


MECHANICAL DATA

Dimensions in mm (inches)

TO-39 (TO-205AD)

Pin 1 – Emitter

Pin 2 - Base

Pin 3 - Collector

HIGH SPEED MEDIUM VOLTAGE SWITCHES

DESCRIPTION

The 2N5152 and the 2N5154 are silicon expitaxial planar NPN transistors in jedec TO-39 metal case intended for use in switching applications.

The complementary PNP types are the 2N5151 and 2N5153 respectively

ABSOLUTE MAXIMUM RATINGS

	(T _{CASE} = 25°C unless otherwise stated)	2N5152	2N5154
V_{CBO}	Collector – Base Voltage (I _E = 0)	100V	
V_{CEO}	Collector – Emitter Voltage (I _B = 0)	80V	
V_{EBO}	Emitter – Base Voltage (I _C = 0)	6V	
$I_{\mathbb{C}}$	Continuous Collector Current	5	A
I _{C(PK)}	Peak Collector Current	10A	
I _B	Base Current	1A	
P_{tot}	Total Dissipation at T _{amb} = 25°C		W
	T _{case} = 50°C	10	W
	T _{case} = 100°C	6.7	7W
T_{stg}	Operating and Storage Temperature Range	–65 to	+200°C
T _j	Junction temperature	200)°C

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455) 556565. Fax +44(0)1455) 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS FOR 2N5152 (T_{case} = 25°C unless otherwise stated)

	Parameter	Test Condit	ions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut Off Current	V _{CE} = 60V	$V_{BE} = 0$			1	μA
		V _{CE} = 100V	$V_{BE} = 0$			1	mA
1	Collector Cut Off Current	V _{CE} = 60V	T _{case} = 150°C			500	μA
I _{CEV}		V _{BE} =- 2V					
I _{CEO}	Collector Cut Off Current	V _{CE} = 40V	I _B = 0			50	
I _{EBO}	Emitter Cut Off Current	$V_{EB} = 5V$	I _C = 0			1	μA
		V _{EB} = 6V	I _C = 0			1	mA
V _{CEO(SUS)} *	Collector Emitter Saturation Voltage	I _C = 100mA	I _B = 0	80			
*	Collector Emitter Saturation Voltage	I _C = 2.5A	I _B = 250mA			0.75	
V _{CE(sat)} *		I _C = 5A	I _B = 500mA			1.5] _V
\/ *	Base Emitter Saturation Voltage	I _C = 2.5A	I _B = 250mA			1.45	V
V _{BE(sat)} *		I _C = 5A	I _B = 500mA			2.2	
V _{BE} *	Base Emitter Voltage	I _C = 2.5A	$V_{CE} = 5V$			1.45	
	DC Current Gain	I _C = 50mA	$V_{CE} = 5V$	20			
h *		I _C = 2.5A	V _{CE} = 5V	30		90	
h _{FE} *			T _C = -55°C	15			
		I _C = 5A	V _{CE} = 5v	20			
0	Collector Base Capacitance	I _E = 0	V _{CB} = 10V			050	pF
C _{CBO}		f = 1MHz				250	PF
h _{FE}	Small Signal Current Gain	I _C = 0.1A	$V_{CE} = 5V$	20			
		f = 1KHz		20			
		I _C = 0.5A	V _{CE} = 5v	3			
		f = 20MHz					
t _{on}	Turn On Time	I _C = 5A	$V_{CC} = 30v$		0.5		μs
		$I_{B1} = 0.5A$					
t _{off}	Turn Off Time	I _C = 5A	V _{CC} = 30V		1.2		μs
		$I_{B1} = -I_{B2} = 0.5A$			1.3		

^{*} Pulse test t_p = 300 μ s , δ < 2%

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case	Max	15	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	175	°C/W

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455) 556565. Fax +44(0)1455) 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS FOR 2N5154 (T_{case} = 25°C unless otherwise stated)

	Parameter	Test Condit	ions	Min.	Тур.	Max.	Unit
1	O-11t O-t-O# Ot	V _{CE} = 60V	$V_{BE} = 0$			1	μA
I _{CES}	Collector Cut Off Current	V _{CE} = 100V	$V_{BE} = 0$			1	mA
I _{CEV}	Collector Cut Off Current	V _{CE} = 60V	T _{case} = 150°C		5.0	500	
		V _{BE} =- 2V				500	μA
I _{CEO}	Collector Cut Off Current	V _{CE} = 40V	I _B = 0			50	
_	Emitter Cut Off Current	V _{EB} = 5V	I _C = 0			1	μA
I _{EBO}		V _{EB} = 6V	I _C = 0			1	mA
V _{CEO(SUS)} *	Collector Emitter Saturation Voltage	I _C = 100mA	$I_B = 0$	80			
\/ *	Collector Emitter Seturation Voltage	I _C = 2.5A	$I_B = 250 \text{mA}$			0.75	-
V _{CE(sat)} *	Collector Emitter Saturation Voltage	I _C = 5A	$I_B = 500 \text{mA}$			1.5	V
\/ *	Daga Fraitter Catavation Valtage	I _C = 2.5A	I _B = 250mA			1.45	- V
V _{BE(sat)} *	Base Emitter Saturation Voltage	I _C = 5A	$I_B = 500 \text{mA}$			2.2	
V _{BE} *	Base Emitter Voltage	I _C = 2.5A	V _{CE} = 5V			1.45	
	DC Current Gain	I _C = 50mA	V _{CE} = 5V	50			
h *		I _C = 2.5A	V _{CE} = 5V	70		200	
h _{FE} *			$T_C = -55^{\circ}C$	35			
		I _C = 5A	V _{CE} = 5v	40			
C	Collector Base Capacitance	I _E = 0	V _{CB} = 10V			250	pF
C _{CBO}		f = 1MHz				250	Pi
h _{FE}	Small Signal Current Gain	I _C = 0.1A	$V_{CE} = 5V$	50			
		f = 1KHz		50			
		$I_{C} = 0.5A$	$V_{CE} = 5v$	2.5			
		f = 20MHz		3.5			
t _{on}	Turn On Time	I _C = 5A	$V_{CC} = 30v$		0.5		μs
		$I_{B1} = 0.5A$					
t _{off}	Turn Off Time	I _C = 5A	$V_{CC} = 30V$		1.3		116
		$I_{B1} = -I_{B2} = 0.5A$	\ <u> </u>		1.3		μs

^{*} Pulse test t_p = 300 μ s , δ < 2%

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case	Max	15	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	175	°C/W

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455) 556565. Fax +44(0)1455) 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk