Photoflash Charge IC with a built-in IGBT driver Monolithic IC MM3456

Outline

This IC is a photoflash charge IC with a built-in IGBT driver, which has functions to charge photoflash capacitors and flash xenon tubes of digital still cameras and cell phones.

High efficient charging is achieved due to built-in switching FET with 40V withstanding voltage and low ON resistance (Ron = 0.25Ω).

Moreover, the primary peak current limitation up to 2A makes fast charging to the photoflash capacitor possible.

Furthermore, this IC contains functions such as double protection for battery full-charge detection at the primary and secondary sides, thermal shutdown, and in addition to the IGBT driver.

This IC uses small SSON-10 package.

Features

- 1. High efficiency charging due to built-in switching FET with 40V withstanding voltage and low ON resistance (Ron = 0.25Ω)
- 2. Peak current at the primary side of the transformer is programmable up to1.0-2.0A (3 levels, 2 ranks), fast charging
- 3. Built-in IGBT driver
- 4. High accuracy output voltage control (±1%)
- 5. Input voltage: 2.5V 6.0V
- 6. Protective functions

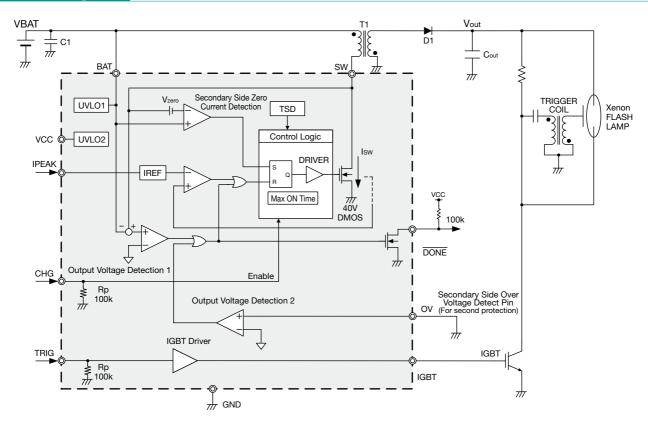
Thermal shutdown

Maximum ON time

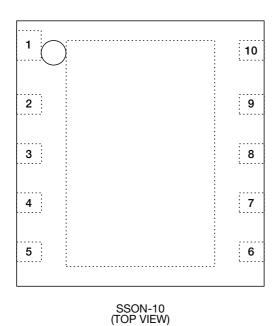
Double protection for battery full-charge detection

7. Small SSON-10 package

(2.5mm×2.7mm×0.6mm MAX)


Package

SSON-10


Applications

- 1. Digital still cameras
- 2. Camera phones
- 3. PDAs

Block Diagram

Pin Assignment

1	SW		
2	BAT		
3	$\overline{ ext{DONE}}$		
4	VCC		
5	IGBT		
6	OV		
7	IPEAK		
8	TRIG		
9	CHG		
10	GND		

Pin Description

Pin No.	Pin name	Pin description		
1	SW	Built-in DMOS power FET drain pin. Connect to primary side of the transformer.		
2	BAT	Battery voltage input pin. Connect to + side of the battery pack.		
3	DONE	Charge completion signal output pin (Nch open drain output). L : Charge completion, H : Charge non-completion.		
4	VCC	Power supply input pin.		
5	IGBT	IGBT gate drive output pin. Connect to the gate of IGBT.		
6	OV	Secondary side overvoltage detection pin. (For second protection) * Please connect to the GND when the input pin unused. (Cf. applied circuit example)		
7	IPEAK	Primary side peak current setting pin. Can set 3 phases of electric currents by GND or VCC connection or opening.		
8	TRIG	Flash signal input pin.		
9	CHG	Charge enable input terminal. H: Charge ON, L: Charge OFF.		
10	GND	Ground pin.		

Absolute Maximum Ratings

Item	Symbol Ratings		Units	
Storage Temperature	Tstg	-55~+150	°C	
BAT, IPEAK, CHG, DONE, TRIG, IGBT, OV, VCC Pin Input Voltage	$ m V_{in}$	-0.3~+7.0	V	
SW Pin Voltage	Vsw	-0.3~+40 (Note1)	V	
Power dissipation	Pd 2.25 (Note2)		W	

Note1: When in use, make sure that the voltage exceeding the maximum rating is not applied even momentarily.

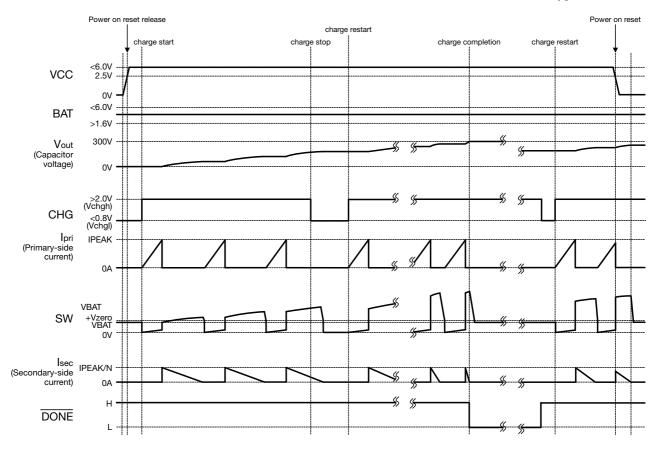
Note2 : When mounted on a $40\times40\times1.6$ tmm(Copper foil area 50%, FR4) PC bord.

