3.3 VOLT CMOS SyncFIFO ${ }^{\text {TM }}$
$512 \times 36$
IDT72V3631
$1,024 \times 36$
IDT72V3641
2,048 x 36
IDT72V3651

## FEATURES

- Storage capacity:

IDT72V3631-512 x 36
IDT72V3641-1,024 x 36
IDT72V3651 - 2,048 x 36

- Supports clock frequencies up to 67 MHz
- Fast access times of 10 ns
- Free-running CLKA and CLKB can be asynchronous or coincident (permits simultaneous reading and writing of data on a single clock edge)
- Clocked FIFO buffering data from Port A to Port B
- Synchronous read retransmit capability
- Mailbox register in each direction
- Programmable Almost-Full and Almost-Empty flags
- Microprocessor interface control logic
- Input Ready (IR) and Almost-Full ( $\overline{\mathrm{AF}}$ ) flags synchronized by CLKA
- Output Ready (OR) and Almost-Empty ( $\overline{\mathrm{AE}})$ flags synchronized by CLKB
- Available in 132-pin plastic quad flat package (PQFP) or spacesaving 120-pin thin quad flat package (TQFP)
- Pin and functionally compatible versions of the 5 V operating IDT723631/723641/723651
- Easily expandable in width and depth
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available


## DESCRIPTION

The IDT72V3631/72V3641/72V3651 are pin and functionally compatible versons of the IDT723631/723641/723651, designed to run offa 3.3 V supply for exceptionally low-power consumption. These devices are monolithic highspeed, low-power, CMOS clocked FIFO memory. Itsupportsclockfrequencies up to 67 MHz and has read accesstimes as fastas 10 ns . The 512/1,024/2,048 x 36 dual-portSRAM FIFO buffers datafrom portA to PortB. TheFIFO memory has retransmit capability, which allows previously read data to be accessed again. The FIFO operates in First Word Fall Through mode and has flags to indicate empty and full conditions and conditions and two programmable flags (Almost-Full and Almost-Empty) to indicate when a selected number of words is stored in memory. Communication between each port may take place with

FUNCTIONAL BLOCK DIAGRAM


## DESCRIPTION (CONTINUED)

two 36-bit mailbox registers. Each mailbox register has a flag to signal when new mail has beenstored. Two ormore devices may beused in paralleltocreate wider data paths. Expansion is also possible in word depth.

These devices are a clocked FIFO, which means each port employs a synchronous interface. All data transfers through a portare gated to the LOW-to-HIGH transition of a continuous (free-running) port clock by enable signals. The continuous clocks for each port are independent of one another and can be asynchronous or coincident. The enables for each port are arranged to provide a simple interface between microprocessors and/or buses with synchronous control.

The InputReady (IR) flag and Almost-Full ( $\overline{\mathrm{AF}})$ flag ofthe FIFO are two-stage synchronized to CLKA. The Output Ready (OR) flag and Almost-Empty ( $\overline{\mathrm{AE}})$ flag of the FIFO are two-stage synchronized to CLKB. Offset values for the Almost-Full and Almost-Empty flags of the FIFO can be programmed from port A or through a serial input.
The IDT72V3631/72V3641/72V3651 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available by special order. These devices arefabricated using IDT'shigh speed, submicron CMOStechnology.

## PIN CONFIGURATION


$*$
$\quad$ Electrical pin 1 in center of beveled edge. Pin 1 identifier in corner.
NOTES:

1. NC - No internal connection.
2. Uses Yamaichi socket IC51-1324-828.

## PIN CONFIGURATION (CONTINUED)



4658 drw 03
NOTE:

