

AH921

General Description

The AH921 is a Hall-effect latch designed in mixed signal CMOS technology. It is quite suitable for use in automotive, industrial and consumer applications.

Superior high-temperature performance is made possible through dynamic offset cancellation, which reduces the residual offset voltage normally caused by device over-molding, temperature dependencies, and thermal stress. The device integrates a voltage regulator, Hall-voltage generator, small-signal amplifier, chopper stabilization, schmitt trigger, and is directly drivable by the output.

An on-board regulator permits operation with supply voltage from 3.5V to 24V.

The AH921 is available in TO-92S-3 and SOT-23-3 packages, which are optimized for most applications.

Features

- Wide Operating Voltage Range from 3.5 to 24V
- Symmetrical Switch Points
- Chopper-stabilized Amplifier Stage
- Superior Temperature Stability
- Compact Size
- Built-in Pull-up Resistor
- ESD Rating: 3500V (Human Body Model)

Applications

- Brushless DC Motor Commutation
- Brushless DC Fan
- Solid-state Switch
- Revolution Counting
- Speed Detection
- High Sensitivity and Unconnected Switch

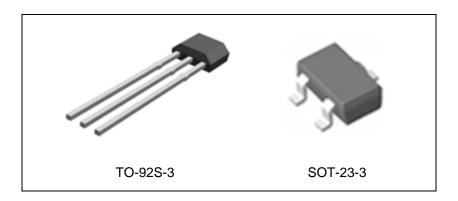


Figure 1. Package Types of AH921

AH921

Pin Configuration

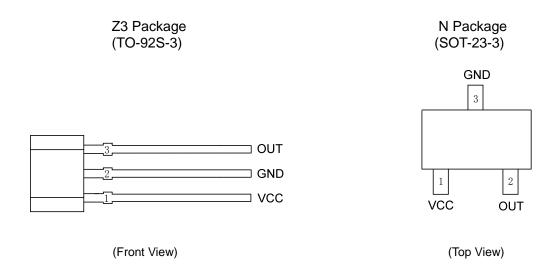


Figure 2. Pin Configuration of AH921

Pin Description

Pin Number		Pin Name	Function	
TO-92S-3	SOT-23-3	riii Naiile	r unction	
1	1	VCC	Supply voltage	
2	3	GND	Ground pin	
3	2	OUT	Output pin	

AH921

Functional Block Diagram

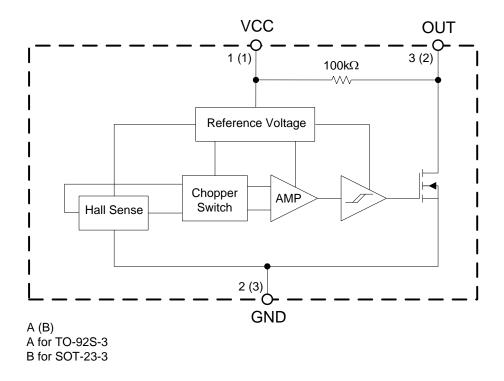
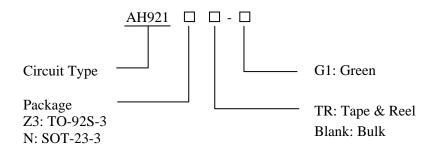



Figure 3. Functional Block Diagram of AH921

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type
TO-92S-3	-40 to 125°C	AH921Z3-G1	921	Bulk
SOT-23-3	-40 to 123 C	AH921NTR-G1	GS6	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

AH921

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Va	Value	
Supply Voltage	V_{CC}	28		V
Supply Current (Fault)	I_{CC}	5		mA
Output current (Continuous)	I_{OUT}	25		mA
Power Dissipation	P_{D}	TO-92S-3	400	mW
1 ower Dissipation		SOT-23-3	230	III VV
Operating Temperature	T_{A}	-50 to 150		°C
Storage Temperature	T_{STG}	-65 to 150		°C
Maximum Junction Temperature	T _J (Max)	165		°C
ESD (Human Body Model)	ESD	3500		V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{CC}	3.5	24	V
Operating Temperature	T_A	-40	125	°C

