512Kx32 SRAM MODULE, SMD 5962-94611

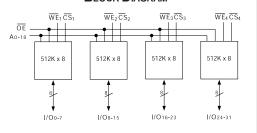
FEATURES

- Access Times of 15*, 17, 20, 25, 35, 45, 55ns
- Packaging
 - 66 pin, PGA Type, 1.075" square, Hermetic Ceramic HIP (Package 400).
 - 68 lead, 40mm Hermetic Low Profile CQFP, 3.5mm (0.140") (Package 502)¹
 - 68 lead, Hermetic CQFP (G2U), 22.4mm (0.880") square (Package 510) 3.56mm (0.140") height.
 - 68 lead, Hermetic CQFP (G2L), 22.4mm (0.880") square, 5.08mm (0.200") high (Package 528).
 - 68 lead, Hermetic CQFP (G1U)¹, 23.9mm (0.940") square (Package 519) 3.57mm (0.140") height.
 Designed to fit JEDEC 68 lead 0.990" CQFJ footprint (Fig. 3).
 - 68 lead, Hermetic CQFP (G1T), 23.9mm (0.940") square (Package 524) 4.06mm (0.160") height.

TOP VIEW

- Organized as 512Kx32, User Configurable as 1Mx16 or 2Mx8
- Commercial, Industrial and Military Temperature Ranges
- TTL Compatible Inputs and Outputs
- 5 Volt Power Supply
- Low Power CMOS
- Built-in Decoupling Caps and Multiple Ground Pins for Low Noise Operation
- Weight
 WS512K32N-XH1X 13 grams typical
 WS512K32-XG2UX 8 grams typical
 WS512K32-XG1UX¹ 5 grams typical
 WS512K32-XG1TX 5 grams typical
 WS512K32-XG4TX¹ 20 grams typical
 WS512K32-XG2LX 8 grams typical

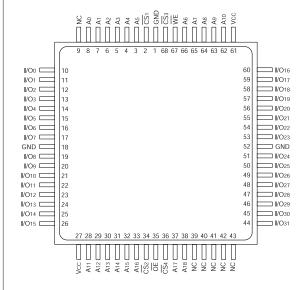
Note 1: Package Not Recommended For New Design


FIG. 1 PIN CONFIGURATION FOR WS512K32N-XH1X

		IOP	VIEVV		
1	12	23	34	45	56
OI/O 8	$\bigcirc \overline{WE}_2$	I /O ₁₅	I/O24 (Vcc 🔾	I/O31 🔾
I /O ₉	$\bigcirc \overline{CS}_2$	I /O ₁₄	I/O25 🔘	$\overline{CS}_4 \bigcirc$	I/O30
I /O ₁₀	GND	I /O ₁₃	I/O26 🔵	$\overline{WE}_4 \bigcirc$	I/O29
OA13	$\bigcirc_{\textbf{I}/O_{11}}$	I /O ₁₂	A ₆	I/O27 🔾	I/O28
○A ₁₄	○A ₁₀	$\bigcirc \overline{\text{OE}}$	A7 ()	A3 🔾	A ₀
○A ₁₅	○ A ₁₁	○A ₁₈	NC 🔾	A_4	A1 (
○A ₁₆	A 12	$\bigcirc \overline{WE}_1$	A8 🔾	A5 🔾	A ₂
○A ₁₇	○ Vcc	1 /O ₇	A9 🔵	$\overline{\text{WE}}_3$	I/O23
○I /O₀	$\bigcirc \overline{CS}_1$	I /O ₆	I/O ₁₆	$\overline{CS}_3\bigcirc$	I/O22
I /O ₁	ONC	1 /O5	I/O17 (GND 🔾	I/O21
I /O ₂	I /O ₃	I /O4	I/O18 🔾	I/O19 🔵	I/O20
11	22	33	44	55	66

PIN DESCRIPTION

I/O ₀₋₃₁	Data Inputs/Outputs
A0-18	Address Inputs
WE ₁₋₄	Write Enables
CS ₁₋₄	Chip Selects
ŌĒ	Output Enable
Vcc	Power Supply
GND	Ground
NC	Not Connected


BLOCK DIAGRAM

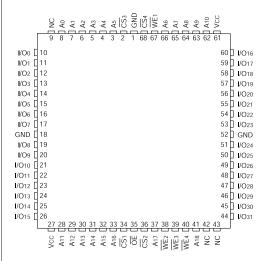
^{*15}ns Access Time available only in Commercial and Industrial Temperature. This speed is not fully characterized and is subject to change without notice.

