

16 Channel Constant Current LED Driver

Ver. 1.0 / Mar. 2009

This document is a general product description and is subject to change without notice. LDT Inc. does NOT assume any responsibility for use of circuits described.

LD1022 Revision History

Version	Contents	Transfer Date
1.0	- First Version	2009.03.05

16 Channel Constant Current LED Driver

LD1022 is designed for LED displays with output current gain control. LD1022 contains a serial buffer and data latches, which convert serial input data into parallel output format. At LD1022 output stage, sixteen regulated current ports are designed to provide constant current sinks for driving LEDs within a wide range of Vf variations.

FEATURES

- 16 constant current output channels
 Constant current output range: 5mA ~ 70mA
- Output current adjustable through an external resistor
- 8-bit programmable output current control
- Output current accuracy:
 - between channels: ±1.0% (25mA < lout < 70mA)
 - ±1.3% (3mA < lout < 24mA)
- between ICs : ±3.0%
- 25MHz clock frequency
- Fast response of output current, Pulse width: 50nS
- 3V ~ 5V supply voltage
- Pb-free Package: SSOP24 (150) with two kinds of pin assignments

PIN CONNECTION (TOP VIEW)

_	1	\cup	L	
GND [1		24	VDD
SDI [2		23	R-EXT
CLK [3		22	SDO
LE [4		21	OEB
OUT0 [5		20	OUT15
OUT1	6		19	OUT14
OUT2	7		18	OUT13
OUT3	8		17	OUT12
OUT4	9		16	OUT11
OUT5	10		15	OUT10
OUT6	11		14	OUT9
OUT7	12		13	OUT8

ORDERING INFORMATION

PART NUMBER	PACKAGE	ТА		
LD1022-SS	24 SSOP	-40°C to 85 °C		
LD1022-SP	24 SOP	-40°C to 85 °C		

BLOCK DIAGRAM

LDT Inc. Mplaza 3F, 538, Dujeong-dong, Seobuk-gu, Cheonan, Chungnam, 331–958, Korea TEL 82 41 520 7300 FAX 82 41 520 7337 www.ldt.co.kr

16 Channel Constant Current LED Driver

TIMING DIAGRAM

NORMAL MODE TRUTH TABLE

CLK	LE	OE	SDI	OUT0 OUT7 OUT15	SDO
ş	Н	L	D _n	DnDn-7 Dn-15	D _{n-15}
Х	L	L	D _{n+1}	No change	D _{n-14}
ş	Н	L	D _{n+2}	Dn+2Dn-5 Dn-13	D _{n-13}
X	X¥	L	D _{n+3}	Dn+2Dn-5 Dn-13	D _{n-13}
X	X¥	Н	D _{n+4}	OFF	D _{n-12}

[§] When LE is high at the rising edge of the 16th CLK, data from SDI will latch into the 16-bit output latch at the falling edge of LE

* The operation of is independent to the interface signals (CLK, SDI, SDO), an unstable period of t_{pLH2} or t_{pHL2} will appear at when new 16-bit data is latched with valid LE (see timing diagram for Normal mode)

New data appear at SDO will have delay time of t_{pLH} or t_{pHL} from rising edge of CLK only

TERMINAL DESCRIPTION

Pin No.	Pin Name	Function
1	GND	Ground terminal for control logic and current sink
2	SDI	Serial-data input to the Shift Register
3	CLK	Clock input terminal for data shift on rising edge
4	LE	Data strobe input terminal Serial data is latched at the falling edge of LE Also, a control signal input for Current Adjust mode
5~20	IOUT0 ~ IOUT15	Constant current output terminals
21	OEB	Output enable terminal When (active) low, the output drivers are enabled; when high, all output drivers are turned OFF (blanked).
22	SDO	Serial-data output to the following SDI of next driver IC
23	R-EXT	Input terminal used to connect an external resistor for setting up all output current
24	VDD	5V supply voltage terminal

EQUIVALENT CIRCUIT OF INPUTS AND OUTPUTS

3. CLK, SDI terminal

16 Channel Constant Current LED Driver

MAXIMUM RATINGS

(Ta = 25°C unless otherwise noted)

