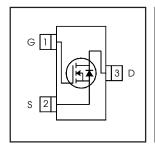
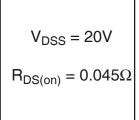


IRLML2502PbF


HEXFET® Power MOSFET


- Ultra Low On-Resistance
- N-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching
- Lead-Free
- Halogen-Free

Description

These N-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in battery and load management.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3TM, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	4.2	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	3.4	Α
I _{DM}	Pulsed Drain Current ①	33	
P _D @T _A = 25°C	Power Dissipation	1.25	١٨/
P _D @T _A = 70°C	Power Dissipation	0.8	W
	Linear Derating Factor	0.01	W/°C
V _{GS}	Gate-to-Source Voltage	± 12	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	75	100	°C/W

IRLML2502PbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20	-	I	V	$V_{GS} = 0V, I_{D} = 250uA$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	_	0.01	-	V/°C	Reference to 25°C, I _D = 1.0mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.035	0.045	Ω	V _{GS} = 4.5V, I _D = 4.2A ⊘
		_	0.050	0.080		V _{GS} = 2.5V, I _D = 3.6A ②
V _{GS(th)}	Gate Threshold Voltage	0.60	_	1.2	٧	V _{DS} = V _{GS} , I _D = 250μA
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient	_	-3.2	-	mV/°C	$V_{DS} = V_{GS}, I_D = 250\mu A$
gfs	Forward Transconductance	5.8		I	S	$V_{DS} = 10V, I_{D} = 4.0A$
I _{DSS}	Drain-to-Source Leakage Current		_	1.0	μA	$V_{DS} = 16V, V_{GS} = 0V$
				25	μA	$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage	_	_	100	nA	V _{GS} = 12V
	Gate-to-Source Reverse Leakage	_		-100	ΠA	V _{GS} = -12V
Q_q	Total Gate Charge	_	8.0	12		$I_D = 4.0A$
Q_{qs}	Gate-to-Source Charge	_	1.8	2.7	nC	V _{DS} = 10V
Q_{gd}	Gate-to-Drain ("Miller") Charge		1.7	2.6		V _{GS} = 5.0V ②
t _{d(on)}	Turn-On Delay Time	_	7.5			V _{DD} = 10V
t _r	Rise Time		10	_	ns	I _D = 1.0A
t _{d(off)}	Turn-Off Delay Time	_	54	I	115	$R_G = 6\Omega$
t _f	Fall Time		26			$R_D = 10\Omega$ ②
C _{iss}	Input Capacitance		740			$V_{GS} = 0V$
C _{oss}	Output Capacitance	_	90		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		66			f = 1.0MHz

Source-Drain Rating and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			1.3		MOSFET symbol	
	(Body Diode)			1.5	Α	showing the	
I _{SM}	Pulsed Source Current			20	33		integral reverse
	(Body Diode) ①			33		p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.2	٧	T _J = 25°C, I _S = 1.3A, V _{GS} = 0V ⊘	
t _{rr}	Reverse Recovery Time		16	24	ns	T _J = 25°C, I _F = 1.3A	
Q _{rr}	Reverse Recovery Charge		8.6	13	nC	di/dt = 100A/μs ②	

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Pulse width \leq 300 μ s; duty cycle \leq 2%.