SR1090R THRU SR10100R

SCHOTTKY BARRIER RECTIFIERS

Reverse Voltage - 90 to 100 V Forward Current - 10 A

Features

- Plastic package has Underwriters Laboratory flammability classifications 94V-0
- Metal silicon junction, majority carrier conduction
- Guard ring for overvoltage protection
- Low power loss, high efficiency
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications

Mechanical Data


• Case: Molded plastic, TO-220A

• Epoxy: UL 94V-0 rate flame retardant

• Terminals: Leads solderable per MIL-STD-202,

Method 208 guaranteed • Polarity: As marked

• Mounting position: Any

Dimensions in inches and (millimeters)

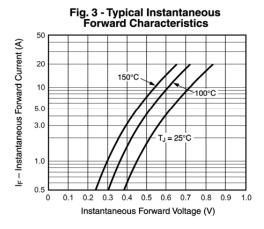
Maximum Ratings and Characteristics

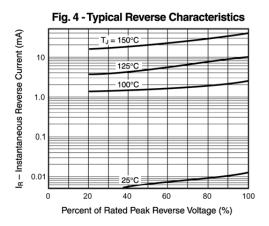
Ratings at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load, For capacitive load, derate current by 20%.

Parameter	Symbols	SR1090R	SR10100R	Units
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	90	100	V
Maximum RMS Voltage	V_{RMS}	63	70	V
Maximum DC Blocking Voltage	V_{DC}	90	100	V
Maximum Average Forward Rectified Current at T _C = 133 °C	I _{F(AV)}	10		Α
Peak Forward Surge Current, 8.3 ms Single Half Sine-wave Superimposed on Rated Load (JEDEC method)	I _{FSM}	150		Α
Maximum Forward Voltage $^{1)}$ at 10 A and $T_C = 25 ^{\circ}\text{C}$ at 20 A and $T_C = 25 ^{\circ}\text{C}$	V _F	0.8 0.95		V
Maximum Reverse Current Rated DC Blocking Voltage at T_J = 25 °C at T_J = 125 °C	I _R	0.1 6		mA
Typical Thermal Resistance Junction to Ambient	$R_{ heta JA}$	60		°C/W
Typical Thermal Resistance Junction to Case	$R_{ heta JC}$	2		°C/W
Operating Temperature Range	TJ	- 55 to + 150		°C
Storage Temperature Range	T _{stg}	- 55 to + 175		°C

¹⁾ Pulse test: 300 µs pulse width, 1% duty cycle

(Subsidiary of Sino-Tech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)





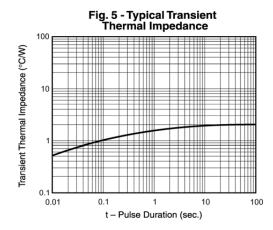

Dated: 27/07/2007 H

Fig. 1 - Forward Current Derating Curve 10 sistive or Inductive Load Average Forward Current (A) 8 6 2 50 Case Temperature (°C)

Fig. 2 - Maximum Non-Repetitive Peak **Forward Surge Current** 160 $T_J = T_J max.$ Peak Forward Surge Current (A) 8.3ms Single Half Sine-Wave (JEDEC Method) 120 100 80 60 40 10 100 Number of Cycles at 60 Hz

SEMTECH ELECTRONICS LTD.

(Subsidiary of Sino-Tech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