1. NC - No internal connection.

## PIN DESCRIPTION

| Symbol | Name | I/0 | Description |
| :---: | :---: | :---: | :---: |
| A0-A35 | Port-AData | 1/0 | 36-bitbidirectional data portforside A. |
| $\overline{\text { AE }}$ | $\begin{aligned} & \text { Almost-Empty } \\ & \text { Flag } \end{aligned}$ | 0 | Programmable flag synchronized to CLKB. It is LOW when the number of words in the FIFO is less than or equal to the value in the Almost-Empty register (X). |
| $\overline{\mathrm{AF}}$ | $\begin{array}{\|l\|} \hline \text { Almost-Full } \\ \text { Flag } \\ \hline \end{array}$ | 0 | Programmable flag synchronized to CLKA. Itis LOW when the number of empty locations in the FIFO is less than or equal to the value in the Almost-Full Offsetregister ( Y ). |
| B0-B35 | Port-BData | 1/0 | 36-bitbidirectional data portforside B. |
| CLKA | Port-A Clock | 1 | CLKA is a continuous clock that synchronizes all data transfers through port-A and may be asynchronous or coincident to CLKB. IR and $\overline{\mathrm{AF}}$ are synchronous to the LOW-to-HIGH transition of CLKA. |
| CLKB | Port-BClock | 1 | CLKB is a continuous clock that synchronizes all data transfers through port-B and may be asynchronous or coincident to CLKA. OR and $\overline{A E}$ are synchronous to the LOW-to-HIGH transition of CLKB. |
| $\overline{\text { CSA }}$ | Port-AChip Select | 1 | $\overline{\text { CSA }}$ must be LOW to enable a LOW-to-HIGH transition of CLKA to read or write data on port-A. The A0-A35 outputs are in the high-impedance state when CSA is HIGH. |
| $\overline{\text { CSB }}$ | Port-BChip Select | I | CSB must be LOW to enable a LOW-to-HIGH transition of CLKB to read or write data on port-B. The BO-B35 outputs are in the high-impedance state when CSB is HIGH. |
| ENA | Port-AEnable | 1 | ENA must be HIGH to enable a LOW-to-HIGH transition of CLKA to read or write data on port-A. |
| ENB | Port-BEnable | 1 | ENB must be HIGH to enable a LOW-to-HIGH transition of CLKB to read or write data on port-B. |
| FSS1/ <br> SEN, <br> FSO/SD | Flag-Offset Select 1/ Serial Enable <br> Flag Offset0/ Serial Data | I | FS1/SEN and FSO/SD are dual-purpose inputs used for flag Offset register programming. During a device reset, FS1/SEN and FSO/SD selects the flag offset programming method. Three Offsetregister programming methods are available: automatically load one of two preset values, parallel load from port A, and serial load. <br> When serial load is selected for flag Offset register programming, FS1//SEN is used as an enable synchronous to the LOW-to-HIGH transition of CLKA. When FS1/SEN is LOW, a rising edge on CLKA load the bit present on FSO/ SD into the X and Y registers. The number of bit writes required to program the Offset registers is 18/20/22 for the IDT72V3631/72V3641/72V3651 respectively. The firstbitwrite stores the Y -register MSB and the last bitwrite store the X -registerLSB. |
| IR | Input Ready Flag | 0 | IR is synchronized to the LOW-to-HIGH transition of CLKA. When IR is LOW, the FIFO is full and writes to its array are disabled. When the FIFO is in retransmit mode, IR indicates when the memory has been filled to the point of the retransmit data and prevents further writes. IR is set LOW during reset and is set HIGH after reset. |
| MBA | Port-AMailbox Select | 1 | A HIGH level chooses a mailbox register for a port-A read or write operation. |
| MBB | Port-BMailbox Select | 1 | A HIGH level chooses a mailbox register for a port-B read or write operation. When the B0-B35 outputs are active, a HIGH level on MBB selects data from the maill register for output and a LOW level selects FIFO data for output. |
| $\overline{\text { MBF1 }}$ | Mail1 Register Flag | 0 | $\overline{\mathrm{MBF}} 1$ is set LOW by the LOW-to-HIGH transition of CLKA that writes data to the mail register. $\overline{\mathrm{MBF}} 1$ is set HIGH by a LOW-to-HIGH transition of CLKB when a port-B read is selected and MBB is HIGH. MBF1 is set HIGH by a reset. |
| $\overline{\text { MBF2 }}$ | Mail2 Register Flag | 0 | $\overline{\text { MBF2 }}$ is set LOW by the LOW-to-HIGH transition of CLKB that writes data to the mail2 register. $\overline{\text { MBF2 }}$ is set HIGH by a LOW-to-HIGH transition of CLKA when a port-A read is selected and MBA is HIGH. MBF2 is set HIGH by a reset. |
| OR | Output Ready Flag | 0 | OR is synchronized to the LOW-to-HIGH transition of CLKB. When OR is LOW, the FIFO is empty and reads are disabled. Ready data is present in the output register of the FIFO when OR is HIGH. OR is forced LOW during the reset and goes HIGH on the third LOW-to-HIGH transition of CLKB after a word is loaded to empty memory. |
| RFM | Read From Mark | 1 | When the FIFO is in retransmit mode, a HIGH on RFM enables a LOW-to-HIGH transition of CLKB to reset the read pointerto the beginning retransmitlocation and output the firstselected retransmitdata. |
| $\overline{\mathrm{RST}}$ | Reset | 1 | To resetthe device, four LOW-to-HIGH Htransitions of CLKA andfour LOW-to-HIGH transitions of CLKB mustoccur while $\overline{\text { RST }}$ is LOW. The LOW-to-HIGH transition of $\overline{\text { SST }}$ latches the status of FSO and $\mathrm{FS1}$ for $\overline{\mathrm{AF}}$ and $\overline{\mathrm{AE}}$ offset selection. |
| RTM | Retransmit Mode | 1 | When RTM is HIGH and valid data is present in the FIFO output register (OR is HIGH), a LOW-to-HIGH transition of CLKB selects the data for the beginning of a retransmit and puts the FIFO in retransmit mode. The selected word remains the initial retransmit point until a LOW-to-HIGH transition of CLKB occurs while RTM is LOW, taking the FIFO out of retransmitmode. |
| W/ $\bar{R} A$ | Port-AWrite/ ReadSelect | 1 | A HIGH selects a write operation and a LOW selects a read operation on port A for a LOW-to-HIGH transition of CLKA. The AO-A 35 outputs are in the high-impedance state when W $\bar{R} A$ is $H$ IGH. |
| $\bar{W} /$ RB | Port-BWrite/ ReadSelect | 1 | A LOW selects a write operation and a HIGH selects a read operation on port B for a LOW-to-HIGH transition of CLKB. The BO-B35 outputs are in the high-impedance state when $\bar{W} / R B$ is LOW. |

## ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (Unless otherwise noted) ${ }^{(2)}$

| Symbol | Rating | Commercial | Unit |
| :---: | :---: | :---: | :---: |
| Vcc | Supply Voltage Range | -0.5 to +4.6 | V |
| $\mathrm{V} 1^{(2)}$ | Input Voltage Range | -0.5 to Vcc $+0.5{ }^{(3)}$ | V |
| Vo ${ }^{(2)}$ | Output Voltage Range | -0.5 to Vcc +0.5 | V |
| IIK | Input Clamp Current, (VI < 0 or VI > VCC) | $\pm 20$ | mA |
| IOK | Output Clamp Current, (Vo = < 0 or Vo > Vcc) | $\pm 50$ | mA |
| Iout | Continuous Output Current, (Vo = 0 to Vcc) | $\pm 50$ | mA |
| ICC | Continuous Current Through Vcc or GND | $\pm 400$ | mA |
| TSTG | Storage Temperature Range | -65 to 150 | ${ }^{\circ} \mathrm{C}$ |

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.
3. Control Inputs: maximum $\mathrm{VI}=5.0 \mathrm{~V}$.

## RECOMMENDED OPERATING CONDITIONS

| Symbol | Parameter | Min. | Typ. | Max. | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
| VCC | Supply Voltage | 3.0 | 3.3 | 3.6 | V |
| VIH | HIGH Level Input Voltage | 2 | - | Vcc +0.5 | V |
| VIL | LOW-Level InputVoltage | - | - | 0.8 | V |
| IOH | HIGH-Level OutputCurrent | - | - | -4 | mA |
| IOL | LOW-LevelOutputCurrent | - | - | 8 | mA |
| TA | OperatingFree-air <br> Temperature | 0 | - | 70 | ${ }^{\circ} \mathrm{C}$ |

## ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE (Unless otherwise noted)

| Symbol | Parameter | Test Conditions |  | IDT72V3631 <br> IDT72V3641 <br> IDT72V3651 <br> Commercial $\text { tCLK }=15,20 \mathrm{~ns}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. ${ }^{(1)}$ | Max. |  |
| VOH | Output Logic "1" Voltage | $\mathrm{VCC}=3.0 \mathrm{~V}$, | $\mathrm{IOH}=-4 \mathrm{~mA}$ | 2.4 | - | - | V |
| VOL | Output Logic "0" Voltage | $\mathrm{VcC}=3.0 \mathrm{~V}$, | $\mathrm{IOL}=8 \mathrm{~mA}$ | - | - | 0.5 | V |
| ILI | Input Leakage Current (Any Input) | $\mathrm{VcC}=3.6 \mathrm{~V}$, | $\mathrm{VI}=\mathrm{Vcc}$ or 0 | - | - | $\pm 5$ | $\mu \mathrm{A}$ |
| ILO | Output Leakage Current | $\mathrm{VcC}=3.6 \mathrm{~V}$, | $\mathrm{Vo}=\mathrm{Vcc}$ or 0 | - | - | $\pm 5$ | $\mu \mathrm{A}$ |
| ICC2 ${ }^{(2)}$ | Standby Current | $\mathrm{VcC}=3.6 \mathrm{~V}$, | $\mathrm{VI}=\mathrm{VCC}-0.2 \mathrm{~V}$ or 0 | - | - | 400 | $\mu \mathrm{A}$ |
| CIN | Input Capacitance | $\mathrm{VI}=0$, | $f=1 \mathrm{MHz}$ | - | 4 | - | pF |
| Cout | Output Capacitance | $\mathrm{Vo}=0$, | $\mathrm{f}=1 \mathrm{MHZ}$ | - | 8 | - | pF |

## NOTES:

1. All typical values are at $\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. For additional Icc information, see Figure 1, Typical Characteristics: Supply Current (Icc) vs. Clock Frequency (fs).

## DETERMINING ACTIVE CURRENT CONSUMPTION AND POWER DISSIPATION

The ICC(f) current for the graph in Figure 1 was taken while simultaneously reading and writing the FIFO on the IDT72V3641 with CLKA and CLKB set tofs. All data inputs and data outputs change state during each clock cycle to consume the highest supply current. Data outputs were disconnected to normalize the graph to a zero-capacitance load. Once the capacitance load per data-output channel and the number of IDT72V3631/72V3641/72V3651 inputs driven by TTL HIGH levels are known, the power dissipation can be calculated with the equation below.

## CALCULATING POWER DISSIPATION

With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of these FIFOs may be calculated by:

$$
\mathrm{PT}=\operatorname{Vcc} \times \operatorname{IcC}(f)+\Sigma\left(\operatorname{CL} \times \operatorname{VcC}^{2} \times f 0\right)
$$

N
where:
$\mathrm{N}=$ number of outputs=36
CL = outputcapacitanceload
fo = switching frequency of an output
When no reads or writes are occurring on these devices, the power dissipated by a single clock (CLKA or CLKB) input running at frequency fs is calculated by:
$\mathrm{PT}=\mathrm{Vcc} x$ fs $x 0.025 \mathrm{~mA} / \mathrm{MHz}$


Figure 1. Typical Characteristics: Supply Current (ICC) vs. Clock Frequency (fs)

## AC ELECTRICAL CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE

| Symbol | Parameter | IDT72V3631L15 IDT72V3641L15 IDT72V3651L15 |  | $\begin{aligned} & \text { IDT72V3631L20 } \\ & \text { IDT72V3641L20 } \\ & \text { IDT72V3651L20 } \\ & \hline \end{aligned}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. | Min. | Max. |  |
| fs | Clock Frequency, CLKA or CLKB | - | 66.7 | - | 50 | MHz |
| tCLK | Clock Cycle Time, CLKA or CLKB | 15 | - | 20 | - | ns |
| tCLKH | Pulse Duration, CLKA or CLKB HIGH | 6 | - | 8 | - | ns |
| tCLKL | Pulse Duration, CLKA or CLKB LOW | 6 | - | 8 | - | ns |
| tDS | Setup Time, A0-A35 before CLKA $\uparrow$ and B0-B35 beforeCLKB $\uparrow$ | 5 | - | 6 | - | ns |
| tENS1 | Setup Time, ENA to CLKA $\uparrow$; ENB to CLKB $\uparrow$ | 5 | - | 6 | - | ns |
| tens2 | Setup Time, $\overline{\mathrm{CSA}}, \mathrm{W} / \overline{\mathrm{R}} A$, and MBA to CLKA $\uparrow$; $\overline{\mathrm{CSB}}, \bar{W} / \mathrm{RB}$, and MBB to CLKB $\uparrow$ | 7 | - | 7.5 | - | ns |
| tRMS | Setup Time, RTM and RFM to CLKB $\uparrow$ | 6 | - | 6.5 | - | ns |
| tRSTS | Setup Time, $\overline{\text { RST }}$ LOW before CLKA $\uparrow$ or CLKB ${ }^{(1)}$ | 5 | - | 6 | - | ns |
| tFSS | Setup Time, FS0 and FS1 before $\overline{\text { RST }}$ HIGH | 9 | - | 10 | - | ns |
| tSDS ${ }^{(2)}$ | Setup Time, FS0/SD beforeCLKA $\uparrow$ | 5 | - | 6 | - | ns |
| tSENS ${ }^{(2)}$ | Setup Time, FS1/SEN before CLKA $\uparrow$ | 5 | - | 6 | - | ns |
| tDH | Hold Time, A0-A35 after CLKA $\uparrow$ and B0-B35 afterCLKB $\uparrow$ | 0.5 | - | 0.5 | - | ns |
| tENH1 | Hold Time, ENA afterCLKA $\uparrow$; ENB after CLKB $\uparrow$ | 0.5 | - | 0.5 | - | ns |
| tENH2 | Hold Time, $\overline{\mathrm{CSA}}, \mathrm{W} / \overline{\mathrm{R}} A$, and MBA after CLKA $\uparrow$; $\overline{\mathrm{CSB}}, \overline{\mathrm{W}} / \mathrm{RB}$, and MBB after CLKB $\uparrow$ | 0.5 | - | 0.5 | - | ns |
| tRMH | Hold Time, RTM and RFM after CLKB $\uparrow$ | 0.5 | - | 0.5 | - | ns |
| tRSTH | Hold Time, $\overline{\mathrm{RST}}$ LOW after CLKA $\uparrow$ or CLKB ${ }^{(1)}$ | 5 | - | 6 | - | ns |
| tFSH | Hold Time, FS0 and FS1 after $\overline{\text { RST }}$ HIGH | 0 | - | 0 | - | ns |
| tSPH ${ }^{(2)}$ | Hold Time, FS1/ $\overline{\text { SEN }}$ HIGH after $\overline{\text { RST }}$ HIGH | 0 | - | 0 | - | ns |
| tSDH ${ }^{(2)}$ | Hold Time, FSO/SD after CLKA $\uparrow$ | 0 | - | 0 | - | ns |
| tSENH ${ }^{(2)}$ | Hold Time, FS1/ $\overline{\text { SEN }}$ after CLKA $\uparrow$ | 0 | - | 0 | - | ns |
| tSKEW1 ${ }^{(3)}$ | Skew Time, between CLKA $\uparrow$ and CLKB $\uparrow$ for OR and IR | 9 | - | 11 | - | ns |
| tSKEW2 ${ }^{(3,4)}$ | Skew Time, between CLKA $\uparrow$ and CLKB $\uparrow$ for $\overline{\mathrm{AE}}$ and $\overline{\mathrm{AF}}$ | 12 | - | 16 | - | ns |

## NOTES:

1. Requirement to count the clock edge as one of at least four needed to reset a FIFO.
2. Only applies when serial load method is used to program flag Offset registers.
3. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.
4. Design simulated, not tested.