FIG. 2 PIN CONFIGURATION FOR WS512K32-XG4TX1

TOP VIEW

PIN DESCRIPTION

I/O ₀₋₃₁	Data Inputs/Outputs
A0-18	Address Inputs
WE	Write Enables
<u>CS</u> 1-4	Chip Selects
ŌĒ	Output Enable
Vcc	Power Supply
GND	Ground
NC	Not Connected


BLOCK DIAGRAM

Note 1: Package Not Recommended For New Design

FIG. 3 PIN CONFIGURATION FOR WS512K32-XG2UX, WS512K32-XG2LX, WS512K32-XG1TX AND WS512K32-XG1UX¹

TOP VIEW

PIN DESCRIPTION

I/O ₀₋₃₁	Data Inputs/Outputs
A0-18	Address Inputs
WE ₁₋₄	Write Enables
CS ₁₋₄	Chip Selects
ŌĒ	Output Enable
Vcc	Power Supply
GND	Ground
NC	Not Connected

BLOCK DIAGRAM

Note 1: Package Not Recommended For New Design

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit
Operating Temperature	TA	-55	+125	°C
Storage Temperature	Тѕтс	-65	+150	°C
Signal Voltage Relative to GND	Vg	-0.5	Vcc+0.5	V
Junction Temperature	TJ		150	°C
Supply Voltage	Vcc	-0.5	7.0	V

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	4.5	5.5	V
Input High Voltage	VIH	2.2	Vcc + 0.3	V
Input Low Voltage	VIL	-0.5	+0.8	V
Operating Temp (Mil)	TA	-55	+125	°C

TRUTH TABLE

cs	ŌĒ	WE	Mode	Data I/O	Power	
Н	Х	Х	Standby	High Z	Standby	
L	L	Н	Read	Data Out	Active	
L	Н	Н	Out Disable	High Z	Active	
L	Х	L	Write	Data In	Active	

CAPACITANCE (TA = +25°C)

Parameter	Symbol	Conditions	Max	Unit
OE capacitance	COE	V _{IN} = 0 V, f = 1.0 MHz	50	pF
WE ₁₋₄ capacitance HIP (PGA)	CWE	Vin = 0 V, f = 1.0 MHz	20	pF
CQFP G4T			50	
CQFP G2U/G1U/G1T/G2L			20	
CS ₁₋₄ capacitance	Ccs	V _{IN} = 0 V, f = 1.0 MHz	20	pF
Data I/O capacitance	Cı/o	V _I /O = 0 V, f = 1.0 MHz	20	pF
Address input capacitance	CAD	V _{IN} = 0 V, f = 1.0 MHz	50	pF

This parameter is guaranteed by design but not tested.

DC CHARACTERISTICS (Vcc = 5.0V, Vss = 0V, Ta = -55°C to +125°C)

Parameter	Symbol Conditions				Units
	•		Min	Max	
Input Leakage Current	ILI	Vcc = 5.5, Vin = Gnd to Vcc		10	μA
Output Leakage Current	ILO	$\overline{\text{CS}}$ = ViH, $\overline{\text{OE}}$ = ViH, Vout = GND to Vcc		10	μA
Operating Supply Current x 32 Mode	ICC x 32	$\overline{\text{CS}} = \text{V}_{\text{IL}}, \ \overline{\text{OE}} = \text{V}_{\text{IH}}, \ \text{f} = 5\text{MHz}, \ \text{Vcc} = 5.5$		660	mA
Standby Current	Isв	$\overline{\text{CS}}$ = V _{IH} , $\overline{\text{OE}}$ = V _{IH} , f = 5MHz, Vcc = 5.5		80	mA
Output Low Voltage	Vol	IoL = 8mA for 15 - 35ns, IoL = 2.1mA for 45 - 55ns, Vcc = 4.5		0.4	V
Output High Voltage	Vон	Іон = -4.0mA for 15 - 35ns, Іон = -1.0mA for 45 - 55ns, Vcc = 4.5	2.4		V

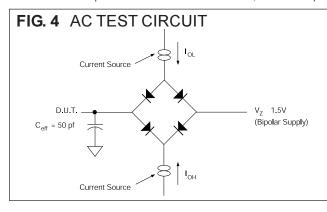
NOTE: DC test conditions: VIH = Vcc -0.3V, VIL = 0.3V

