

SML50EUZ03S

Ultrafast Recovery Diode 300 Volt, 50Amp

Back of Case Cathode SML 50EUZ03S 1 - Cathode 2 - Anode

See package outline for mechanical data and more details

D³ PAK Package

Key Parameters

V_{R}	(max)	300V		
V_{F}	(typ)	1.7V		
I _F	(max)	50A		
t _{rr}	(max)	40ns		

TECHNOLOGY

The planar passivated and enhanced ultrafast recovery diode features a triple charge control action utilising Semelab's Graded Buffer Zone technology combined with low emitter efficiency and local lifetime control techniques.

BENEFITS

- · Very fast recovery for low switching losses
- · Ultra soft recovery with low EMI generation
- High dynamic ruggedness under all conditions
- · Low temperature dependency
- Low on-state losses with positive temperature coefficient
- · Stable blocking voltage and low leakage current
- Avalanche rated for high reliability circuit operation

APPLICATIONS

- Freewheeling Diode for IGBTs and MOSFETs
- Uninterruptible Power Supplies UPS
- Switch Mode Power Supplies SMPS
- · Inverse and Clamping Diode
- Snubber Diode
- · Fast Switching Rectification

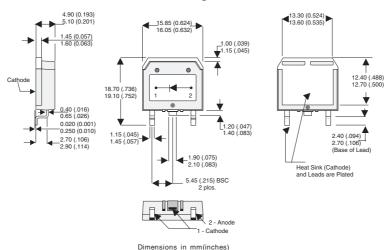
ABSOLUTE MAXIMUM RATINGS (Tcase = 25°C unless otherwise stated)

V _{RRM}	Peak Repetitive Reverse Voltage	300V
V_R	DC Reverse Blocking Voltage	300V
I _{FAV}	Average Forward Current @T _C = 85°C	50A
I _{FSM(surge)}	Repetitive Forward Current	125A
I _{FS(surge)}	Non-Repetitive Forward Current	500A
P_{D}	Power Dissipation @T _C = 85°C	90W
W_{AVL}	Avalanche Energy	30mJ
T_J , T_STG	Operating & Storage Junction Temperature	-55 to 150°C

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 2367

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk Issue 1



SML50EUZ03S

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise stated)

Parameter		Test Conditions		Min.	Тур.	Max.	Unit				
STATIC ELECTRICAL CHARACTERISTIC											
V _F *		I _F = 50A	T _j = 25°C		1.7	2.25	V				
	Forward Voltage Drop	I _F = 50A	T _j = 125°C		1.8						
		I _F = 25A	T _j = 25°C		1.4						
I _R	Leakage Current	V _R = 300V	T _j = 25°C		0.75	300	μΑ				
		V _R = 300V	T _j = 125°C		0.5	3	mA				
C _T	Junction Capacitance	V _R = 200V	T _j = 25°C		74		pF				
DYNAI	MIC ELECTRICAL CHARACTERIS	STIC		'							
Q _{rr}	Reverse Recovery Charge	$-V_{R} = 200V$ $-d_{i}/d_{t} = 600A/\mu s$			0.44		μC				
I _{rr}	Reverse Recovery Current				16		А				
t _{rr}	Reverse Recovery Time				55		nsec				
Q _{rr}	Reverse Recovery Charge	$V_{R} = 200V$ $d_{i} / d_{t} = 600A/\mu s$	•		0.71		μC				
I _{rr}	Reverse Recovery Current				22		А				
t _{rr}	Reverse Recovery Time				66		nsec				
t _{rr}	Reverse Recovery Time	V _R = 50V	I _F = 1A		40		nsec				
		$d_i / d_t = 100A/\mu s$	$T_J = 25^{\circ}C$								
THERM	MAL AND MECHANICAL CHARA	CTERISTICS									
$R_{\theta jc}$	Junction to Case Thermal Resistance					0.93	°C/W				
TL	Lead Temperature					300	°C				
L _S	Stray Inductance				10		nH				

D³PAK Package

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 2367

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk