SST25WF020A # 2 Mbit 1.8V SPI Serial Flash #### **Features** - · Single Voltage Read and Write Operations - 1.65-1.95V - · Serial Interface Architecture - SPI Compatible: Mode 0 and Mode 3 - · High Speed Clock Frequency - 40MHz - Superior Reliability - Endurance: 100,000 Cycles - Greater than 20 years Data Retention - Ultra-Low Power Consumption: - Active Read Current: 4 mA (typical) - Standby Current: 10 µA (typical) - Power-down Mode Standby Current: 4 µA (typical) - · Flexible Erase Capability - Uniform 4 KByte sectors - Uniform 64 KByte overlay blocks - · Page Program Mode - 256 Bytes/Page - · Fast Erase and Page-Program: - Chip-Erase Time: 300 ms (typical) - Sector-Erase Time: 40 ms (typical) - Block-Erase Time: 80 ms (typical) - Page-Program Time: 3 ms/ 256 bytes (typical) - End-of-Write Detection - Software polling the BUSY bit in Status Register - Hold Pin (HOLD#) - Suspend a serial sequence without deselecting the device - Write Protection (WP#) - Enables/Disables the Lock-Down function of the status register - Software Write Protection - Write protection through Block-Protection bits in status register - · Temperature Range - Industrial: -40°C to +85°C - · Packages Available - 8-lead SOIC (150 mils) - 8-contact USON (2mm x 3mm) - · All devices are RoHS compliant #### **Product Description** SST25WF020A is a member of the Serial Flash 25 Series family and feature a four-wire, SPI-compatible interface that allows for a low pin-count package which occupies less board space and ultimately lowers total system costs. SPI serial flash memory is manufactured with proprietary, high-performance CMOS SuperFlash technology. The split-gate cell design and thick-oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. This Serial Flash significantly improve performance and reliability, while lowering power consumption. The device writes (Program or Erase) with a single power supply of 1.65-1.95V. The total energy consumed is a function of the applied voltage, current, and time of application. Since for any given voltage range, the SuperFlash technology uses less current to program and has a shorter erase time, the total energy consumed during any Erase or Program operation is less than alternative flash memory technologies. SST25WF020A is offered in 8-lead SOIC and 8-contact USON packages. See Figure 2-1 for the pin assignments. # 1.0 FUNCTIONAL BLOCK DIAGRAM FIGURE 1-1: FUNCTIONAL BLOCK DIAGRAM # 2.0 PIN DESCRIPTION FIGURE 2-1: PIN ASSIGNMENTS TABLE 2-1: PIN DESCRIPTION | Symbol | Pin Name | Functions | |-----------------|--------------------|---| | SCK | Serial Clock | To provide the input/output timing of the serial interface.
Commands, addresses, or input data are latched on the rising edge of the clock input, while output data is shifted out on the falling edge of the clock input. | | SI | Serial Data Input | To transfer commands, addresses, or data serially into the device. Inputs are latched on the rising edge of the serial clock. | | SO | Serial Data Output | To transfer data serially out of the device. Data is shifted out on the falling edge of the serial clock. | | CE# | Chip Enable | The device is enabled by a high to low transition on CE#. CE# must remain low for the duration of any command sequence. The device is deselected and placed in Standby mode when CE# is high. | | WP# | Write Protect | The Write Protect (WP#) pin is used to enable/disable BPL bit in the status register. | | HOLD# | Hold | To temporarily stop serial communication with SPI Flash memory while device is selected. | | V_{DD} | Power Supply | To provide power supply voltage: 1.65-1.95V for SST25WF020A | | V _{SS} | Ground | | #### 3.0 MEMORY ORGANIZATION The SST25WF020A SuperFlash memory arrays are organized in 64 uniform 4 KByte sectors, with four 64 KByte overlay erasable blocks. FIGURE 3-1: MEMORY MAP ## 4.0 DEVICE OPERATION SST25WF020A is accessed through the SPI (Serial Peripheral Interface) bus compatible protocol. The SPI bus consist of four control lines; Chip Enable (CE#) is used to select the device, and data is accessed through the Serial Data Input (SI), Serial Data Output (SO), and Serial Clock (SCK). The SST25WF020A supports both Mode 0 (0,0) and Mode 3 (1,1) of SPI bus operations. The difference between the two modes, as shown in Figure 4-1, is the state of the SCK signal when the bus master is in Stand-by mode and no data is being transferred. The SCK signal is low for Mode 0 and SCK signal is high for Mode 3. For both modes, the Serial Data In (SI) is sampled at the rising edge of the SCK clock signal and the Serial Data Output (SO) is driven after the falling edge of the SCK clock signal. FIGURE 4-1: SPI PROTOCOL #### 4.0.1 HOLD In the hold mode, serial sequences underway with the SPI Flash memory are paused without resetting the clocking sequence. To activate the HOLD# mode, CE# must be in active low state. The