## AC ELECTRICAL CHARACTERISTICS

| Symbol | Parameter | IDT72V3631L15 IDT72V3641L15 IDT72V3651L15 |  | $\begin{aligned} & \text { IDT72V3631L20 } \\ & \text { IDT72V3641L20 } \\ & \text { IDT72V3651L20 } \end{aligned}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. | Min. | Max. |  |
| fs | Clock Frequency, CLKA or CLKB | - | 66.7 | - | 50 | MHz |
| tA | Access Time, CLKB $\uparrow$ to B0-B35 | 2 | 10 | 2 | 12 | ns |
| tPIR | Propagation Delay Time, CLKA $\uparrow$ to IR | 1 | 8 | 1 | 10 | ns |
| tPOR | Propagation Delay Time, CLKB to OR | 1 | 8 | 1 | 10 | ns |
| tPAE | Propagation Delay Time, CLKB $\uparrow$ to $\overline{\mathrm{AE}}$ | 1 | 8 | 1 | 10 | ns |
| tPAF | Propagation Delay Time, CLKA $\uparrow$ to $\overline{\mathrm{AF}}$ | 1 | 8 | 1 | 10 | ns |
| tPMF | Propagation Delay Time, CLKA to $\overline{\mathrm{MBF}}$ LOW or MBF2 HIGH and CLKB $\uparrow$ to $\overline{\text { MBF2 }}$ LOW or MBF1 HIGH | 0 | 8 | 0 | 10 | ns |
| tPMR | Propagation Delay Time, CLKA $\uparrow$ to B0-B35 ${ }^{(1)}$ and CLKB $\uparrow$ to $\mathrm{AO}-\mathrm{A} 35^{(2)}$ | 2 | 10 | 2 | 12 | ns |
| tMDV | Propagation Delay Time, MBB to B0-B35 Valid | 2 | 10 | 2 | 12 | ns |
| tRSF | Propagation Delay Time, $\overline{\mathrm{RST}}$ LOW to $\overline{\mathrm{AE}}$ LOW and $\overline{A F}$ HIGH | 1 | 15 | 1 | 20 | ns |
| ten | Enable Time, $\overline{\text { CSA }}$ and W/ $\bar{R} A$ LOW to AO-A35 Active and $\overline{\mathrm{CSB}}$ LOW and $\overline{\mathrm{W}} / \mathrm{RB}$ HIGH to B0-B35Active | 2 | 10 | 2 | 12 | ns |
| tDIS | Disable Time, $\overline{\mathrm{CSA}}$ or W/原A HIGH to A0-A35 at high impedance and $\overline{\mathrm{CSB}}$ HIGH or $\bar{W} /$ RB LOW to B0-B35 athigh impedance | 1 | 8 | 1 | 10 | ns |

## NOTES:

1. Writing data to the mail1 register when the B0-B35 outputs are active and MBB is HIGH.
2. Writing data to the mail2 register when the A0-A35 outputs are active and MBA is HIGH.

## SIGNAL DESCRIPTION

## RESET

The IDT72V3631/72V3641/72V3651 is reset by taking the Reset ( $\overline{\mathrm{RST}})$ inputLOW for atleastfourport-A Clock (CLKA) andfourport-B (CLKB) LOW-to-HIGHtransitions. The Resetinputmay switch asynchronouslytotheclocks. A resetinitializes the memory read andwrite pointers andforces the Input Ready (IR)flag LOW, the Output Ready (OR) flag LOW, the Almost-Empty ( $\overline{\mathrm{AE}})$ flag LOW, and the Almost-Full ( $\overline{\mathrm{FF}}$ ) flag HIGH. Resetting the device alsoforces the MailboxFlags ( $\overline{\text { MBF1 }}, \overline{\text { MBF2 }}$ ) HIGH. AfteraFIFO is reset, its Input Ready flag is set HIGH after at least two clock cycles to begin normal operation. A FIFO mustbe resetafter powerup before datais writtento its memory. The relevant FIFO Reset timing diagram can be found in Figure 2.

## FIRST WORD FALL THROUGH MODE (FWFT)

These devices operate inthe First Word Fall Through mode (FWFT). This mode uses the Output Ready function (OR) to indicate whether or not there is validdataatthe data outputs (B0-B35). Italso uses the InputReady (IR) function to indicate whether or notthe FIFO memory has any free space for writing. In the FWFT mode, the first word written to an empty FIFO goes directly to data outputs, no read requestnecessary. Subsequentwords mustbe accessed by performing a formal read operation.

## ALMOST-EMPTYFLAG AND ALMOST-FULLFLAG OFFSETPROGRAMMING

Two registers inthesedevices are usedto hold the offsetvaluesforthe AlmostEmpty and Almost-Full flags. The Almost-Empty ( $\overline{\mathrm{AE}}$ ) flag Offset register is labeled X, and the Almost-Full $(\overline{\mathrm{AF}})$ flag Offsetregister is labeled Y. The Offset register can be loaded with a value in three ways: one of two preset values are loadedintotheOffsetregisters, parallelloadfromportA, orserialload. TheOffset registerprogramming mode is chosen bytheflagselect(FS1,FSO) inputs during a LOW-to-HIGH transition on the RST input (See Table 1).

## - PRESET VALUES

If the presetvalue of 8 or 64 is chosen by the FS 1 and $F$ FO inputs at the time of a RST LOW-to-HIGH transition according to Table 1 , the preset value is automatically loaded into the X and $Y$ registers. No other device initialization is necessary to beginnormal operation, andthe IRflagissetHIGH aftertwo LOW-to-HIGH transitions onCLKA. Forthe Presetvalue loadingtimingdiagram, see Figure 2.

