

Product Data Sheet

5 VDC INPUT, 3.3 VDC OUTPUT DC/DC CONVERTER

SuperSIPTM

Features

- Non isolated DC/DC Converter designed to operate from a regulated 5V bus
- Output voltage Range: 1.8V 3.6V
- Easy resistive programming for desired output
- No resistive programming gives 3.3 Vdc output
- Wave solderable

Description

The SuperSIP[™] DC/DC converter accepts a regulated 5V input (±10%) and provides 1.8Vdc to 3.6Vdc at 6A. The circuit is optimized for high efficiency and fast load transient response needed by telecom, DSP, and microprocessor applications. Advanced thermal design, monolithic power circuitry, planar magnetics, and synchronous rectification result in outstanding performance and value. Pins are staked for wave solderability. Multiple programming, power good and on/ off options allow superior flexibility and drop in compatibility for most existing designs.

Internet: http://www.cdpowerelectronics.com

Power Electronics Division, United States 3400 E Britannia Drive, Tucson, Arizona 85706 Phone: 520.295.4100 Fax: 520.770.9369 Power Electronics Division, Europe C&D Technologies (Power Electronics) Ltd. 132 Shannon Industrial Estate, Shannon, Co. Clare, Ireland Tel: +353.61.474.133 Fax:+353.61.474.141

Electrical Specifications

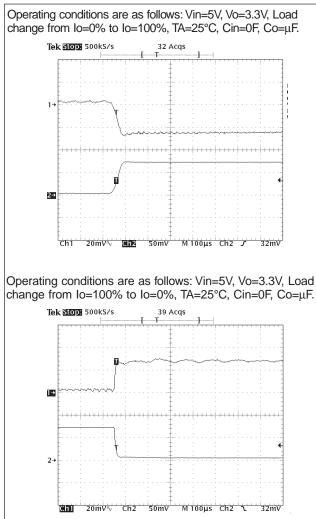
Unless otherwise specified, operating conditions are as follows: V_{in} =5V, V_{0} =3.3V, I_{0} =6A, T_{A} =25°C, C_{in} =100 μ F, C_{0} =0F.

Parameters		Conditions	Min.	Тур.	Max.	Units
Input						
Input Voltage	Vin		4.5	5.0	5.5	VDC
Input Current Ripple				200		mArms
Required Capacitance	Cin	Note 1	0	100		μF
Output						
Output Voltage	Vo	Nominal	3.25	3.3	3.35	VDC
Output Program Range		Note 2	1.8		3.6	VDC
Output Current	lo	T _A =25°C	0		6	Amps
Output Ripple		20 Mhz BW		15	50	mVp-p
Output Rise time	Т			700		μS
Output Capacitance Range	Co		0		5000	μF
Line Regulation				±0.5		%
Load Regulation		l₀ min-l₀ max		±1.0		%
Temperature Coefficient	Tc			0.01		%/°C
Combined variation		V _{in} min-max				
		l₀ min-max				
		T _A =25C°-85C°	-2		+2	%
Current Limit	limit	$V_{in} = 4.75 Vdc$	6.5	9	12	A
General						
Switching Frequency				800		kHz
Dynamic Response						
$\Delta I_0/\Delta t = 1A/10\mu \text{ sec}, V_i = 5.0V_0$						
Load Change from $I_{\circ} = 0\%$ to	lo = 100%					
Peak Deviation Settling time (Vo<10% Peak De	viction)			30 100		mV
Load change from $I_0 = 100\%$ t	,			100		μsec
Peak Deviation	010 - 070			30		mV
Settling time (Vo<10% Peak De	eviation)			100		μsec
Temperature						
Operating Temperature		Note 3	0		+60	°C
Storage Temperature			-40		+125	°C

<u>Notes</u>

1. Input source<3" from SuperSIP[™], Load transient <3A per SIP. 100μF low ESR capacitor for load transients >3A.

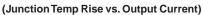
- 2. Optional programming 1.8 3.6 or $\pm 10\%$ available. See Table.
- 3. 100 lfm air, V_0 =3.3V, I_0 =6A. See Thermal Design Guide for other conditions.


Programming

To program the SuperSIPTM for V_{out}<3.3, connect resistor across pins 8 (TRIM) and 6 (V₀). For V_{out}>3.3, resistor is connected across pins 8 and 4 (Gnd).

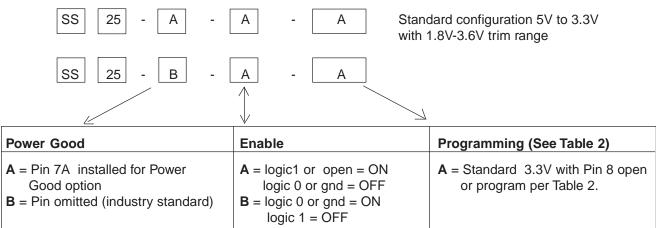
Table 2

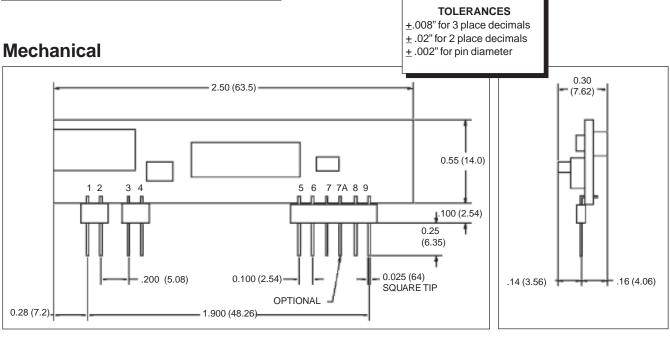
Vout	Resistor Value	Vout	Resistor Value
1.8	576Ω	2.8	18.2k
1.9	1.21k	2.9	24.3k
2.0	1.96k	3.0	34.8k
2.1	2.8k	3.1	54.9k
2.2	3.83k	3.2	110.0k
2.3	4.99k	3.3	OPEN
2.4	6.49k	3.4	66.5k
2.5	8.25k	3.5	29.4k
2.6	10.7k	3.6	18.2k
2.7	13.7k		


Transient Response

Thermal Design Guide

Locate your operating current, read the junction temp rise from the graph and add to your maximum ambient. 135°C is the maximum allowable operating junction temperature. Test conditions: Device soldered into 4" x 4" PCB, 2 sided with power and ground planes for heat conduction. Due to the difficulty in predicting the thermal effects of airflow velocity and direction, and thermal conduction through ground planes it is important that the SuperSIP[™] be evaluated thermally in each application. For high ambient temperature/high current application please request our Application Note 35-118-01, "Accurate Measurements of SuperSIP[™] Junction Temperature", for further assistance.


Tj Rise vs. Io


Ordering Information

Typical examples:

Pin Out

Pin	Function	Description		
1	Vo	Output Voltage		
2	Vo	Output Voltage		
3	Vo	Output Voltage		
4	GND	Ground		
5	GND	Ground		
6	Vin	Input Voltage		
7	Vin	Input Voltage		
7A	P_{good}	Power Good Option		
8	Trim	Output Voltage Adjust		
9	Enable	Enable Option		

The information provided herein is believed to be reliable; however, C&D TECHNOLOGIES assumes no responsibility for inaccuracies or omissions. C&D TECHNOLOGIES assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. C&D TECHNOLOGIES does not authorize or warrant any C&D TECHNOLOGIES product for use in life support devices/systems or in aircraft control applications.