

HIGH-SPEED 36K (4K x 9-BIT) DUAL-PORT RAM **IDT7014S**

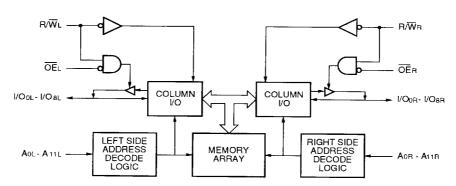
FEATURES:

- True Dual-Ported memory cells which allow simultaneous reads of the same memory location
- · High-speed access
 - Military: 20/25/35ns (max.)
 - Commercial: 12/15/20/25ns (max.)
- · Low-power operation
 - IDT7014S
 - Active: 900mW (typ.)
- · IDT'S BICMOS process
- · Fully asynchronous operation from either port
- TTL-compatible; single 5V (±10%) power supply
- Available in 52-pin PLCC, 68-pin LCC, and a 64-pin TQFP
- · Military product compliant to MIL-STD-883, Class B

DESCRIPTION:

The IDT7014 is an extremely high-speed 4K x 9 Dual-Port Static RAM designed to be used in systems where on-chip hardware port arbitration is not needed. This part lends itself

to high-speed applications which do not rely on BUSY signals to manage simultaneous access.


The IDT7014 provides two independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. See functional description.

The IDT7014 utilitizes a 9-bit wide data path to allow for parity at the user's option. This feature is especially useful in data communication applications where it is necessary to use a parity bit for transmission/reception error checking.

Fabricated using IDT's BiCMOS high-performance technology, these Dual-Ports typically operate on only 900mW of power at maximum access times as fast as 12ns.

The IDT7014 is packaged in a 52-pin PLCC and 68-pin fine pitch LCC, and a 64-pin thin plastic quad flatpack, (TQFP). Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

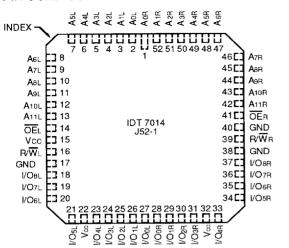
FUNCTIONAL BLOCK DIAGRAM

2528 drw 01

The IDT logo is a registered trademark of Integrated Device Technology. Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

NOVEMBER 1993


©1993 Integrated Device Technology Inc

6.8

DSC-1076/4

1

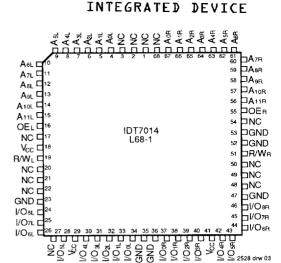
PIN CONFIGURATION

PLCC Top View 2528 drw 02

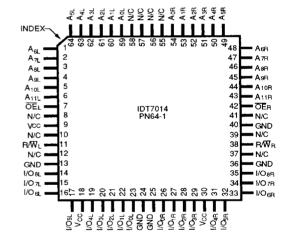
NOTES:

- All Vcc pins must be connected to power supply
- All ground pins must be connected to ground supply

ABSOLUTE MAXIMUM RATINGS (1)


Symbol	Rating	Commercial	Military	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0 5 to +7 0	-0 5 to +7 0	V
VTERM ⁽³⁾	Terminal Voltage	_0 5 to Vcc	–0 5 to Vcc	٧
TA	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
TSTG	Storage Temperature	-55 to +125	-65 to +150	°C
lout	DC Output Current	50	50	mΑ

- Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect reliability
- Inputs and Vcc terminals only
- I/O terminals only


RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Ambient Temperature	GND	vcc
Military	-55°C to +125°C	٥V	5 0V ± 10%
Commercial	0°C to +70°C	٥V	5 0V ± 10%

1 Vil. = -3 0V for pulse width less than 20ns

LCC Top View

TOFP Top View 2528 drw 04

RECOMMENDED DC OPERATING CONDTIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	50	5 5	٧
GND	Supply Voltage	0	0	0	٧
VIH	Input High Voltage	22		60	٧
VIL	Input Low Voltage	-0 5 ⁽¹⁾	_	0.8	٧
NOTE:					2528 tbl 03

DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE (Vcc = 5.0V ± 10%)

			IDI	7014S		
Symbol	Parameter	Test Condition	Min.	Max.	Unit	
lu	Input Leakage Current	VCC = 5.5V, $VIN = 0V$ to VCC		10	μА	
LO	Output Leakage Current	Vout = 0V to Vcc	T -	10	μA	
V OL	Output Low Voltage	IOL = 4mA		0.4	V	
Vон	Output High Voltage	IOH = -4mA	2.4	<u> </u>	V	
		· · · · · · · · · · · · · · · · · · ·		L	2528 tbl	