DATA RETENTION CHARACTERISTICS (Ta = -55°C to +125°C)

Parameter	Symbol	Conditions			Units
			Min	Max	
Data Retention Supply Voltage	VDR	$\overline{CS} \ge Vcc - 0.2V$	2.0	5.5	V
Data Retention Current	Iccdr1	Vcc = 3V		28	mA
Low Power Data Retention Current (WS512K32L-XXX)	ICCDR2	Vcc = 3V		16	mA

AC CHARACTERISTICS (Vcc = 5.0V, Vss = 0V, Ta = -55°C to +125°C)

Parameter	Symbol	<u>-1</u>	<u>5*</u>	_ ≤	17	10.	20	-2	<u>25</u>	3	<u> 35</u>	11	<u>45</u>	<u>-5</u>	<u>5</u>	Units
Read Cycle		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Read Cycle Time	tRC	15		17		20		25		35		45		55		ns
Address Access Time	tAA		15		17		20		25		35		45		55	ns
Output Hold from Address Change	tOH	0		0		0		0		0		0		0		ns
Chip Select Access Time	tACS		15		17		20		25		35		45		55	ns
Output Enable to Output Valid	tOE		8		9		10		12		25		25		25	ns
Chip Select to Output in Low Z	tCLZ1	2		2		2		2		4		4		4		ns
Output Enable to Output in Low Z	tOLZ1	0		0		0		0		0		0		0		ns
Chip Disable to Output in High Z	tCHZ1		12		12		12		12		15		20		20	ns
Output Disable to Output in High Z	tOHZ1		12		12		12		12		15		20		20	ns


^{*15}ns Access Time available only in Commercial and Industrial Temperature. This speed is not fully characterized and is subject to change without notice.

AC CHARACTERISTICS (Vcc = 5.0V, Vss = 0V, Ta = -55°C to +125°C)

Parameter	Symbol	<u>-1</u>	<u>5*</u>	<u>-1</u>	<u>7</u>	<u>-2</u>	<u>0</u>	≟	<u>25</u>	3	<u>35</u>	<u>-4</u>	<u>5</u>	<u>-5</u>	<u>55</u>	Units
Write Cycle		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Write Cycle Time	twc	15		17		20		25		35		45		55		ns
Chip Select to End of Write	tcw	13		15		15		17		25		35		50		ns
Address Valid to End of Write	taw	13		15		15		17		25		35		50		ns
Data Valid to End of Write	tow	10		11		12		13		20		25		25		ns
Write Pulse Width	twp	13		15		15		17		25		35		40		ns
Address Setup Time	tas	2		2		2		2		2		2		2		ns
Address Hold Time	tah	0		0		0		0		0		5		5		ns
Output Active from End of Write	tow¹	2		2		3		4		4		5		5		ns
Write Enable to Output in High Z	twnz¹		8		9		11		13		15		20		20	ns
Data Hold Time	tон	0		0		0		0		0		0		0		ns

^{*15}ns Access Time available only in Commercial and Industrial Temperature. This speed is not fully characterized and is subject to change without notice.

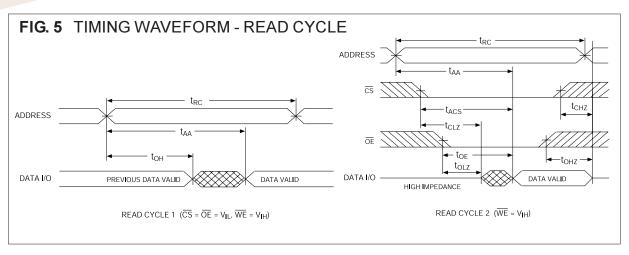
- 1. This parameter is guaranteed by design but not tested.
- 2. The Address Setup Time of minimum 2ns is for the G2U, G1U and H1 packages. tas minimum for the G4T package is 0ns.