HOLD# mode begins when the SCK active low state coincides with the falling edge of the HOLD# signal. The Hold mode ends when the rising edge of the HOLD# signal coincides with the SCK active low state. HOLD# must not rise or fall when SCK logic level is high. See Figure 4-2 for Hold Condition waveform. Once the device enters Hold mode, SO will be in high-impedance state while SI and SCK can be $V_{II}\,$ or $V_{IH}\,$ If CE# is driven active high during a Hold condition, the device returns to standby mode. The device can then be re-initiated with the command sequences listed in Table 5-1. As long as HOLD# signal is low, the memory remains in the Hold condition. To resume communication with the device, HOLD# must be driven active high, and CE# must be driven active low. See Figure 4-2 for Hold timing. FIGURE 4-2: HOLD CONDITION WAVEFORM #### 4.1 Write Protection SST25WF020A provides software Write protection. The Write Protect pin (WP#) enables or disables the lock-down function of the status register. The Block-Protection bits (BP0, BP1, TB, and BPL) in the status register provide Write protection to the memory array and the status register. See Table 4-3 for the Block-Protection description. #### 4.1.1 WRITE PROTECT PIN (WP#) The Write Protect (WP#) pin enables the lock-down function of the BPL bit (bit 7) in the status register. When WP# is driven low, the execution of the Write- Status-Register (WRSR) instruction is determined by the value of the BPL bit (see Table 4-1). When WP# is high, the lock-down function of the BPL bit is disabled. TABLE 4-1: CONDITIONS TO EXECUTE WRITE-STATUS-REGISTER (WRSR) INSTRUCTION | WP# | BPL | Execute WRSR Instruction | |-----|-----|--------------------------| | L | 1 | Not Allowed | | L | 0 | Allowed | | Н | X | Allowed | ## 4.2 Status Register The software status register provides status on whether the flash memory array is available for any Read or Write operation, whether the device is Write enabled, and the state of the Memory Write protection. During an internal Erase or Program operation, the status register may be read only to determine the completion of an operation in progress. Table 4-2 describes the function of each bit in the software status register. TABLE 4-2: SOFTWARE STATUS REGISTER | Bit | Name | Function | Default at
Power-up | Read/Write | |-----|------------------|--|------------------------|------------| | 0 | BUSY | 1 = Internal Write operation is in progress0 = No internal Write operation is in progress | 0 | R | | 1 | WEL | 1 = Device is memory Write enabled
0 = Device is not memory Write enabled | 0 | R | | 2 | BP0 ¹ | Indicate current level of block write protection (See Table 4-3) | 0 or 1 | R/W | | 3 | BP1 ¹ | Indicate current level of block write protection (See Table 4-3) | 0 or 1 | R/W | | 4 | RES | Reserved for future use | 0 | N/A | | 5 | TB ¹ | 1 = 1/4 or 1/2 Bottom Memory Blocks are protected (See Table 4-3)
0 = 1/2 or 1/4 Top Memory Blocks are protected | 0 or 1 | R/W | | 6 | RES | Reserved for future use | 0 | N/A | | 7 | BPL ¹ | 1 = BP0, BP1, TB, and BPL are read-only bits
0 = BP0, BP1, TB, and BPL are read/writable | 0 or 1 | R/W | ^{1.} BP0, BP1, TB, and BPL bits are non-volatile memory bits. #### 4.2.1 BUSY (BIT 0) The Busy bit determines whether there is an internal Erase or Program operation in progress. A '1' for the Busy bit indicates the device is busy with an operation in progress. A '0' indicates the device is ready for the next valid operation. #### 4.2.2 WRITE ENABLE LATCH (WEL-BIT 1) The Write-Enable-Latch bit indicates the status of the internal Write-Enable-Latch memory. If the WEL bit is set to '1', it indicates the device is Write enabled. If the bit is set to '0' (reset), it indicates the device is not Write enabled and does not accept any Write (Program/ Erase) commands. The Write-Enable-Latch bit is automatically reset under the following conditions: - Power-up - Write-Disable (WRDI) instruction completion - Page-Program instruction completion - Sector-Erase instruction completion - 64 KByte Block-Erase instruction completion - · Chip-Erase instruction completion - Write-Status-Register instruction completion # 4.2.3 BLOCK-PROTECTION (BP0, BP1, AND TB-BITS 2, 3, AND 5) The Block-Protection (BP0, BP1, and TB) bits define the size of the memory area to be software protected against any memory Write (Program or Erase) operation, see Table 4-3. The Write-Status-Register (WRSR) instruction is used to program the BP0, BP1, and TB bits as long as WP# is high or the Block-Protect-Lock (BPL) bit is '0'. Chip-Erase can only be executed if Block-Protection bits are all '0'. BP0 and BP1 select the
protected area and TB allocates the protected area to the higher-order address area (Top Blocks) or lower-order address area (Bottom Blocks). # 4.2.4 BLOCK PROTECTION LOCK-DOWN (BPL-BIT 7) When the WP# pin is driven low (V_{IL}) , it enables the Block-Protection-Lock-Down (BPL) bit. When BPL is set to '1', it prevents any further alteration of the BP0, BP1, TB, and BPL bits. When the WP# pin is driven high (V_{IH}), the BPL bit has no effect and its value is 'Don't Care'. TABLE 4-3: SOFTWARE STATUS REGISTER BLOCK PROTECTION | | Status Register Bit | | | | |--|---------------------|-----|-----|--------------------------| | Protection Level | ТВ | BP1 | BP0 | Protected Memory Address | | 0 (Full Memory Array unprotected) | Х | 0 | 0 | None | | T1 (1/4 Top Memory Block protected) | 0 | 0 | 1 | 030000H-03FFFFH | | T2 (1/2 Top Memory Block protected) | 0 | 1 | 0 | 020000H-03FFFFH | | B1 (1/4 Bottom Memory Block protected) | 1 | 0 | 1 | 000000H-00FFFFH | | B2 (1/2 Bottom Memory Block protected) | 1 | 1 | 0 | 000000H-01FFFFH | | 3 (Full Memory Array protected) | Х | 1 | 1 | 000000H-03FFFFH | #### 5.0 INSTRUCTIONS Instructions are used to read, write (Erase and Program), and configure the SST25WF020A devices. The instruction bus cycles are 8 bits each for commands (Op Code), data, and addresses. The Write-Enable (WREN) instruction must be executed prior to Sector-Erase, Block-Erase, Page-Program, Write-Status-Register, or Chip-Erase instructions. The complete instructions are provided in Table 5-1. All instructions are synchronized off a high-to-low transition of CE#. Inputs will be accepted on the rising edge of SCK starting with the most significant bit. CE# must be driven low before an instruction is entered and must be driven high after the last bit of the instruction has been shifted in (except for Read, Read-ID, and Read-Status-Register instructions). Any low-to-high transition on CE#, before receiving the last bit of an instruction bus cycle, will terminate the instruction in progress and return the device to standby mode. Instruction commands (Op Code), addresses, and data are all input from the most significant bit (MSB) first. TABLE 5-1: DEVICE OPERATION INSTRUCTIONS | Instruction | Description | Op Code Cycle ¹ | Address
Cycle(s) ² | Dummy
Cycle(s) | Data
Cycle(s) | Maximum
Frequency | |---------------------------------------|---|--|----------------------------------|-------------------|------------------|----------------------| | Read | Read Memory | 0000 0011b (03H) | 3 | 0 | 1 to ∞ | 25 MHz | | High-Speed Read | Read Memory at Higher
Speed | 0000 1011b (0BH) | 3 | 1 | 1 to ∞ | 40 MHz | | 4 KByte Sector-
Erase ³ | Erase 4 KByte of memory array | 0010 0000b (20H)
1101 0111b (D7H) | 3 | 0 | 0 | | | 64 KByte Block-
Erase ⁴ | Erase 64 KByte block of memory array | 1101 1000b (D8H) | 3 | 0 | 0 | | | Chip-Erase | Erase Full Memory Array | 0110 0000b (60H)
or
1100 0111b (C7H) | 0 | 0 | 0 | | | Page-Program | To program up to 256 Bytes | 0000 0010b (02H) | 3 | 0 | 1 to 256 | | | RDSR ⁵ | Read-Status-Register | 0000 0101b (05H) | 0 | 0 | 1 to ∞ | | | WRSR | Write-Status-Register | 0000 0001b (01H) | 0 | 0 | 1 | | | WREN | Write-Enable | 0000 0110b (06H) | 0 | 0 | 0 | | | WRDI | Write-Disable | 0000 0100b (04H) | 0 | 0 | 0 | | | RDID ^{6, 7} | Read-ID | 1010 1011b (ABH) | 3 | 0 | 1 to ∞ | | | JEDEC-ID | JEDEC ID Read | 1001 1111b (9FH) | 0 | 0 | 4 to ∞ | | | DPD | Deep Power-Down Mode | 1011 1001b (B9H) | 0 | 0 | 0 | | | RDPD ⁷ | Release from Deep Power-
Down or Read ID | 1010 1011b (ABH) | 0 | 0 | 0 | | - 1. One bus cycle is eight clock periods. - 2. Address bits above the most significant bit of each density can be $V_{\rm IL}$ or $V_{\rm IH}$. - 3. 4 KByte Sector-Erase addresses: use A_{MS}-A₁₂, remaining addresses are don't care but must be set either at V_{IL} or V_{IH}. - 4. 64 KByte Block-Erase addresses: use A_{MS} - A_{16} , remaining addresses are don't care but must be set either at V_{IL} or V_{IH} . - 5. The Read-Status-Register is continuous with ongoing clock cycles until terminated by a low to high transition on CE#. - 6. Device ID is read after three dummy address bytes. The Device ID output stream is continuous until terminated by a low-to-high transition on CE#. - 7. The instructions Release from Deep Power down and Read-ID are similar instructions (ABH). Executing Read-ID requires the ABH instruction, followed by 24 dummy address bits to retrieve the Device ID. Release from Deep Power-Down only requires the instruction ABH. ## 5.1 Read (25 MHz) The Read instruction, 03H, supports up to 25 MHz Read. The device outputs a data stream starting from the specified address location. The data stream is continuous through all addresses until terminated by a low-to-high transition on CE#. The internal address pointer automatically increments until the highest memory address is reached. Once the highest memory address is reached, the address pointer automatically incre- ments to the beginning (wrap-around) of the address space. For example, for 2 Mbit density, once the data from the address location 3FFFFH is read, the next output is from