Characteristic	;	Symbol	Symbol Rating		
Supply Voltag	e	V _{DD}	0 ~ 7.0	V	
Output Voltag	e	V _{OUT}	-0.5 ~ 7.0	V	
Output Currer	ıt	Ι _{ουτ}	80	mA	
Input Voltage		V _{IN}	-0.4 ~ V _{DD} + 0.4	V	
GND Terminal Cu	rrent	I _{GND}	1120	mA	
CLOCK Freque	псу	F _{ськ}	25	MHz	
Power	SOP		1.67		
(On PCB, TA = 25)	SSOP		1.48		
Thermal Resistance	SOP	P	75	0.07	
(On PCB, TA = 25)	SSOP	κ _{th(j-a)}	85	////	
Operation Temper	ature	T _{opr}	-40 ~ 85		
Storage Tempera	iture	T _{stg}	-55 ~ 150		

16 Channel Constant Current LED Driver

ELECTRICAL CHARACTERISTICS

(Ta = 25°C unless otherwise noted)

Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage	VDD		3.0	5.0	5.5	V
Output Voltage	VDS	~			5.5	V
	IOUT	Refer to DC Test Circ uit	3		50	mA
Output Current	IOH	SDO			-1.0	mA
	IOL	SDO			1.0	mA
	VIH	CLK, , LE and SDI	0.8VDD		VDD+ 0.3V	V
input voitage	VIL	CLK,, LE and SDI	-0.3		0.3*VD D	V
LE Pulse Width	tw(L)		20			ns
Pulse Width	tw(OE)		50			ns
CLK Pulse Width	tw(CLK)		20			ns
Setup Time for SDI	tsu(D)	Normal Mode VDD=4.5 ~ 5.5V	5			ns
Hold Time for SDI	th(D)		10			ns
Setup Time for LE	tsu(L)		15			ns
Hold Time for LE	th(L)		15			ns
CLK Pulse Width	tw(CLK)		20			ns
Setup Time for LE	tsu(CA)	Current Adjust Mode VDD=4.5 ~ 5.5V	15			ns
Hold Time for LE	th(CA)		15			ns
Clock Frequency	FCLK	Cascade Operation			25.0	MHz
Power Dissipation	PD	Ta=85°C			tbd	W

7

SWITCHING CHARACTERISTICS (V_{DD} =5.0V)

(Ta = 25°C unless otherwise noted)

Characte	Symbol	Condition	Min.	Тур.	Max.	Unit	
	CLK -	tpLH1			50	100	ns
Propagation Delay	LE -	tpLH2			50	100	ns
("L" to "H")	-	tpLH3			40	45	ns
	CLK - SDO	tpLH		15	20		ns
	CLK -	tpHL1			100	150	ns
Propagation Delay	LE -	tpHL2			100	150	ns
("H" to "L")	-	tpHL3	VDD=5.0 V		40	45	ns
	CLK - SDO	tpHL	VDS=1.5 V	15	20		ns
	CLK	tw(CLK)	VIH=VDD VIL=GND	20			ns
	LE	tw(L)	R-ext=360	20			ns
		tw(OE)	RL=50	50			ns
		twH(OE)	CL=10 p⊦	50			ns
Delay time	LE –	tLEOE		200			ns
Hold Time (Normal I	e for LE Mode)	th(L)		10			ns
Setup Time (Normal I	e for LE Mode)	tsu(L)		10			ns
Setup Time for LE (Current Adjust Mode)		tfall		10			ns
Maximum CLK Rise Time		tr**				500	ns
Maximum CLK Fall Time		tf**				500	ns
Output Rise T	ime of lout	tor			15	20	ns
Output Fall Ti	me of lout	tof			15	20	ns

DC CHARACTERISTIC TEST CIRCUIT

AC CHARACTERISTIC TEST CIRCUIT

9

16 Channel Constant Current LED Driver

TIMING WAVEFORM

NORMAL MODE

Entering Current Adjust Mode

16 Channel Constant Current LED Driver

ADJUSTING OUTPUT CURRENT

The output current is determined by an external resistor. The relationship between I_{OUT} and R_{EXT} is as follows;

 When VDD = 5V
 When VDD = 3.3V

 I_{OUT}[A] = {1.16/(90+R_{EXT})} * 22
 I_{OUT}[A] = {1.16/(90+R_{EXT})} * 21

VDD = 5.0V

Current adjust code

Current Adjust Mode

During current adjust mode, the system controller should send 16bit of data including the 8-bit current adjust code (bit0 to bit7) to the SDI pin. Once LE holds high for 16 CLK cycles, sampling at every rising edge of CLK, BCT5028 will re-direct the contents stored in the Shift Register to a 16-bit Configuration Latch CR [15:0] rather than the 16-bit Output Latch in a Normal mode. Pin OE always enables the output port no matter BCT5028 enters a Current Adjust mode or not.