## - PARALLELLOADFROM PORTA

To program the X and Y registers from port A , the device is reset with FSO and FS1 LOW during the LOW-to-HIGH transition of RST. After this reset is complete, the IRflagis set HIGH aftertwo LOW-to-HIGHtransitions on CLKA. The firsttwo writes tothe FIFO do not store datainits memory butload the Offset registers in theorder $Y$, X. Each Offsetregisterofthe IDT72V 3631 ,IDT72V3641, and IDT72V3651 uses port-A inputs (A8-A0), (A9-A0), and (A10-A0), respectively. The highestnumberinputis usedas the mostsignificantbitofthe binary number in each case. Each register value can be programmed from 1 to 508(IDT72V3631), 1 to 1,020 (IDT72V3641), and 1 to 2,044 (IDT72V3651). Afterboth Offsetregisters are programmedfrom portA, subsequentFIFO writes store data inthe RAM. The timing diagram for parallel load of offset registers can be found in Figure 3.

## - SERIAL LOAD

To program the X and Y registers serially, the device is reset with $\mathrm{FSO} / \mathrm{SD}$ and FS1//SENHIGHduringtheLOW-to-HIGHtransition of $\overline{\text { RST }}$. Atterthis reset
is complete, the X and Y register values are loaded bitwise through the FSO/ SD input on each LOW-to-HIGHtransition of CLKA that the FS1/SEN inputis LOW. There are 18 -,20-, or22-bit writes neededto completethe programming forthe IDT72V3631, IDT72V3641, or IDT72V3651, respectively. The first-bit write stores the mostsignificantbitofthe $Y$ register, and the last-bit write stores theleastsignificantbitofthe X register. Each registervalue can be programmed from 1 to 508 (IDT72V3631), 1 to 1,020 (IDT72V3641), or 1 to 2,044 (IDT72V3651).
When the optionto program the Offsetregisters serially yis chosen, the Input Ready (IR) flag remains LOW until all register bits are written. The IRflagis set HIGHbytheLOW-to-HIGHtransition of CLKA afterthe lastbitisloadedtoallow normal FIFO operation. The timing diagram for serial load of offset registers can be found in Figure 4.

## FIFO WRITE/READ OPERATION

The state of the port-Adata (AO-A35) outputs is controlled by the port-AChip Select ( $\overline{\mathrm{CSA}}$ ) and the port-A Write/Read select ( $\mathrm{W} / \overline{\mathrm{R}} \mathrm{A}$ ). The A0-A35 outputs are in the high-impedance state when either $\overline{C S A}$ or $W / \bar{R} A$ is HIGH . The AOA 35 outputs are active when both $\overline{\mathrm{CSA}}$ and $\mathrm{W} / \overline{\mathrm{R}}$ A are LOW.
Data is loaded into the FIFO from the AO-A35 inputs on a LOW-to-HIGH transition of CLKA when $\overline{C S A}$ and the port-A Mailboxselect (MBA) are LOW, W/ $\bar{R} A$, the port-A Enable (ENA), and the Input Ready (IR) flag are HIGH (see Table 2). Writes to the FIFO are independent of any concurrent FIFO read. For the Write Cycle Timing diagram, see Figure 5.
The port-B control signals are identical to those of port-A withthe exception thattheport-BWrite/Readselect ( $\bar{W} / R B$ ) isthe inverse ofthe port-A Write/Read select $(\mathrm{W} / \overline{\mathrm{R}} \mathrm{A})$. The state of the port-B data ( $\mathrm{BO} 0-\mathrm{B} 35$ ) outputs is controlled by the port-BChip Select ( $\overline{\mathrm{CSB}}$ ) and the port-B Write/Read select ( $\bar{W} / R B$ ). The B0-B35 outputs are in the high-impedance state when eitherCSB is HIGH or $\bar{W} / R B$ is LOW. The BO-B35 outputs are active when $\overline{C S B}$ is LOW and $\bar{W} / R B$ is HIGH.
Datais read from the FIFOtoits outputregister onaLOW-to-HIGHtransition of CLKB when $\overline{C S B}$ and the port-B Mailboxselect (MBB) are LOW, $\bar{W} / R B$, the port-B Enable (ENB), and the Output Ready (OR) flag are HIGH (see Table 3). Reads from the FIFO are independent of any concurrentFIFO writes. For the Read Cycle Timing diagram, see Figure 6.
Thesetup-and hold-time constraintstothe portclocksforthe portChipSelects andWrite/Read selects are onlyfor enabling write and read operations andare notrelatedtohigh-impedance control ofthe data outputs. IfaportEnable is LOW during a clock cycle, the portChip Select and Write/Read select may change states during the setup-and hold time window of the cycle.
WhentheORflagis LOW, thenextdataword issenttothe FIFO outputregister automatically by the CLKBLOW-to-HIGH transition thatsetsthe ORflag HIGH. When ORis HIGH, an available data word is clockedtothe FIFO outputregister only when aFIFO read is selected by the port-BChipSelect (CSB), Write/Read select ( $\bar{W} / R B$ ), Enable (ENB), and Mailbox select (MBB).

## TABLE 1 - FLAG PROGRAMMING

| FS1 | FS0 | $\overline{\text { RST }}$ | X and $Y$ Registers $^{(1)}$ |
| :---: | :---: | :---: | :---: |
| $H$ | $H$ | $\uparrow$ | Serial Load |
| $H$ | $L$ | $\uparrow$ | 64 |
| $L$ | $H$ | $\uparrow$ | 8 |
| $L$ | $L$ | $\uparrow$ | Parallel Load From Port A |

NOTE:

1. X register holds the offset for $\overline{\mathrm{AE}} ; \mathrm{Y}$ register holds the offset for $\overline{\mathrm{FF}}$.

## SYNCHRONIZED FIFO FLAGS

Each IDT72V3631/72V3641/72V3651 FIFO flag is synchronized to its port Clock through at least two flip-flop stages. This is done to improve the flags' reliability by reducing the probability of metastable events on theiroutputs when CLKA and CLKB operate asynchronously to one another. OR and $\overline{\mathrm{AE}}$ are synchronized to CLKB. IR and $\overline{\mathrm{AF}}$ are synchronized to CLKA. Table 4 shows the relationship of each flag to the number of words stored in memory.

## OUTPUT READY FLAG (OR)

TheOutputReadyflag of aFIFO is synchronized to the portClock that reads data from its array (CLKB). When the OR flag is HIGH, new data is present intheFIFO output register. When the OR flag is LOW, the previous data word is present in the FIFO output register and attempted FIFO reads are ignored.