address location 000000H. The Read instruction is initiated by executing an 8-bit command, 03H, followed by address bits A_{23} - A_0 . CE# must remain active low for the duration of the Read cycle. See Figure 5-1 for the Read sequence. FIGURE 5-1: READ SEQUENCE # 5.2 High-Speed-Read (40 MHz) The High-Speed-Read instruction supporting up to 40 MHz Read is initiated by executing an 8-bit command, 0BH, followed by address bits $[A_{23}$ - $A_0]$ and a dummy byte. CE# must remain active low for the duration of the High-Speed-Read cycle. See Figure 5-2 for the High-Speed-Read sequence. Following a dummy cycle, the High-Speed-Read instruction outputs the data starting from the specified address location. The data output stream is continuous through all addresses until terminated by a low-to-high transition on CE#. The internal address pointer will automatically increment until the highest memory address is reached. Once the highest memory address is reached, the address pointer will automatically increment to the beginning (wrap-around) of the address space. For example, for 2 Mbit density, once the data from address location 3FFFFH is read, the next output will be from address location 000000H. FIGURE 5-2: HIGH-SPEED-READ SEQUENCE # 5.3 Page-Program The Page-Program instruction programs up to 256 Bytes of data in the memory. The data for the selected page address must be in the erased state (FFH) before initiating the Page-Program operation. A Page-Program applied to a protected memory area will be ignored. Prior to the program operation, execute the WREN instruction. To execute a Page-Program operation, the host drives CE# low, then sends the Page-Program command cycle (02H), three address cycles, followed by the data to be programmed, and then drives CE# high. The programmed data must be between 1 to 256 Bytes and in whole byte increments; sending less than a full byte will cause the partial byte to be ignored. Poll the BUSY bit in the Status register, or wait T_{PP} , for the completion of the internal, self-timed, Page-Program operation. See Figure 5-3 for the Page-Program sequence and Figure 6-8 for the Page-Program flow chart. When executing Page-Program, the memory range for the SST25WF020A is divided into 256-Byte page boundaries. The device handles the shifting of more than 256 Bytes of data by maintaining the last 256 Bytes as the correct data to be programmed. If the target address for the Page-Program instruction is not the beginning of the page boundary (A[7:0] are not all zero), and the number of bytes of data input exceeds or overlaps the end of the address of the page boundary, the excess data inputs wrap around and will be programmed at the start of that target page. FIGURE 5-3: PAGE-PROGRAM SEQUENCE #### 5.4 Sector-Erase The Sector-Erase instruction clears all bits in the selected 4 KByte sector to FFH. A Sector-Erase instruction applied to a protected memory area will be ignored. Prior to any Write operation, the Write-Enable (WREN) instruction must be executed. CE# must remain active low for the duration of any command sequence. The Sector-Erase instruction is initiated by executing an 8-bit command, 20H or D7H, followed by address bits [A₂₃-A₀]. Address bits [A_{MS}-A₁₂] $(A_{MS}=\mbox{Most}$ Significant address) are used to determine the sector address (SA_X), remaining address bits can be V_{IL} or V_{IH}. CE# must be driven high before the instruction is executed. Poll the BUSY bit in the Software Status register, or wait T_{SE}, for the completion of the internal self-timed Sector-Erase cycle. See Figure 5-4 for the Sector-Erase sequence and Figure 6-9 for the flow chart. FIGURE 5-4: SECTOR-ERASE SEQUENCE # 5.5 64-KByte Block-Erase The 64-KByte Block-Erase instruction clears all bits in the selected 64 KByte block to FFH. Applying this instruction to a protected memory area results in the instruction being ignored. Prior to any Write operation, the Write-Enable (WREN) instruction must be executed. CE# must remain active low for the duration of any command sequence. Initiate the 64-Byte Block-Erase instruction by executing an 8-bit command, D8H, followed by address bits $[A_{23}-A_0]$. Address bits $[A_{MS}-A_{16}]$ ($A_{MS}=Most$ Significant Address) determine the block address (BA_X), remaining address bits can be V_{IL} or V_{IH} . CE# must be driven high before executing the instruction. Poll the Busy bit in the software status register or wait T_{BE} for the completion of the internal self-timed Block-Erase cycle. See Figure 5-5 for the 64-KByte Block-Erase sequences and Figure 6-9 for the flow chart. FIGURE 5-5: 64-KBYTE BLOCK-ERASE SEQUENCE # 5.6 Chip-Erase
