IRLML2502PbF ## HEXFET® Power MOSFET - Ultra Low On-Resistance - N-Channel MOSFET - SOT-23 Footprint - Low Profile (<1.1mm) - Available in Tape and Reel - Fast Switching - Lead-Free - Halogen-Free ## Description These N-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in battery and load management. A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3TM, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available. #### **Absolute Maximum Ratings** | | Parameter | Max. | Units | |--|--|--------------|-------| | V _{DS} | Drain- Source Voltage | 20 | V | | I _D @ T _A = 25°C | Continuous Drain Current, V _{GS} @ 4.5V | 4.2 | | | I _D @ T _A = 70°C | Continuous Drain Current, V _{GS} @ 4.5V | 3.4 | Α | | I _{DM} | Pulsed Drain Current ① | 33 | | | P _D @T _A = 25°C | Power Dissipation | 1.25 | ١٨/ | | P _D @T _A = 70°C | Power Dissipation | 0.8 | W | | | Linear Derating Factor | 0.01 | W/°C | | V _{GS} | Gate-to-Source Voltage | ± 12 | V | | T _{J,} T _{STG} | Junction and Storage Temperature Range | -55 to + 150 | °C | #### **Thermal Resistance** | | Parameter | Тур. | Max. | Units | |-----------------|------------------------------|------|------|-------| | $R_{\theta JA}$ | Maximum Junction-to-Ambient® | 75 | 100 | °C/W | # IRLML2502PbF ## Electrical Characteristics @ T_J = 25°C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | |---------------------------------|--------------------------------------|------|-------|-------|-------|--| | V _{(BR)DSS} | Drain-to-Source Breakdown Voltage | 20 | - | I | V | $V_{GS} = 0V, I_{D} = 250uA$ | | $\Delta V_{(BR)DSS}/\Delta T_J$ | Breakdown Voltage Temp. Coefficient | _ | 0.01 | - | V/°C | Reference to 25°C, I _D = 1.0mA | | R _{DS(on)} | Static Drain-to-Source On-Resistance | | 0.035 | 0.045 | Ω | V _{GS} = 4.5V, I _D = 4.2A ⊘ | | | | _ | 0.050 | 0.080 | | V _{GS} = 2.5V, I _D = 3.6A ② | | V _{GS(th)} | Gate Threshold Voltage | 0.60 | _ | 1.2 | ٧ | V _{DS} = V _{GS} , I _D = 250μA | | $\Delta V_{GS(th)}$ | Gate Threshold Voltage Coefficient | _ | -3.2 | - | mV/°C | $V_{DS} = V_{GS}, I_D = 250\mu A$ | | gfs | Forward Transconductance | 5.8 | | I | S | $V_{DS} = 10V, I_{D} = 4.0A$ | | I _{DSS} | Drain-to-Source Leakage Current | | _ | 1.0 | μA | $V_{DS} = 16V, V_{GS} = 0V$ | | | | | | 25 | μA | $V_{DS} = 16V, V_{GS} = 0V, T_{J} = 70^{\circ}C$ | | I _{GSS} | Gate-to-Source Forward Leakage | _ | _ | 100 | nA | V _{GS} = 12V | | | Gate-to-Source Reverse Leakage | _ | | -100 | ΠA | V _{GS} = -12V | | Q_q | Total Gate Charge | _ | 8.0 | 12 | | $I_D = 4.0A$ | | Q_{qs} | Gate-to-Source Charge | _ | 1.8 | 2.7 | nC | V _{DS} = 10V | | Q_{gd} | Gate-to-Drain ("Miller") Charge | | 1.7 | 2.6 | | V _{GS} = 5.0V ② | | t _{d(on)} | Turn-On Delay Time | _ | 7.5 | | | V _{DD} = 10V | | t _r | Rise Time | | 10 | _ | ns | I _D = 1.0A | | t _{d(off)} | Turn-Off Delay Time | _ | 54 | I | 115 | $R_G = 6\Omega$ | | t _f | Fall Time | | 26 | | | $R_D = 10\Omega$ ② | | C _{iss} | Input Capacitance | | 740 | | | $V_{GS} = 0V$ | | C _{oss} | Output Capacitance | _ | 90 | | pF | V _{DS} = 15V | | C _{rss} | Reverse Transfer Capacitance | | 66 | | | f = 1.0MHz | ### Source-Drain Rating and Characteristics | | Parameter | Min. | Тур. | Max. | Units | Conditions | | |-----------------|---------------------------|------|------|------|-------|--|------------------| | Is | Continuous Source Current | | | 1.3 | | MOSFET symbol | | | | (Body Diode) | | | 1.5 | Α | showing the | | | I _{SM} | Pulsed Source Current | | | 20 | 33 | | integral reverse | | | (Body Diode) ① | | | 33 | | p-n junction diode. | | | V_{SD} | Diode Forward Voltage | | | 1.2 | ٧ | T _J = 25°C, I _S = 1.3A, V _{GS} = 0V ⊘ | | | t _{rr} | Reverse Recovery Time | | 16 | 24 | ns | T _J = 25°C, I _F = 1.3A | | | Q _{rr} | Reverse Recovery Charge | | 8.6 | 13 | nC | di/dt = 100A/μs ② | | #### Notes: - ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11) - ② Pulse width \leq 300 μ s; duty cycle \leq 2%.