1. Configuration Register (CR [15:0])

2. Current Gain Table

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	bit setting
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
1	1	1	1	1	1	0	1	253
1	1	1	1	1	1	1	0	254
1	1	1	1	1	1	1	1	255

Default setting: FFh

lout = [Bit_setting + 72] / [18*Rext]

Where Rext: External Resistor

Bit setting: Current Value

For Example:

Example 1:

If R-ext =360 ohm;

CR<7:0>=00H will provide 11.11mA

CR<7:0>=FFH will provide 50.46mA

Example 2:

If R-ext =1000 ohm;

```
CR<7:0>=00H will provide 4.00mA
```

```
CR<7:0>=FFH will provide 18.17mA
```


16 Channel Constant Current LED Driver

CONSTANT OUTPUT CURRENT

The LD1022 provides a constant current output characteristics for LED display application. The pin to pin deviation is max +/- 1.5% and chip to chip deviation is max +/- 3%.

When VDD = 5.0V

LED SUPPLY VOLTAGE(VLED)

It is very important to select the proper value of Load Resistor(RL). Because the optimal VOUT value guarantees the constant output current and long life time of LED driver IC without over power consumption.

For example, let's calculate the Load Resistor value at VLED=5V, lout=20mA, LED Forward Voltage(Vf)=3V.

- 1) The full current of LD1022 = 20mA x 16 (channels) = 320mA
- 2) The power consumption is 320mA x VOUT voltage.
 - when VOUT = 1V, the power consumption is 320mW.
 - when VOUT= 2V, the power consumption is 640mW.

Therefore, the Load Resistor (RL) = (VLED - VOUT - Vf) / lout= (5V - VOUT - 3V) / 20mA= 50 (When VOUT = 1V)

PACKAGE POWER DISSIPATION(PD)

The LD1022 provides many package types such as 24-SOP package and 24-SSOP package. The maximum allowable package power dissipation is determined as $PD(max) = (Tj - Ta) / R_Theta_JA$. When 16 output channels are turned on simultaneously, the actual power dissipation of package is $PD(act) = (IDD \times VDD) + (IOUT \times Duty \times VOUT \times 16)$. Therefore, to keep that PD(act) is less than PD(max). The maximum allowable output current as a function of duty cycle is:

LDT Inc. Mplaza 3F, 538, Dujeong-dong, Seobuk-gu, Cheonan, Chungnam, 331–958, Korea TEL 82 41 520 7300 FAX 82 41 520 7337 www.ldt.co.kr

APPLICATION CIRCUIT1

Four chips are connected in cascade configuration, data are programmed in current adjust mode then follow by normal mode.

APPLICATION CIRCUIT 2 (16x2 Static Type)

Data & Control Signal Connection for 16x2 Static Type Application

Timing Diagram for Application Circuit 2 (16x2 Static Type)

Timing Diagram for Application Circuit 2 (16x2 Static Type) : Another Case

19

APPLICATION CIRCUIT 2 (16x16 Dynamic Type)

Data & Control Signal Connection for 16x16 Dynamic Type Application

20

16 Channel Constant Current LED Driver

APPLICATION CIRCUIT 3 (32x16 Dynamic Type)

Data & Control Signal Connection for 32x16 Dynamic Type Application

Timing Diagram for Application Circuit 3 (32x16 Dynamic Type)

PACKAGE INFORMATION

LD1022-SP (SOP 24)

LD1022-SS (SSOP 24)

25

The products listed herein are designed for ordinary electronic applications, such as electrical applications, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instrument, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

LDT will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused application should accept full responsibility and indemnify. LDT and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and associated with such intention and manipulation.