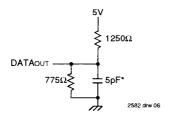
DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE ($Vcc = 5V \pm 10\%$)

		Test		IDT7014S12 ⁽¹⁾		7014S12 ⁽¹⁾ IDT701		1) IDT7014S20		20 IDT7014S25		IDT7014S35 ⁽²⁾		
Symbol	Parameter	Condition	Version	Тур.	Max.	Тур.	Max.	Тур.	Мах.	Тур.	Max.	Тур.	Max.	Unit
Icc	Dynamic Operating	Outputs Open f = fMAX ⁽³⁾	Mil.	_	_	_	260	_	260	_	255	-	250	mA
	Current (Both Ports Active)		Com'l.	_	250	-	250	_	245	_	240	_	_	

NOTES:

- 1. 0°C to +70°C temperature range only
- 2 -55°C to +125°C temperature range only
- 3. At f = fMAX, address inputs are cycling at the maximum read cycle of 1/tRC using the "AC Test Conditions" input levels of GND to 3V

AC TEST CONDITIONS


AO IEOI OOMDIIIOMO	
Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	See Figures 1, 2, and 3

2528 tbl 06

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Condition	Max.	Unit
Cin	Input Capacitance	VIN = 0V	11	рF
Соит	Output Capacitance	VOUT = 0V	11	pF

2528 tbl 07

* Including scope and jig.

Figure 2. Output Load (for tHZ, tWZ, and tOW)

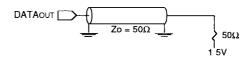


Figure 1. Output load.

2528 drw 05

2528 tbl 05

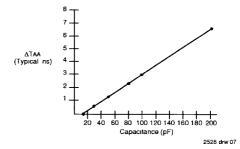
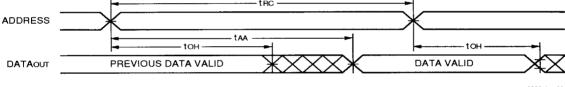


Figure 3. Lumped Capacitive Load, Typical Derating.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

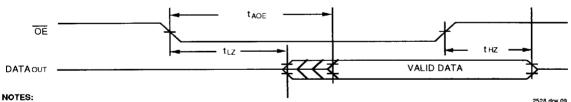
AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE


INTEGRATED DEVICE

			7014Sx12 ⁽³⁾		7014Sx15 ⁽³⁾		7014Sx20		7014Sx25		7014Sx35 ⁽⁴⁾	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE												
tRC	Read Cycle Time	12	_	15	_	20	_	25	_	35	_	ns
taa	Address Access Time	_	12	_	15	_	20	_	25	_	35	ns
taoe	Output Enable Access Time	I —	8	_	8	_	10	_	12	_	20	ns
tон	Output Hold from Address Change	3	_	3	_	3	_	3		3	_	ns
tLZ Output Low-Z Time ^(1, 2)		0		0	_	0		0		3	_	ns
tHz Output High-Z Time ^(1, 2)		I —	7	_	7	_	9	_	11	_	15	ns

NOTES:

- Transition is measured ±500mV from low or high-impedance voltage with load (Figure 2)
- This parameter is guaranteed but not tested
- 0°C to +70°C temperature range only
- -55°C to +125°C temperature range only


TIMING WAVEFORM OF READ CYCLE NO. 1, EITHER SIDE(1,2)

2528 drw 08

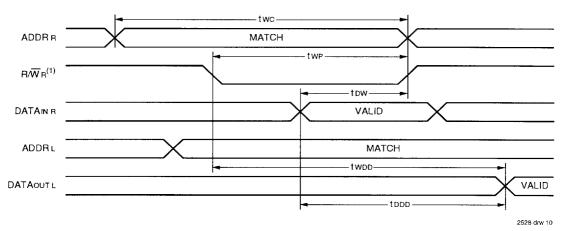
2528 tbl 08

TIMING WAVEFORM OF READ CYCLE NO. 2, EITHER SIDE(1, 3)

- 1. R/W is HIGH for Read Cycles
- OE = VIL
- Addresses valid prior to OE transition LOW

