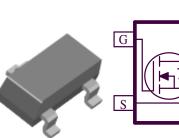


AM2308NE

D

These miniature surface mount MOSFETs utilize a high cell density trench process to provide low $r_{DS(on)}$ and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

- nes.
- Low r_{DS(on)} provides higher efficiency and extends battery life
- Low thermal impedance copper leadframe SOT-23 saves board space
- Fast switching speed
- High performance trench technology


RoHS

COMPLIANT

HALOGEN

FREE

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C UNLESS OTHERWISE NOTED)								
Parameter			Limit	Units				
Drain-Source Voltage			30	V				
Gate-Source Voltage			±12					
Continuous Drain Current ^a	T _A =25°C	T _n	3.5					
	$T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$	цD	2.8	А				
Pulsed Drain Current ^b		I _{DM}	16					
Continuous Source Current (Diode Conduction) ^a			1.25	Α				
Power Dissipation ^a	T _A =25°C	D_	1.25	w				
	T _A =25°C T _A =70°C	I D	0.8	v v				
Operating Junction and Storage Temperature Range		TJ, Tstg	-55 to 150	°C				

THERMAL RESISTANCE RATINGS									
Parameter		Symbol	Maximum	Units					
Maximum Junction-to-Ambient ^a	t <= 10 sec	$R_{\theta JA}$	100	°C/W					
	Steady-State		166	°C/W					

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

AM2308NE

٦

Denometer	Ch - 1		Limits			T	
Parameter	Symbol Test Conditions		Min	Тур	Max	Unit	
Static							
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \text{ uA}$	0.6			V	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = 12 V$			±10	uA	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			1	uA	
		$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_{I} = 55^{\circ}\text{C}$			25	uA	
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	6			А	
Drain-Source On-Resistance ^A	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 3.5 \text{ A}$			60	mΩ	
		$V_{GS} = 2.5 \text{ V}, I_D = 3 \text{ A}$			82		
Forward Tranconductance ^A	g_{fs}	$V_{DS} = 15 \text{ V}, I_{D} = 3.5 \text{ A}$		6.9		S	
Diode Forward Voltage	V _{SD}	$I_s = 2.3 \text{ A}, V_{GS} = 0 \text{ V}$		0.8		V	
Dynamic ^b							
Total Gate Charge	Q _σ			6.3			
Gate-Source Charge	Q _{os}	$V_{DS} = 15 V, V_{GS} = 2.5 V,$ $I_D = 3.5 A$		0.9		nC	
Gate-Drain Charge	Q _{ord}			1.9			
Turn-On Delay Time	t _{d(on)}			16			
Rise Time	t _r	$V_{DD} = 25 \text{ V}, \text{R}_L = 25 \Omega$, $\text{ID} = 1 \text{ A}$,		5		nS	
Turn-Off Delay Time	t _{d(off)}	VGEN = 10 V		23		115	
Fall-Time	t _f			3			

Notes

Г

- a. Pulse test: $PW \le 300$ us duty cycle $\le 2\%$.
- b. Guaranteed by design, not subject to production testing.