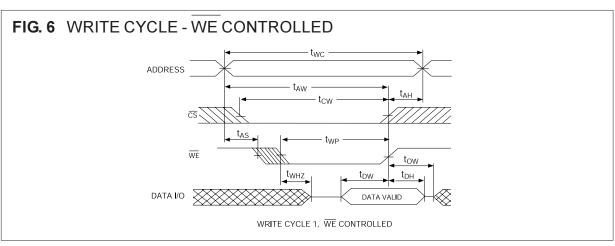
AC TEST CONDITIONS

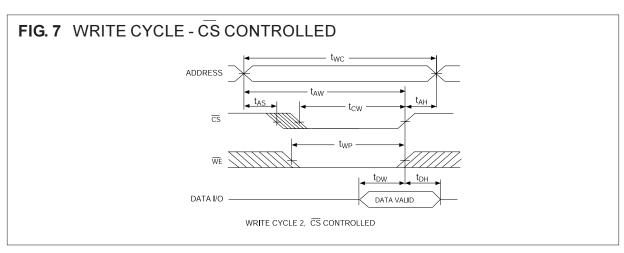
Parameter	Тур	Unit
Input Pulse Levels	VIL = 0, VIH = 3.0	V
Input Rise and Fall	5	ns
Input and Output Reference Level	1.5	V
Output Timing Reference Level	1.5	V

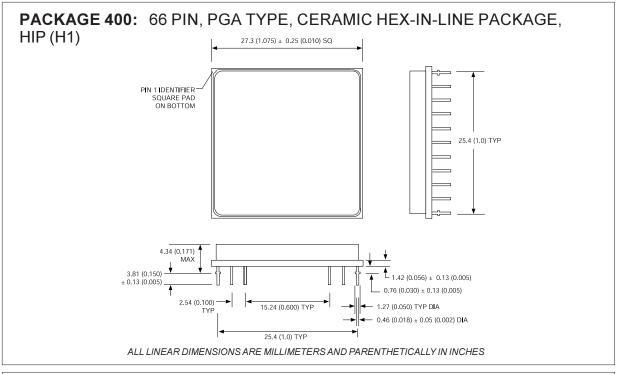
Notes:

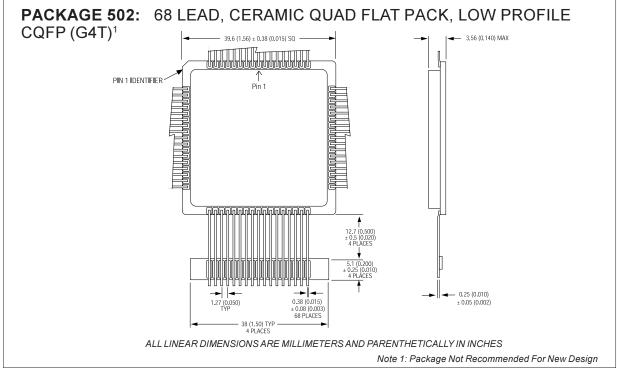
Vz is programmable from -2V to +7V.

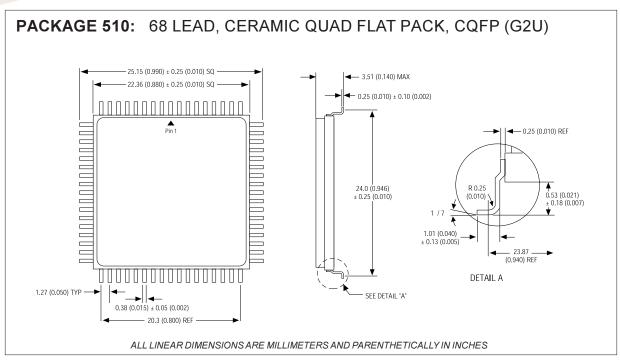

Iol & Ioн programmable from 0 to 16mA.

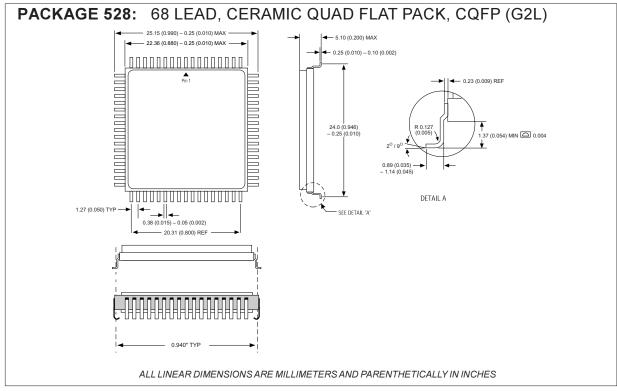

Tester Impedance Zo = 75 ý.

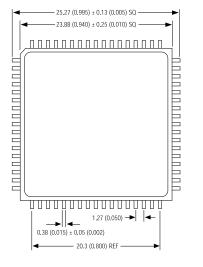

Vz is typically the midpoint of Voн and Vol.