The Chip-Erase instruction clears all bits in the device to FFH. A Chip-Erase instruction is ignored if any of the memory area is protected. Prior to any Write operation, the Write-Enable (WREN) instruction must be executed. CE# must remain active low for the duration of the Chip-Erase instruction sequence. Initiate the Chip- Erase instruction by executing an 8-bit command, 60H or C7H. CE# must be driven high before the instruction is executed. Poll the BUSY bit in the Software Status register, or wait T_{CE} , for the completion of the internal self-timed Chip-Erase cycle. See Figure 5-6 for the Chip-Erase sequence and Figure 6-10 for the flow chart. FIGURE 5-6: CHIP-ERASE SEQUENCE ## 5.7 Read-Status-Register (RDSR) The Read-Status-Register (RDSR) instruction, 05H, allows reading of the status register. The status register may be read at any time even during a Write (Program/Erase) operation. When a Write operation is in progress, the Busy bit may be checked before sending any new commands to assure that the new commands are properly received by the device. CE# must be driven low before the RDSR instruction is entered and remain low until the status data is read. Read-Status-Register is continuous with ongoing clock cycles until it is terminated by a low to high transition of the CE#. See Figure 5-7 for the RDSR instruction sequence. FIGURE 5-7: READ-STATUS-REGISTER (RDSR) SEQUENCE # 5.8 Write-Enable (WREN) The Write-Enable (WREN) instruction, 06H, sets the Write-Enable-Latch bit in the Status Register to 1 allowing Write operations to occur. The WREN instruction must be executed prior to any Write (Program/Erase) operation. The WREN instruction may also be used to allow execution of the Write-Status-Register (WRSR) instruction; however, the Write-Enable-Latch bit in the Status Register will be cleared upon the rising edge CE# of the WRSR instruction. CE# must be driven low before entering the WREN instruction, and CE# must be driven high before executing the WREN instruction. See Figure 5-8 for the WREN instruction sequence. FIGURE 5-8: WRITE ENABLE (WREN) SEQUENCE # 5.9 Write-Disable (WRDI) The Write-Disable (WRDI) instruction, 04H, resets the Write-Enable-Latch bit to '0', thus preventing any new Write operations. CE# must be driven low before enter- ing the WRDI instruction, and CE# must be driven high before executing the WRDI instruction. See Figure 5-11 for the WRDI instruction sequence. FIGURE 5-9: WRITE DISABLE (WRDI) SEQUENCE #### 5.10 Write-Status-Register (WRSR) The Write-Status-Register instruction writes new values to the BP0, BP1, TB, and BPL bits of the status register. CE# must be driven low before the command sequence of the WRSR instruction is entered and driven high before the WRSR instruction is executed. Poll the BUSY bit in the Software Status register, or wait T_{WRSR} , for the completion of the internal self-timed Write-Status-Register cycle. See Figure 5-10 for WREN and WRSR instruction sequences and Figure 6-11 for the WRSR flow chart. Executing the Write-Status-Register instruction will be ignored when WP# is low and BPL bit is set to '1'. When the WP# is low, the BPL bit can only be set from '0' to '1' to lock-down the status register, but cannot be reset from '1' to '0'. When WP# is high, the lock-down function of the BPL bit is disabled and the BPL, BP0, BP1, and TB bits in the status register can all be changed. As long as BPL bit is set to '0' or WP# pin is driven high (V_{IH}) prior to the low-to-high transition of the CE# pin at the end of the WRSR instruction, the bits in the status register can all be altered by the WRSR instruction. In this case, a single WRSR instruction can set the BPL bit to '1' to lock down the status register as well as altering the BP0, BP1, and TB bits at the same time. See Table 4-1 for a summary description of WP# and BPL functions. FIGURE 5-10: WRITE-ENABLE (WREN) AND WRITE-STATUS-REGISTER (WRSR) SEQUENCE #### 5.11 Power-Down The Deep Power-Down (DPD) instruction puts the device in the lowest power consumption mode – the Deep Power-Down mode. This instruction is ignored if the device is busy with an internal write operation. While the device is in DPD mode, all instructions are ignored except for the Release Deep Power-Down instruction or Read ID. To initiate deep power-down, input the Deep Power-Down instruction (B9H) while driving CE# low. CE# must be driven high before executing the DPD instruction. After driving CE# high, it requires a delay of T_{DPD} before the standby current I_{SB} is reduced to the deep power-down current I_{DPD} . See Figure 5-11 for the DPD instruction sequence. Exit the power-down state using the Release from Deep Power-Down or Read ID instruction. CE# must be driven low before sending the Release from Deep Power-Down command cycle (ABH), and then driving CE# high. The device will return to Standby mode and be ready for the next instruction after T_{SBR}. See Figure 5-12. for the Release from Deep Power-Down sequence. FIGURE 5-11: DEEP POWER-DOWN SEQUENCE FIGURE 5-12: RELEASE FROM DEEP POWER-DOWN SEQUENCE #### 5.12 Read-ID The Read-ID