AH921

Electrical Characteristics

 V_{CC} =12V, T_A =25°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	V_{CC}	Operating	3.5	12	24	V
Supply Cumont	Ţ	$V_{CC}=12V, B < B_{RP}$		3.0	5.0	mA
Supply Current	I_{CC}	$V_{CC}=12V, B>B_{OP}$		3.0	5.0	mA
Saturation Voltage	V_{SAT}	I _{OUT} =20mA, B>B _{OP}		185	500	mV
Output Leakage Current	I _{LEAKAGE}	$V_{CC}=V_{OUT}=24V, B< B_{RP}$		0.1	10	μΑ
Output Rising Time	t _{RISING}	C _L =20pF		0.4	2	μs
Output Falling Time	t _{FALLING}	C _L =20pF		0.4	2	μs

Magnetic Characteristics

 V_{CC} =12V, T_A =25°C, unless otherwise specified.

Parameter	Symbol	Min	Тур	Max	Unit
Operating Point	${ m B}_{ m OP}$	5	22	40	Gauss
Releasing Point	B_{RP}	-40	-22	-5	Gauss
Hysteresis	B_{HYS}		45		Gauss

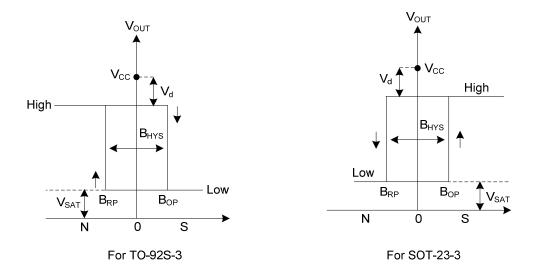
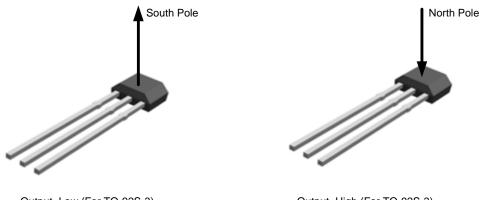



Figure 4. Magnetic Flux Density of AH921

AH921

Magnetic Characteristics (Continued)

Output=Low (For TO-92S-3)

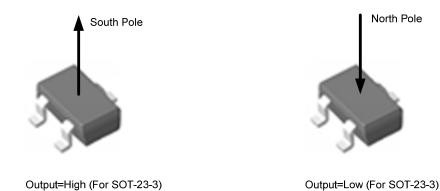


Figure 5. Output Status vs. Magnetic Pole

Package Type	Parameter	Test condition	Output
TO-92S-3	South Pole	$B>B_{OP}$	Low
10-923-3	North Pole	$B < B_{RP}$	High
SOT-23-3	South Pole	$B>B_{OP}$	High
301-25-3	North Pole	$B < B_{RP}$	Low

Table 1. Output Status vs. Magnetic Pole

AH921

Magnetic Characteristics (Continued)



Figure 6. Magnetic Thresholds

Note 2: B_{OP} is determined by putting the device under magnetic field swept from $B_{RP}(Min)$ to $B_{OP}(Max)$ until the output is switched on.

Note 3: B_{RP} is determined by putting the device under magnetic field swept from $B_{OP}(Max)$ to $B_{RP}(Min)$ until the output is switched off.

Test Circuit and Test Conditions

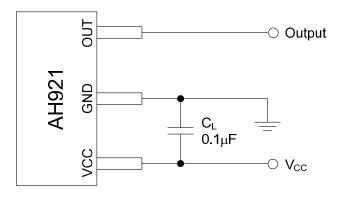


Figure 7. Test Circuit of AH921

AH921

Test Circuit and Test Conditions (Continued)

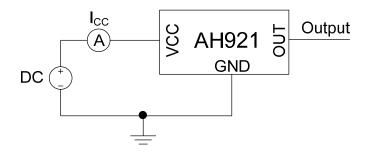


Figure 8. Test Condition of AH921 (Supply Current)

Note 4: Output initial status is low when powering on.

Note 5: The supply current I_{CC} represents the average supply current. The output is open during measurement.

Note 6: The device is put under the magnetic field: B<B_{RP.}

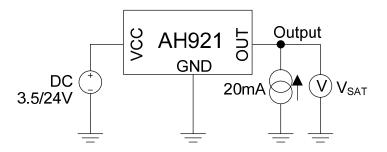


Figure 9. Test Condition of AH921 (Output Saturation Voltage)

Note 7: The output saturation voltage V_{SAT} is measured at V_{CC} =3.5V and V_{CC} =24V.