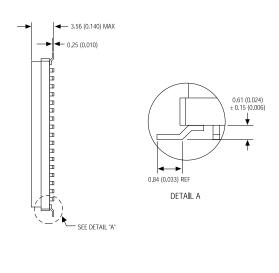

IoL & IoH are adjusted to simulate a typical resistive load circuit. ATE tester includes jig capacitance.


^{1.} This parameter is guaranteed by design but not tested.

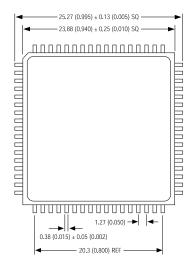


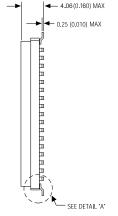


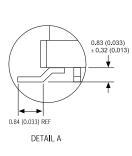




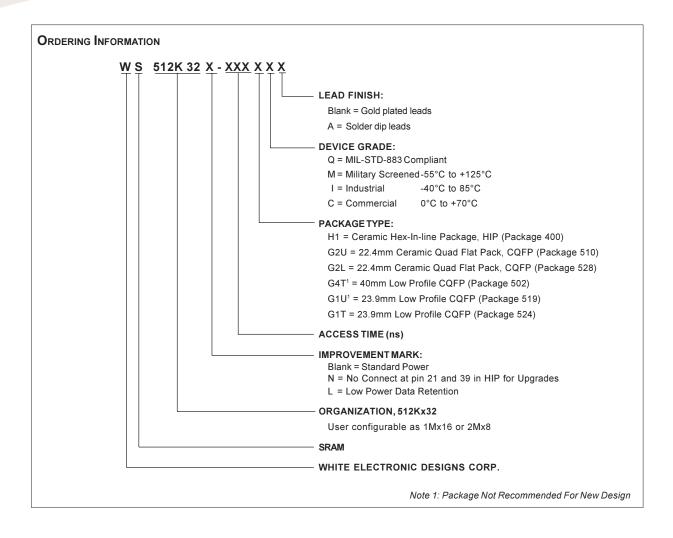
PACKAGE 519: 68 LEAD, CERAMIC QUAD FLAT PACK, LOW PROFILE CQFP (G1U)¹






ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES

Note1: Package Not Recommended For New Design


PACKAGE 524: 68 LEAD, CERAMIC QUAD FLAT PACK, LOW PROFILE CQFP (G1T)

ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES

DEVICE TYPE	SPEED	PACKAGE	SMD NO.
512K x 32 SRAM Module	55ns	66 pin HIP (H1)	5962-94611 05HTX
512K x 32 SRAM Module	45ns	66 pin HIP (H1)	5962-94611 06HTX
512K x 32 SRAM Module	35ns	66 pin HIP (H1)	5962-94611 07HTX
512K x 32 SRAM Module	25ns	66 pin HIP (H1)	5962-94611 08HTX
512K x 32 SRAM Module	20ns	66 pin HIP (H1)	5962-94611 09HTX
512K x 32 SRAM Module	17ns	66 pin HIP (H1)	5962-94611 10HTX
512K x 32 SRAM Module	55ns	68 lead CQFP Low Profile (G4T)1	5962-94611 05HYX
512K x 32 SRAM Module	45ns	68 lead CQFP Low Profile (G4T) ¹	5962-94611 06HYX
512K x 32 SRAM Module	35ns	68 lead CQFP Low Profile (G4T) ¹	5962-94611 07HYX
512K x 32 SRAM Module	25ns	68 lead CQFP Low Profile (G4T) ¹	5962-94611 08HYX
512K x 32 SRAM Module	20ns	68 lead CQFP Low Profile (G4T)1	5962-94611 09HYX
512K x 32 SRAM Module	17ns	68 lead CQFP Low Profile (G4T) ¹	5962-94611 10HYX
512K x 32 SRAM Module	55ns	68 lead CQFP (G2U)	5962-94611 05HMX
512K x 32 SRAM Module	45ns	68 lead CQFP (G2U)	5962-94611 06HMX
512K x 32 SRAM Module	35ns	68 lead CQFP (G2U)	5962-94611 07HMX
512K x 32 SRAM Module	25ns	68 lead CQFP (G2U)	5962-94611 08HMX
512K x 32 SRAM Module	20ns	68 lead CQFP (G2U)	5962-94611 09HMX
512K x 32 SRAM Module	17ns	68 lead CQFP (G2U)	5962-94611 10HMX
512K x 32 SRAM Module	55ns	68 lead CQFP (G1U) ¹	5962-94611 05H9X
512K x 32 SRAM Module	45ns	68 lead CQFP (G1U) ¹	5962-94611 06H9X
512K x 32 SRAM Module	35ns	68 lead CQFP (G1U) ¹	5962-94611 07H9X
512K x 32 SRAM Module	25ns	68 lead CQFP (G1U) ¹	5962-94611 08H9X
512K x 32 SRAM Module	20ns	68 lead CQFP (G1U) ¹	5962-94611 09H9X
512K x 32 SRAM Module	17ns	68 lead CQFP (G1U) ¹	5962-94611 10H9X
512K x 32 SRAM Module	55ns	68 lead CQFP (G2L)	5962-94611 05HAX
512K x 32 SRAM Module	45ns	68 lead CQFP (G2L)	5962-94611 06HAX
512K x 32 SRAM Module	35ns	68 lead CQFP (G2L)	5962-94611 07HAX
512K x 32 SRAM Module	25ns	68 lead CQFP (G2L)	5962-94611 08HAX
512K x 32 SRAM Module	20ns	68 lead CQFP (G2L)	5962-94611 09HAX
512K x 32 SRAM Module	17ns	68 lead CQFP (G2L)	5962-94611 10HAX