A FIFO read pointer is incremented each time a new word is clocked to its output register. The state machine that controls an OR flag monitors a writepointer and read-pointer comparator that indicates when the FIFO memory status is empty, empty +1 , orempty +2 . From the time a word is writtentoaFIFO, itcanbe shiftedtotheFIFO outputregister in a minimum of three cycles ofCLKB. Therefore, an OR flag is LOW if a word in memory is the next data to be sent to the FIFO output register and three CLKB cycles have notelapsed since the time the word was written. The ORflag of the FIFO remains LOW until the third LOW-to-HIGH transition of CLKB occurs, simultaneously forcing the OR flag HIGH and shifting the word to the FIFO output register.

ALOW-to-HIGHtransition on CLKB begins the firstsynchronization cycle of a write if the clock transition occurs at time tSKEW1 or greater after the write. Otherwise, the subsequent CLKB cycle may be the first synchronization cycle (see Figure 7).

## INPUT READY FLAG (IR)

The Input Ready flag of a FIFO is synchronized to the portClock that writes data to its array (CLKA). When the IR flag is HIGH, a memory location is free in the FIFO to write new data. No memory locations are free when the IR flag is LOW and attempted writes to the FIFO are ignored.

Each time a word is written to a FIFO, its write pointer is incremented. The state machine that controls an IR flag monitors a write-pointer and read pointer comparator that indicates when the FIFO memory status is full, full-1, orfull-2. From the time a word is read fromaFIFO, its previous memory locationis ready to be writtenin a minimum ofthreecycles ofCLKA. Therefore, an IRflagis LOW iflessthantwo cycles ofCLKA haveelapsedsincethenextmemory writelocation has been read. The second LOW-to-HIGH transition on CLKA after the read sets the Input Ready flag HIGH, and data can be written in the following cycle.

ALOW-to-HIGHtransition onCLKA beginsthefirstsynchronization cycle of a read if the clock transition occurs at time tSKEW1 or greater after the read. Otherwise, the subsequentCLKA cycle may be the first synchronization cycle (see Figure 8).

## ALMOST-EMPTY FLAG ( $\overline{\mathrm{AE}})$

The Almost-Empty flag of aFIFO is synchronizedtothe portClock that reads datafromits array (CLKB). The state machine thatcontrols an $\overline{\mathrm{AE}}$ flag monitors a write-pointer and read-pointer comparator that indicates when the FIFO memory status is almost-empty, almost-empty+1, or almost-empty+2. The almost-empty state is defined by the contents of registerX. This registerisloaded with a preset value during a FIFO reset, programmed from port $A$, or programmed serially (see Almost-Empty flag and Almost-Full flag offset pro-

TABLE 2 - PORT-A ENABLE FUNCTION TABLE

| $\overline{\mathrm{CSA}}$ | W/RA | ENA | MBA | CLKA | Data A (A0-A35) I/O | Port Functions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | X | X | X | X | Input | None |
| L | H | L | X | X | Input | None |
| L | H | H | L | $\uparrow$ | Input | FIFO Write |
| L | H | H | H | $\uparrow$ | Input | Mail1 Write |
| L | L | L | L | X | Output | None |
| L | L | H | L | $\uparrow$ | Output | None |
| L | L | L | H | X | Output | None |
| L | L | H | H | $\uparrow$ | Output | Mail2 Read (Set MBF2 HIGH) |

## TABLE 3 - PORT-B ENABLE FUNCTION TABLE

| $\overline{\mathrm{CSB}}$ | $\overline{\mathrm{W}} / \mathrm{RB}$ | ENB | MBB | CLKB | Data B (B0-A35) I/O | Port Functions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | X | X | X | X | Input | None |
| L | L | L | X | X | Input | None |
| L | L | H | L | $\uparrow$ | Input | None |
| L | L | H | H | $\uparrow$ | Input | Mail2 Write |
| L | H | L | L | X | Output | None |
| L | H | H | L | $\uparrow$ | Output | FIFO read |
| L | H | L | H | X | Output | None |
| L | H | H | H | $\uparrow$ | Output | Mail1 Read (Set $\overline{\text { MBF1 HIGH) }}$ |

grammingsection). The $\overline{A E}$ flagis LOW whenthe FIFO contains Xorless words and is HIGH whenthe FIFO contains ( $\mathrm{X}+1$ ) ormore words. Adata word present in the FIFO output register has been read from memory.
Two LOW-to-HIGH transitions of CLKB are required after a FIFO write for
 ( $\mathrm{X}+1$ ) or more words remains LOWittwo cycles of CLKB havenotelapsedsince the write thatfilled the memory tothe $(X+1)$ level. An $\overline{\text { AEFlagis set HIGH by the }}$ second LOW-to-HIGHtransition of CLKB afterthe FIFO write thatills memory to the $(X+1)$ level. A LOW-to-HIGH transition of CLKB begins the first synchronization cycle ifitoccurs attimetSKEW2 or greater afterthe write thatrills the FIFO to ( $\mathrm{X}+1$ ) words. Otherwise, the subsequent CLKB cycle may be the first synchronization cycle (see Figure 9).

## ALMOST-FULL FLAG ( $\overline{\mathrm{AF}}$ )

The Almost-Full flag of F FIFO is synchronized to the portClock that writes datato its array (CLKA). The state machine that controls an $\overline{\text { AF flag monitors }}$ a write-pointer and read-pointer comparator that indicates when the FIFO memorystatus is almost-full, almost-full-1, oralmost-full-2. Thealmost-full state is defined bythe contents of registerY. This registerisloaded with a presetvalue during a FIFO reset, programmed from port A, or programmed serially (see Almost-Emptyflagand AImost-Full flagoffsetprogrammingsection). The AF flag is LOW whenthenumber of words in the FIFO is greaterthan or equalto ( $512-\mathrm{Y}$ ), (1,024-Y), OR (2,048-Y) for the IDT72V3631, IDT72V3641, or IDT72V3651, respectively. The $\overline{\mathrm{AF}}$ flag is HIGH when the number of words in the FIFO is less than or equal to $[512-(\mathrm{Y}+1)]$, $[1,024-(\mathrm{Y}+1)]$, or $[2,048-(\mathrm{Y}+1)]$ for the IDT72V3631, IDT72V3641, or IDT72V3651, respectively. A data word present in the FIFO output register has been read from memory.