instruction identifies the device as SST25WF020A. Use the Read-ID instruction to identify SST25WF020A when using multiple manufacturers in the same socket. See Table 5-2. The device ID information is read by executing an 8-bit command, ABH, followed by 24 dummy address bits. Following the Read-ID instruction, and 24 address dummy bits, the device ID continues to output with continuous clock input until terminated by a low-to-high transition on CE#. TABLE 5-2: PRODUCT IDENTIFICATION | | Address | Data | |----------------|---------|------| | SST25WF020A ID | XXXXXXH | 34H | FIGURE 5-13: READ-ID SEQUENCE #### 5.13 JEDEC Read-ID The JEDEC Read-ID instruction identifies the device ID information of SST25WF020A. The device information can be read by executing the 8-bit command, 9FH. Following the JEDEC Read-ID instruction, a 32bit device ID information is output from the device. The Device ID information is assigned by the manufacturer and contains the Device ID 1 in the first byte, the type of mem- ory in the second byte, the memory capacity of the device in the third byte, and a reserved code in the fourth byte. The 4-Byte code outputs repeatedly with continuous clock input until a low-to-high transition on CE#. See Figure 5-14 for the instruction sequence. The JEDEC Read ID instruction is terminated by a low to high transition on CE# at any time during data output. FIGURE 5-14: JEDEC READ-ID SEQUENCE TABLE 5-3: JEDEC READ-ID DATA-OUT | | Device ID | | | | | |-------------|--|-----|-----|-----|--| | Product | Device ID 1 (Byte 1) Memory Type (Byte 2) Memory Capacity (Byte 3) Reser | | | | | | SST25WF020A | 62H | 16H | 12H | 00H | | #### 6.0 ELECTRICAL SPECIFICATIONS **Absolute Maximum Stress Ratings** (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.) | Temperature Under Bias | 55°C to +125°C | |--|-------------------------------| | Storage Temperature | 55°C to +150°C | | D. C. Voltage on Any Pin to Ground Potential | 0.5V to V _{DD} +0.5V | | Transient Voltage (<20 ns) on Any Pin to Ground Potential | 2.0V to V _{DD} +2.0V | | Package Power Dissipation Capability (T _A = 25°C) | | | Surface Mount Solder Reflow Temperature | | | Output Short Circuit Current ¹ | 50 mA | ^{1.} Output shorted for no more than one second. No more than one output shorted at a time. TABLE 6-1: OPERATING RANGE | Range | Ambient Temp | V_{DD} | |------------|----------------|-------------------| | Industrial | -40°C to +85°C | 1.65-1.95V | #### TABLE 6-2: AC CONDITIONS OF TEST | Input Rise/Fall Time | Output Load | |----------------------|------------------------| | 5ns | C _L = 30 pF | # 6.1 Power-Up Specifications All functionalities and DC specifications are specified for a V_{DD} ramp rate of greater than 1V per 100 ms (0V to 1.8V in less than 180 ms). See Table 6-3 and Figure 6-2 for more information. TABLE 6-3: RECOMMENDED SYSTEM POWER-UP TIMINGS | Symbol | Parameter | Minimum | Units | |------------------------------------|--|---------|-------| | T _{PU-READ} 1 | V _{DD} Min to Read Operation | 100 | μs | | T _{PU-WRITE} ¹ | V _{DD} Min to Write Operation | 100 | μs | 1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter. FIGURE 6-1: POWER-UP TIMING DIAGRAM #### 6.2 Hardware Data Protection SST25WF020A provides a power-up reset function. To ensure that the power reset circuit will operate correctly, the device must meet the conditions shown in Figure 6-2 and Table 6-4. Microchip does not guarantee the data in the event of an instantaneous power failure that occurs during a Write operation. FIGURE 6-2: POWER-DOWN TIMING DIAGRAM TABLE 6-4: RECOMMENDED SYSTEM POWER-DOWN TIMINGS | Symbol | Parameter | Min | Max | Units | |-----------------|--------------------|-----|-----|-------| | T _{PD} | Power-down time | 10 | | ms | | V_{BOT} | Power-down voltage | | 0.2 | V | #### 6.3 Software Data Protection SST25WF020A prevents unintentional operations by not recognizing commands under the following conditions: - After inputting a Write command, if the rising CE# edge timing is not in a bus cycle (8 CLK units of SCK) - When the Page-Program data is not in 1-byte increments - If the Write Status Register instruction is input for two bus cycles or more. # 6.4 Decoupling Capacitor A 0.1µF
ceramic capacitor must be provided to each device and connected between V_{DD} and V_{SS} to ensure that the device will operate correctly. # 6.5 DC Characteristics TABLE 6-5: DC OPERATING CHARACTERISTICS | | | Limits | | | | | |-------------------|---------------------------|----------------------|------------------|----------------------|-------|---| | Symbol | Parameter | Min | Typ ¹ | Max | Units | Test Conditions | | I _{DDR} | Read Current | | | 6 | mA | CE#=0.1 V _{DD} /0.9 V _{DD} @25 MHz,
SO=open | | I _{DDR2} | Read Current | | | 8 | mA | CE#=0.1 V _{DD} /0.9V _{DD} @40 MHz,