Note 1: Package Not Recommended For New Design

Document Title

512K x 32 SRAM Multi-Chip Package

Revision History

Rev # History

		Release Date	<u>Status</u>
	Initial	October 1996	Preliminary
	Change (Pg. 1, 3) 1.1 Change Operation Supply Current from 520mA To 540m 1.2 Change Data Retention Current from 12mA to 28mA.	January 1997 nA	Preliminary
	Change (Pg. 1, 2, 8, 10, 11) 1.1 Delete G2 Package	November 1997	Preliminary
	Change (Pg. 1, 9) 1.1 Add SMD Case Outline M for G2T	February 1998	Preliminary
	Change (Pg. 1, 3, 8) 1.1 Remove Low Capacitance package option	April 1998	Preliminary
	Change (Pg. 1, 6, 8) 1.1 Add H1 package	December 1998	Preliminary
	Change (Pg. 1, 4, 6, 9, 10) 1.1 Remove H2 package 1.2 Change logo to WEDC logo	March 1999	Preliminary
Rev 2	Change (Pg. 1, 3, 4, 8) 1.1 Change status from Preliminary to Final 1.2 Make package descriptions consistent 1.3 Add 15ns as available in Commercial and Industrial Te	May 1999 mperatures only.	Final
Rev 4	Change (Pg. 1, 3) 1.1 Change Standby Current (Isb) from 60mA to 80mA Maxi	June 1999 mum	Final
Rev 5	Change (Pg. 1, 2, 3, 4, 7, 8) 1.1 Add G1U package	November 1999	Final
Rev 6	Change (Pg. 1, 8) 1.1 Change G1U lead foot length from 0.64mm to 0.84mm	February 2000 Ref	Final

Rev 7	Change (Pg. 1, 3, 9) 1.1 Change Operating Supply Current from 540mA to 660m. 1.2 Add Low Power Data Retention Current of 16mA to Data 1.3 Add Low Power Data Retention (L) option to Ordering In	a Retention Characte	Final eristics table
Rev 8	Change (Pg. 1, 2, 6, 7, 9, 10) 1.1 Change G2T and G4T package status to Not Recomme	October 2001 nded For New Desig	Final _J n
Rev 9	Change (Pg. 1, 2, 3, 8, 9, 10) 1.1 Add G1T package 1.2 Remove 'Hi-Reliability Product' Title	November 2001	Final
Rev 10	Change (Pg. 1, 2, 3, 4, 7, 8, 9, 10, 11) 1.1 Remove G2T package 1.2 Add G2U package 1.3 Remove 'Package to be Developed' note for G4T	August 2002	Final
Rev 11	Change (Pg. 1,2,4,8,10,11,13) 1.1 Change G1U package status to Not Recommended For	February 2002 New Designs	Final
Rev 12	Change (Pg. 1,2,3,7,8,10,11,13) 1.1 Add G2L package	May 2003	Final