Two LOW-to-HIGH transitions of CLKA are required after a FIFO read for its $\overline{\text { FFflagto reflectthe new level offill. Therefore, the } \overline{\mathrm{AF}} \text { flag of aFIFO containing }}$ [512/1,024/2,048- $(\mathrm{Y}+1)$ ]orlesswords remains LOWittwo cycles of CLKAhave notelapsedsince the readthatreduced the number of words in memoryto [512/ $1,024 / 2,048-(\mathrm{Y}+1)]$. An $\overline{\mathrm{AF}}$ flag is set HIGH by the second LOW-to-HIGH transition of CLKA after the FIFO read that reduces the number of words in memory to [512/1,024/2,048-(Y+1)]. A LOW-to-HIGH transition of CLKA begins the firstsynchronization cycleifitoccurs attime tSKEW2 or greaterafter the read thatreduces thenumberofwords inmemoryto[ $[12 / 1,024 / 2,048-(\mathrm{Y}+1)]$. Otherwise, the subsequent CLKA cycle may be the firstsynchronization cycle (see Figure 10).

SYNCHRONOUS RETRANSMIT
The synchronous retransmitfeature of these devices allow FIFO data to be read repeatedly starting ata user-selected position. The FIFO is first put into retransmit mode to select a beginning word and prevent ongoing FIFO write operations from destroying retransmitdata. Datavectors with a minimum length ofthree words can retransmitrepeatedly starting atthe selected word. The FIFO can be taken out of retransmit mode at any time and allow normal device operation.
The FIFO is putin retransmitmode by a LOW-to-HIGH transition on CLKB when the retransmit mode (RTM) input is HIGH and OR is HIGH. The rising CLKB edge marks the data present in the FIFO output register as the first retransmitdata. The FIFO remains in retransmit mode until aLOW-to-HIGH transition occurs while RTM is LOW.
Whentwo or more reads have been done past the initial marked retransmit word, a retransmit is initiated byaLOW-to-HIGH transition on CLKB when the read-from-mark (RFM) input is HIGH. This rising CLKB edge shifts the first retransmitword to the FIFO output register and subsequent reads can begin immediately. Retransmit loops can be done endlessly while the FIFO is in retransmit mode. RFM mustbe LOW during the CLKB risingedge thattakes the FIFO out of retransmit mode (see Figure 11).
Whenthe FIFO is putinto retransmitmode, itoperates withtwo read pointers. The current read pointer operates normally, incrementing each time when a new wordis shiftedtothe FIFO outputregister. This read pointerposition is used by the OR and $\overline{A E}$ flags. The shadow read pointerstores the memory location atthe time the device is putinto retransmitmode and does not change until the device istaken out of retransmitmode. The shadowread pointerposition is used by the IR and $\overline{\mathrm{AF}}$ flags. Data writes can proceed while the FIFO is in retransmit mode, but $\overline{\mathrm{AF}}$ is set LOW by the write that stores ( $512-\mathrm{Y}$ ), $(1,024-\mathrm{Y})$, or (2,048-Y) words afterthe firstretransmitwordforthe IDT72V3631,IDT72V3641, or IDT72V3651, respectively. The IR flag is set LOW by the 512 th, 1,024 th, or2,048th write afterthe firstretransmitwordforthe IDT72V3631,IDT72V3641, or IDT72V3651, respectively.
Whenthe FIFO is in retransmitmode and RFM is HIGH, arising CLKB edge loads the current read pointerwith the shadow read-pointer value and the OR flag reflects the new level offillimmediately. If the retransmitchanges the FIFO status out of the almost-empty range, up to two CLKB rising edges after the retransmitcycleare needed to switch $\overline{A E}$ high (see Figure 12). The rising CLKB

TABLE 4 - FIFO FLAG OPERATION

| Number of Words in the FIFO ${ }^{(1,2)}$ |  |  | Synchronized <br> to CLKB |  | Synchronized <br> to CLKA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IDT72V3631 ${ }^{(3)}$ | IDT72V3641 ${ }^{(3)}$ | IDT72V3651 ${ }^{(3)}$ | OR | $\overline{\mathrm{AE}}$ | $\overline{\mathrm{AF}}$ | IR |
| 0 | 0 | 0 | L | L | H | H |
| 1 to X | 1 to X | 1 to X | H | L | H | H |
| $(\mathrm{X}+1)$ to $[512-(\mathrm{Y}+1)]$ | $(\mathrm{X}+1)$ to $[1,024-(\mathrm{Y}+1)]$ | $(\mathrm{X}+1)$ to $[2,048-(\mathrm{Y}+1)]$ | H | H | H | H |
| $(512-\mathrm{Y})$ to 511 | $(1,024-\mathrm{Y})$ to 1,023 | $(2,048-Y)$ to 2,047 | H | H | L | H |
| 512 | 1,024 | 2,048 | H | H | L | L |

NOTES:

1. When a word is present in the FIFO output register, its previous memory location is free.
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first words written to an empty FIFO goes unrequested to the output register (no read operation necessary), it is not included in the memory count.
3. X is the Almost-Empty Offset for $\overline{\mathrm{AE}}$. Y is the Almost-Full Offset for $\overline{\mathrm{AF}}$.
edge thattakes the FIFO out of retransmitmode shifts the read pointer used by the IR and $\overline{\mathrm{AF}}$ flags from the shadow to the current read pointer. If the change of read pointer used by IR and $\overline{\mathrm{AF}}$ should cause one or both flags to transmit HIGH, at least two CLKA synchronizing cycles are needed before the flags reflect the change. A rising CLKA edge after the FIFO is taken out of retransmit mode is the first synchronizing cycle of IR if it occurs at time tSKEW1 or greater after the rising CLKB edge (see Figure 13). A rising CLKA edge after the FIFO is taken out of retransmit mode is the firstsynchronizing cycle of $\overline{\mathrm{FF}}$ if it occurs at time tSKEW2 or greater after the rising CLKB edge (see Figure 14).