SO=open | | I _{DDW} | Program and Erase Current | | | 15 | mA | CE#=V _{DD} | | I _{SB} | Standby Current | | | 50 | μΑ | CE#=V _{DD} , V _{IN} =V _{DD} or V _{SS} | | I _{DPD} | Deep Power-Down | | | 10 | μΑ | CE#=V _{DD} , V _{IN} =V _{DD} or V _{SS} | | ILI | Input Leakage Current | | | 2 | μA | V_{IN} =GND to V_{DD} , V_{DD} = V_{DD} Max | | I _{LO} | Output Leakage Current | | | 2 | μΑ | V_{OUT} =GND to V_{DD} , V_{DD} = V_{DD} Max | | V _{IL} | Input Low Voltage | -0.3 | | 0.3 | V | V _{DD} =V _{DD} Min | | V _{IH} | Input High Voltage | 0.7 V _{DD} | | V _{DD} +0.3 | V | V _{DD} =V _{DD} Max | | V _{OL} | Output Low Voltage | | | 0.2 | V | I _{OL} =100 μA, V _{DD} =V _{DD} Min | | V _{OH} | Output High Voltage | V _{DD} -0.2 | | | V | I _{OH} =-100 μA, V _{DD} =V _{DD} Min | ^{1.} Value characterized, not fully tested in production. **TABLE 6-6:** CAPACITANCE (T_A = 25°C, F=1 MHZ, OTHER PINS OPEN) | Parameter | Description | Test Condition | Maximum | |-------------------------------|------------------------|-----------------------|---------| | C _{OUT} ¹ | Output Pin Capacitance | V _{OUT} = 0V | 12 pF | | C _{IN} ¹ | Input Capacitance | $V_{IN} = 0V$ | 6 pF | ^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter. TABLE 6-7: RELIABILITY CHARACTERISTICS | Symbol | Parameter | Minimum Specification | Units | Test Method | |-------------------------------|-----------------------------|-----------------------|----------------------------|---------------------| | N 1 | Endurance | 100,000 | Cycles | JEDEC Standard A117 | | N _{END} ¹ | Status Register Write Cycle | 100,000 | Cycles JEDEC Standard A117 | | | T _{DR} ¹ | Data Retention | 20 | Years | JEDEC Standard A103 | | I _{LTH} ¹ | Latch Up | 100 + I _{DD} | mA | JEDEC Standard 78 | ^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter. #### 6.6 **AC Characteristics** **TABLE 6-8: AC OPERATING CHARACTERISTICS** | 0 | | Lir | mits - 25 M | Hz | Limits - 40 MHz | | | | |-------------------------------|--|-----|------------------------------------|--------------------------|-----------------|------------------------------------|--------------------------|-------| | Symbol | Parameter | Min | Тур | Max | Min | Тур | Max | Units | | F _{CLK} ¹ | Serial Clock Frequency | | | 25 | | | 40 | MHz | | T _{SCKH} | Serial Clock High Time | 14 | | | 11.5 | | | ns | | T _{SCKL} | Serial Clock Low Time | 14 | | | 11.5 | | | ns | | T _{SCKR} | Serial Clock Rise Time | | | 5 | | | 5 | ns | | T _{SCKF} | Serial Clock Fall Time | | | 5 | | | 5 | ns | | T _{CES} ² | CE# Active Setup Time | 10 | | | 10 | | | ns | | T _{CEH} ² | CE# Active Hold Time | 10 | | | 10 | | | ns | | T _{CHS} ² | CE# Not Active Setup Time | 10 | | | 10 | | | ns | | T _{CHH} ² | CE# Not Active Hold Time | 10 | | | 10 | | | ns | | T _{CPH} | CE# High Time | 25 | | | 25 | | | ns | | T _{CHZ} | CE# High to High-Z Output | | | 15 | | | 15 | ns | | T _{CLZ} | SCK Low to Low-Z Output | 0 | | | 0 | | | ns | | T _{DS} | Data In Setup Time | 5 | | | 5 | | | ns | | T _{DH} | Data In Hold Time | 5 | | | 5 | | | ns | | T _{HLS} | HOLD# Low Setup Time | 5 | | | 5 | | | ns | | T _{HHS} | HOLD# High Setup Time | 5 | | | 5 | | | ns | | T _{HLH} | HOLD# Low Hold Time | 5 | | | 5 | | | ns | | T _{HHH} | HOLD# High Hold Time | 5 | | | 5 | | | ns | | T _{HZ} | HOLD# Low to High-Z Output | | | 9 | | | 9 | ns | | T_{LZ} | HOLD# High to Low-Z Output | | | 12 | | | 12 | ns | | T _{OH} | Output Hold from SCK Change | 1 | | | 1 | | | ns | | T_V | Output Valid from SCK | | 8 | 11 | | 8 | 11 | ns | | T _{WPS} | WP# Setup Time | 20 | | | 20 | | | ns | | T _{WPH} | WP# Hold Time | 20 | | | 20 | | | ns | | T _{WRSR} | Status Register Write Time | | | 10 | | | 10 | ms | | T_{DPD} | CE# High to Deep Power-Down | | | 5 | | | 5 | μs | | T _{SBR} | Deep Power-Down (CE# High) to Standby Mode | | | 5 | | | 5 | μs | | T _{SE} | Sector-Erase | | 40 | 150 | | 40 | 150 | ms | | T _{BE} | Block-Erase | | 80 | 250 | | 80 | 250 | ms | | T _{CE} | Chip-Erase | | 0.3 | 3 | | 0.3 | 3 | s | | | Page-Program (256 Byte) | | 3.0 | 3.5 | | 3.0 | 3.5 | ms | | T _{PP} | n Byte | | n byte
0.15 +
n*2.85/
256 | 0.20 +
n*3.30/
256 | | n byte
0.15 +
n*2.85/
256 | 0.20 +
n*3.30/
256 | ms | ^{1.} Maximum clock frequency for Read instruction, 03H, is 25 MHz 2. Relative to SCK **Preliminary** © 2013 Microchip Technology Inc. DS21392A-page 21 FIGURE 6-3: SERIAL INPUT TIMING DIAGRAM FIGURE 6-4: SERIAL OUTPUT TIMING DIAGRAM FIGURE 6-5: HOLD TIMING DIAGRAM FIGURE 6-6: STATUS REGISTER WRITE TIMING Note: V_{HT} - V_{HIGH} Test V_{LT} - V_{LOW} Test V_{IHT} - V_{INPUT} HIGH Test V_{ILT} - V_{INPUT} LOW Test FIGURE 6-7: AC INPUT/OUTPUT REFERENCE WAVEFORMS FIGURE 6-8: PAGE-PROGRAM FLOW CHART FIGURE 6-9: SECTOR-ERASE OR 64-KBYTE BLOCK-ERASE FLOW CHART FIGURE 6-10: CHIP-ERASE FLOW CHART FIGURE 6-11: WRITE-STATUS-REGISTER (WRSR) FLOW CHART # 7.0 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. | PART NO
Device | X

 Tape/Reel