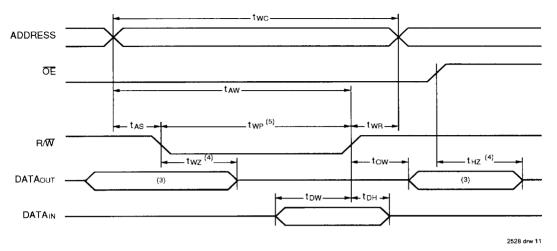
AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE

2528 lbl 09


4825771 0014074 5T6

		7014	S12 ⁽⁵⁾	7014	IS15 ⁽⁵⁾ 70149		7014S20 7014S25		4S25	7014S35 ⁽⁶⁾]
Symbol	Parameter		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE	CYCLE	•										
twc	Write Cycle Time	12		15	_	20	_	25	_	35	I —	ns
taw	Address Valid to End-of-Write	10		14	_	15	_	20	_	30	_	ns
tas	Address Set-up Time	0		0	_	0		0	[0	_	ns
twp	Write Pulse Width		_	12		15	1	20	_	30		ns
twn	Write Recovery Time		_	1	_	2		2	_	2		ns
tow	Data Valid to End-of-Write	8		10	_	12	_	15		25	_	ns
tHZ	Output High-Z Time ^(1, 2)		7		7	_	9		11		15	ns
ton	Data Hold Time ⁽³⁾	0	_	0		0	_	0	_	0	_	ns
twz	Write Enabled to Output in High-Z ^(1, 2)		7	_	7		9		11	_	15	ns
tow	Output Active from End-of-Write ^(1 2, 3)			0		0	_	0	_	0	_	ns
twdd	Write Pulse to Data Delay ⁽⁴⁾		25	_	30	_	40	_	45		55	ns
todo	Write Data Valid to Read Data Delay(4)		22	_	25	_	30	_	35	_	45	ns

NOTES:


- 1 Transition is measured ±500mV from low or high-impedance voltage with load (Figure 2)
- 2 This parameter is guaranteed but not tested
- 3 The specification for the must be met by the device supplying write data to the RAM under all operating conditions. Although the and tow values will vary over voltage and temperature, the actual the will always be smaller than the actual tow.
- 4 Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Read with Port-to-Port Delay"
- 5 0°C to +70°C temperature range only
- 6 -55°C to +125°C temperature range only

TIMING WAVEFORM OF READ WITH PORT-TO-PORT DELAY

6.8

5

NOTES:

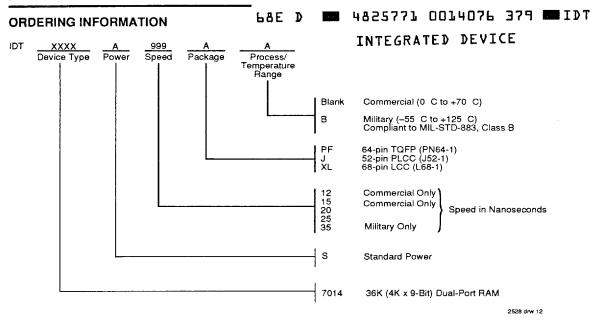
DUAL-PORT RAM

- Either R/W or CE must be HIGH during all address transitions
- two is measured from R/W going HIGH to the end of write cycle
- During this period, the I/O pins are in the output state, and input signals must not be applied
- Transition is measured ±500mV from steady state with a 5pF load (including scope and jig) This parameter is sampled and not 100% tested
- If \overline{OE} is LOW during a R/W controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off data to be placed on the bus for the required tow. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified two

FUNCTIONAL DESCRIPTION

The IDT7014 provides two ports with separate control. address, and I/O pins that permit independent access for reads or writes to any location in memory. It lacks the chip enable feature of CMOS Dual Ports, thus it operates in active mode as soon as power is applied. Each port has its own Output Enable control (OE). In the read mode, the port's OE turns on the output drivers when set LOW. The user application should avoid simultaneous write operations to the same memory location. There is no on-chip arbitration circuitry to resolve write priority and partial data from both ports may be written. READ/WRITE conditions are illustrated in table 1.

TABLE I - READ/WRITE CONTROL


Left	or Rig	ht Port ⁽¹⁾	•
R/₩	Œ	Do-8	Function
٦	Х	DATAIN	Data on port written into memory
Н	L	DATAOUT	Data in memory output on port
Х	Н	Z	High-impedance outputs

NOTE:

AOL - A11L ≠ AOR - A11R

2528 tbl 10

H = HIGH, L = LOW, X = Don't Care, Z = High Impedance

