_{supply} = -12 V_{\uparrow}^{+}, R_{L} = 10 \Omega, t_{p(g)} = > 20 \mu s$	-	-0.8	-2		
		$V_{supply} = -12 V_{\uparrow}^{+}, R_{L} = 10 \Omega, t_{p(g)} = > 20 \mu s$	-	0.9	2		
I _H	Holding current	$V_{supply} = +12 V_{T}^{+}, I_{G} = 0$ initiating $I_{TM} = 100 \text{ mA}$	-	22	40	mA	
		$V_{supply} = -12 V_{\uparrow}, I_G = 0$ initiating $I_{TM} = -100 \text{ mA}$	-	-22	-40		
1	Latching	V _{supply} = +12 V† (seeNote5)	-	-	80	mA	
IL	current	V _{supply} = -12 V† (seeNote5)	-	-	-80	ШA	
V _{TM}	Peak on-state voltage	I_{TM} = ± 22.5 A, I_G = 50 mA (see Note4)	-	±1.4	±1.7	V	
dv/dt	Critical rate of rise of off-state voltage	V_{DRM} = Rated V_{DRM} , I_G = 0 T_C = 110°C	-	±400	-	V/µs	
di/dt	Critical rate of rise of off-state current	V_{DRM} = Rated V_{DRM} , I_{GT} = 50 mA di _G /dt = 50mA/µs, T _C = 110°C	-	±100	-	A/µs	
dv/dt _©	Critical rise of communication voltage	V_{DRM} = Rated V_{DRM} , I_T = 1.4 $I_{T(RMS)}$ di/dt = 0.5 $I_{T(RMS)}$ /ms, T_C = 80°C	±1.2	±9	-	V/µs	

† All voltages are whit respect to Main Terminal 1.

Notes:


- 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
- 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 400 mA/°C.
- 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of peak reverse voltage and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
- 4. This parameters must be measured using pulse techniques, $t_W = \le 1$ ms, duty cycle ≤ 2 %, voltagesensing contacts, separate from the courrent-carrying contacts are located within 3.2mm (1/8 inch) from de device body.
- 5. The triacs are triggered by a 15-V (open circuit amplitude) pulse supplied by a generator with the following characteristics : $R_G = 100\Omega$, $t_{p(g)} = 20 \mu s$, $t_r = \le 15ns$, f = 1 kHz.


TIC246B, TIC246C, TIC246D, TIC246E, TIC246M, TIC246N, TIC246S

MECHANICAL DATA CASE TO-220

TO220

Pin 1 :	Main Terminal 1
Pin 2 :	Main Terminal 2
Pin 3 :	Gate

Revised September 2012

Information furnished is believed to be accurate and reliable. However, Comset Semiconductors assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. Data are subject to change without notice. Comset Semiconductors makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Comset Semiconductors assume any liability arising out of the application or use of any product and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Comset Semiconductors' products are not authorized for use as critical components in life support devices or systems.

www.comsetsemi.com

info@comsetsemi.com