 Indicator | XXX

Operating
Frequency | XX

Endurance/
Temperature | XX

Package | Valid Combinations: SST25WF020AT-40-5I-NP SST25WF020A-40-5I-SN SST25WF020AT-40-5I-SN | |------------------------|---|------------------------------------|--------------------------------------|--------------------|---| | Device: | SST25WF020A | = 2 Mbit,1.6 | 65-1.95V, Serial Fla | ash Memory | | | Tape and
Reel Flag: | Т | = Tape and | l Reel | | | | Operating Frequency: | 40 | = 40 MHz | | | | | Endurance: | 5 | = 100,000 | cycles | | | | Temperature: | 1 | = -40°C to | +85°C | | | | Package: | NP
SN | | 2mm x 3mm Body
50 mil Body), 8-le | | | # 8.0 PACKAGING DIAGRAMS # 8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Microchip Technology Drawing No. C04-057C Sheet 1 of 2 Note: # 8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC] For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | MILLIMETERS | | | | | |--------------------------|-------------|-------------|----------|------|--| | Dimension | MIN | NOM | MAX | | | | Number of Pins | N | | 8 | | | | Pitch | е | | 1.27 BSC | | | | Overall Height | Α | - | ı | 1.75 | | | Molded Package Thickness | A2 | 1.25 | ı | - | | | Standoff § | A1 | 0.10 | ı | 0.25 | | | Overall Width | Е | 6.00 BSC | | | | | Molded Package Width | E1 | 3.90 BSC | | | | | Overall Length | D | 4.90 BSC | | | | | Chamfer (Optional) | h | 0.25 - 0.50 | | | | | Foot Length | L | 0.40 | ı | 1.27 | | | Footprint | L1 | 1.04 REF | | | | | Foot Angle | φ | 0° | ı | 8° | | | Lead Thickness | С | 0.17 | ı | 0.25 | | | Lead Width | b | 0.31 | = | 0.51 | | | Mold Draft Angle Top | α | 5° | ı | 15° | | | Mold Draft Angle Bottom | β | 5° | - | 15° | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. § Significant Characteristic - 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side. - 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing No. C04-057C Sheet 2 of 2 # 8-Lead Plastic Ultra Thin Small Outline No Lead Package (NP) - 2x3 mm Body [USON] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Microchip Technology Drawing C04-203A Sheet 1 of 2 # 8-Lead Plastic Ultra Thin Small Outline No Lead Package (NP) - 2x3 mm Body [USON] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | MILLIMETERS | | | | | |-------------------------------|------------------|----------|----------|------|--| | Dimension | Dimension Limits | | | MAX | | | Number of Terminals | N | | 8 | | | | Pitch | е | 0.50 BSC | | | | | Overall Height | Α | 0.50 | 0.55 | 0.60 | | | Standoff | A1 | 0.00 | 0.02 | 0.05 | | | Overall Width | D | 2.00 BSC | | | | | Exposed Pad Width | D2 | 1.55 | 1.60 | 1.65 | | | Overall Length | Е | | 3.00 BSC | | | | Exposed Pad Length | E2 | 0.15 | 0.20 | 0.25 | | | Terminal Width | b | 0.20 | 0.25 | 0.30 | | | Package Edge to Terminal Edge | L | 0.40 | 0.45 | 0.50 | | | Package Edge to Terminal Edge | L1 | _ | 0.10 | _ | | | Terminal Length | L3 | 0.30 | 0.35 | 0.40 | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated - 3. Dimensioning and
tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing $\,$ C04-203A Sheet 2 of 2 $\,$ # TABLE 8-1: REVISION HISTORY | Revision | • | Description | Date | |----------|---|-------------------------------|----------| | Α | • | Initial release of data sheet | Feb 2013 | # THE MICROCHIP WEB SITE Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: - Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software - General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing - Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives # CUSTOMER CHANGE NOTIFICATION SERVICE Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions. #### **CUSTOMER SUPPORT** Users of Microchip products can receive assistance through several channels: - · Distributor or Representative - · Local Sales Office - Field Application Engineer (FAE) - · Technical Support - · Development Systems Information Line Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://microchip.com/support #### Note the following details of the code protection feature on Microchip devices: - · Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. # QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949= #### **Trademarks** The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-62077-026-9 Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. # Worldwide Sales and Service #### **AMERICAS** **Corporate Office** 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 **Boston** Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 **Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 **Toronto** Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 #### ASIA/PACIFIC Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 #### ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 #### **EUROPE** Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax:
31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820