Recommended Operating Conditions

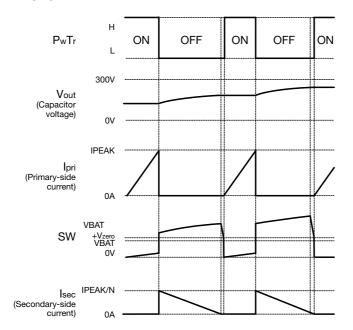
Item	Symbol	Ratings	Units
Operating Temperature	Topr	-40~+85	°C
VCC Operating Voltage	V_{ccop}	2.5~6.0	V
BAT Operating Voltage	V_{batop}	1.6~6.0	V

Electrical Characteristics

(Except where noted otherwise Ta=25°C, VCC=3.3V, VBAT=3.6V)

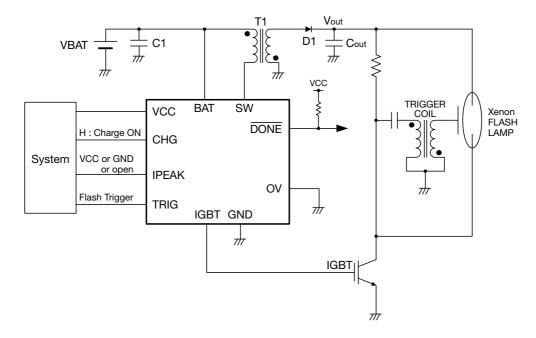

Item	Symbol	Measurement conditions		Min.	Тур.	Max.	Units
VCC Supply Current 1	Icc1	Charging (CHG=3.3V)			1.3	5	mA
VCC Supply Current 2	Icc2	Full-charge			1	10	μA
VCC Supply Current 3	Icc3	Shutdown (CHG=0V)				1	μA
BAT Supply Current 1	Ibat1	Charging (CHG=3.3V)			20	35	μA
BAT Supply Current 2	Ibat2	Shutdown (CHG=0V)				1	μA
UVLO1 Detection Voltage (VCC)	Vuvlo1					2.4	V
UVLO1 hysterisys	Vuvlo1hys				100		mV
UVLO2 Detection Voltage (BAT)	Vuvlo2				1.2		V
SW Peak Current 1	Ipeak1	VIPEAK=0V	Arank	0.9	1.0	1.1	A
OW FOUN OUTSILE	ipcani	V 11 12/11X=U V	Brank	1.5	1.6	1.7	
SW Peak Current 2	Ipeak2	VIPEAK=open	Arank	1.1	1.2	1.3	A
OW Foun Guitont 2	Ipeun2	VII LAIR-open	Brank	1.68	1.80	1.92	
SW Peak Current 3	Ipeak3	VIPEAK=3.3V	Arank	1.3	1.4	1.5	A
OW Foundations	трешко	VII 12/IIX-0.0 V	Brank	1.85	2.0	2.15	
SW Leakage Current	Iswleak	$V_{sw}=35V$				1	μA
SW On Resistance	Ron	$I_{sw}=0.8A$			0.25	0.45	Ω
Zero Current Ditection	$V_{ m zero}$	VSW-VBAT			50	100	mV
Full-charge Detection 1 (Vsw)	V _{cp} 1			21.78	22	22.22	V
Full-charge Detection 2 (Vov)	V _{cp} 2			1.182	1.200	1.218	V
OV Input Current	Iov					0.1	μA
CHG Input Voltage L	V_{chgl}					0.8	V
CHG Input Voltage H	V _{chgh}			2.0			V
CHG Input Resistance	Rchg	CHG-GND Resistance		100k		Ω	
DONE Output Voltage L	Vdone	VCC=3.3V, Rpullup=100k Ω				0.1	V
DONE SW Leakage Current	Idleak	Vdone=3.3V				1	μA
TRIG Input Voltage L	V_{tril}					0.8	V
TRIG Input Voltage H	Vtrih			2.0			V
TRIG Input Resistance	R _{tri}	TRIG-GND Resistance			100k		Ω
IGBT Pull-up Resistance	R _{pu}	IGBT=0V			5	9	Ω
IGBT Pull-down Resistance	R _{pd}	IGBT=3.3V			6	11	Ω
Max On Time	tmax				100		μs
Thermal shutdown temperature (Note3)	tsd				150		°C

Note3: The parameter is guaranteed by design

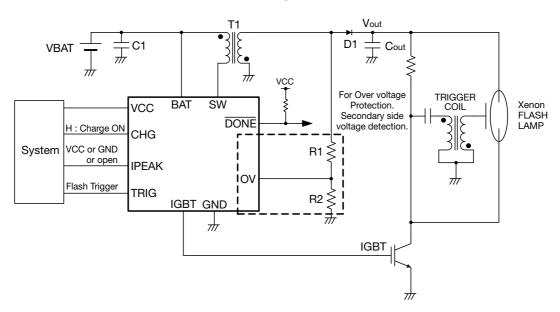

Timing Chart

(1) Normal Charge start → Charge completion

* All typ numeric value.



(2) Switching cycle



Application Circuit

(1) Application Circuit Example 1: Normal

(2) Application Circuit Example 2: OV Pin (Overvoltage Protection) use

- · We shall not be liable for any trouble or damage caused by using this circuit.
- · In the event a problem which may affect industrial property or any other rights of us or a third party is encountered during the use of information described in these circuit, Mitsumi Electric Co., Ltd. shall not be liable for any such problem, nor grant.