## MAILBOX REGISTERS

Two 36-bitbypass registers are on the IDT72V3631/72V3641/72V3651 to pass commandand control informationbetween port A and portB. TheMailbox select(MBA, MBB) inputs choose between a mail register and a FIFO for a port datatransferoperation. ALOW-to-HIGHtransitiononCLKA writes A0-A35 data to the mail1 register when a port-A Write is selected by $\overline{C S A}, W / \bar{R} A$, and ENA
withMBAHIGH. ALOW-to-HIGH transition on CLKB writes B0-B35 datatothe mail2 register when a port-B Write is selected by $\overline{C S B}, \bar{W} / R B$, and $E N B$ with MBB HIGH. Writing data to a mail register sets its corresponding flag (MBF1 or $\overline{\text { MBF2 }}$ ) LOW. Attempted writes to a mail register are ignored while its mail flagisLOW.
Whenthe port-Bdata(B0-B35) outputs are active, the dataonthe bus comes fromthe FIFO outputregisterwhenthe port-BMailboxselect(MBB) inputisLOW and from the Mail1 register when MBB is HIGH. Mail2 data is always present on the port-A data (A0-A35) outputs when they are active. The Mail1 register Flag ( $\overline{\mathrm{MBF}}$ ) is set HIGH by a LOW-to-HIGH transition on CLKB when a portBReadis selected by $\overline{C S B}, \bar{W} / R B$, and ENB withMBBHIGH. TheMail2 register Flag (MBF2) is setHIGH by a LOW-to-HIGH transition on CLKA when a portA Read is selected by $\overline{C S A}, W / \bar{R} A$, and ENA with MBA HIGH. The data in a mail register remains intact after it is read and changes only when new data is written to the register. Mail Registerand Mail Register Flagtiming can befound in Figure 15 and 16.


Figure 2. FIFO Reset and Loading $X$ and $Y$ with a Preset Value of Eight


NOTE:

1. $\overline{C S A}=$ LOW, W/ $\bar{R} A=H I G H, M B A=$ LOW. It is not necessary to program Offset register on consecutive clock cycles.

Figure 3. Programming the Almost-Full Flag and Almost-Empty Flag Offset Values from Port A


NOTE:

1. It is not necessary to program Offset register bits on consecutive clock cycles. FIFO write attempts are ignored until IR is set HIGH.

Figure 4. Programming the Almost-Full Flag and Almost-Empty Flag Offset Values Serially


Figure 5. FIFO Write Cycle Timing


Figure 6. FIFO Read Cycle Timing


## NOTE:

1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for OR to transition HIGH and to clock the next word to the FIFO output register in three CLKB cycles. If the time between the rising CLKA edge and rising CLKB edge is less than tSKEW1, then the transition of OR HIGH and the first word load to the output register may occur one CLKB cycle later than shown.

Figure 7. OR Flag Timing and First Data Word Fall Through when the FIFO is Empty


NOTE:

1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for IR to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskeww, then IR may transition HIGH one CLKA cycle later than shown.

Figure 8. IR Flag Timing and First Available Write when the FIFO is Full


NOTES:

1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{AE}}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tsKEw2, then $\overline{\mathrm{AE}}$ may transition HIGH one CLKB cycle later than shown.
2. $\operatorname{FIFO}$ write $(\overline{C S A}=L O W, W / \bar{R} A=H I G H, M B A=L O W), F I F O$ read $(\overline{C S B}=L O W, \bar{W} / R B=H I G H, M B B=L O W)$.

Figure 9. Timing for $\overline{A E}$ when FIFO is Almost-Empty


NOTES:

1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{AF}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskewz, then AF may transition HIGH one CLKA cycle later than shown.
2. Depth is 512 for the IDT72V3631, 1,024 for the IDT72V3641, and 2,048 for the IDT72V3651.
3. FIFO write $(\overline{C S A}=L O W, W / \bar{R} A=H I G H, M B A=L O W)$, FIFO read $(\overline{C S B}=L O W, \bar{W} / R B=H I G H, M B B=L O W)$.

Figure 10. Timing for $\overline{A F}$ when FIFO is Almost-Full

note:

1. $C S B=L O W, W / R B=H I G H, M B B=L O W$. No input enables other than RTM and RFM are needed to control retransmit mode or begin a retransmit. Other enables are shown only to relate retransmit operations to the FIFO output register.

Figure 11. Retransmit Timing Showing Minimum Retransmit Length


Figure 12. $\overline{A E}$ Maximum Latency When Retransmit Increases the Number of Stored Words Above $X$.


NOTE:

1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for IR to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskeww, then IR may transition HIGH one CLKA cycle later than shown.

Figure 13. IR Timing from the End of Retransmit Mode when One or More Write Locations are Available


1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for $\overline{\mathrm{AF}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskew2, then AF may transition HIGH one CLKA cycle later than shown.
2. Depth is 512 for the IDT72V3631, 1,024 for the IDT72V3641, and 2,048 for the IDT72V3651.
3. Y is the value loaded in the Almost-Full flag Offset register.

Figure 14. $\overline{A F}$ Timing from the End of Retransmit Mode when $(Y+1)$ or More Write Locations are Available


Figure 15. Timing for Mail1 Register and $\overline{M B F 1}$ Flag


Figure 16. Timing for $\overline{\text { Mail2 }}$ Register and $\overline{\text { MBF2 }}$ Flag


NOTES:

1. Mailbox feature is not supported in depth expansion applications. (MBA + MBB tie to GND)
2. Transfer clock should be set either to the Write Port Clock (CLKA) or the Read Port Clock (CLKB), whichever is faster
3. Retransmit feature is not supported in depth expansion applications.
4. The amount of time it takes for OR of the last FIFO in the chain to go HIGH (i.e. valid data to appear on the last FIFO's outputs) after a word has been written to the first FIFO is the sum of the delays for each individual FIFO: ( $\mathrm{N}-1)^{*}\left(4^{*}\right.$ transfer clock) $+3^{*}$ TRCLK, where $N$ is the number of FIFOs in the expansion and TrCLK is the CLKB period.
5. The amount of time is takes for IR of the first FIFO in the chain to go HIGH after a word has been read from the last FIFO is the sum of the delays for each individual FIFO: (N $1)^{*}\left(3^{*}\right.$ transfer clock $)+2^{*}$ TwcLK, where N is the number of FIFOs in the expansion and TwCLK is the CLKA period.

Figure 17. Block Diagram of $512 \times 36,1,024 \times 36,2,048 \times 36$ Synchronous FIFO Memory with Programmable Flags used in Depth Expansion Configuration

## PARAMETER MEASUREMENT INFORMATION




VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES


VOLTAGE WAVEFORMS
PULSE DURATIONS


NOTE:

1. Includes probe and jig capacitance

Figure 18. Load Circuit and Voltage Waveforms

## ORDERING INFORMATION

IDT


Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
Thin Quad Flat Pack (TQFP, PN120-1)
Plastic Quad Flat Pack (PQFP, PQ132-1)
Commercial Only
Clock Cycle Time (tclk) Speed in Nanoseconds

Low Power
$512 \times 36-3.3 V$ SyncFIFO
$1,024 \times 36-3.3 V$ SyncFIFO
2,048 x 36-3.3V SyncFIFO

## NOTE:

1. Industrial temperature range is available by special order.