Note 8: The device is put under the magnetic field: B>B_{OP}.

AH921

Test Circuit and Test Conditions (Continued)

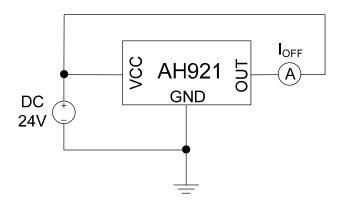
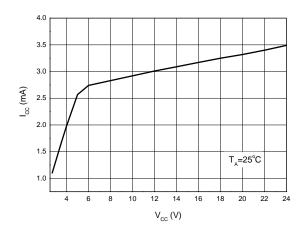
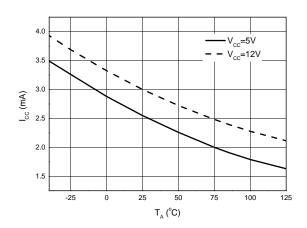



Figure 10. Test Condition of AH921 (Output Leakage Current)

Note 9: The device is put under the magnetic field: $B < B_{RP}$

Typical Performance Characteristics



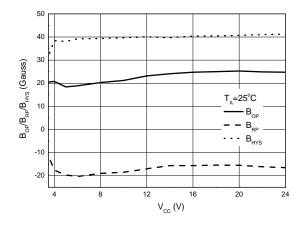

Figure 11. I_{CC} vs. V_{CC}

Figure 12. I_{CC} vs. T_A

AH921

Typical Performance Characteristics (Continued)

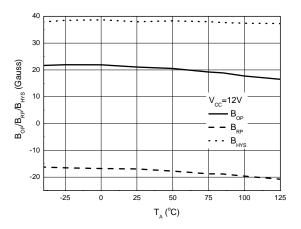
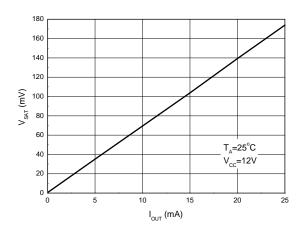



Figure 13. $B_{OP}/B_{RP}/B_{HYS}$ vs. V_{CC}

Figure 14. $B_{OP}/B_{RP}/B_{HYS}$ vs. T_A

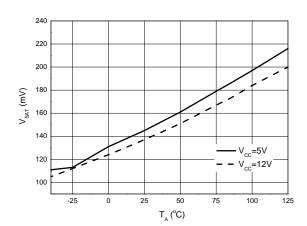


Figure 15. V_{SAT} vs. I_{OUT}

Figure 16. V_{SAT} vs. T_{A}

AH921

Typical Performance Characteristics (Continued)

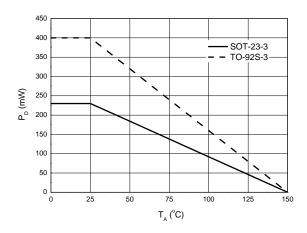


Figure 17. P_D vs. T_A

Typical Application

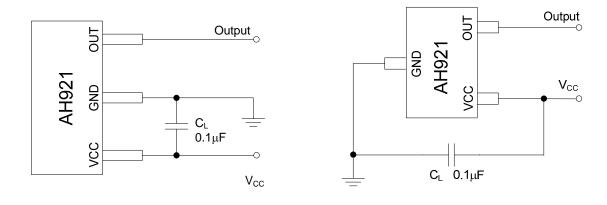
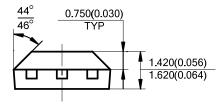
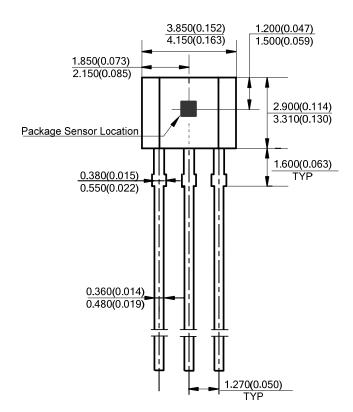
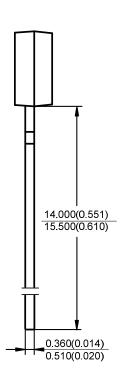


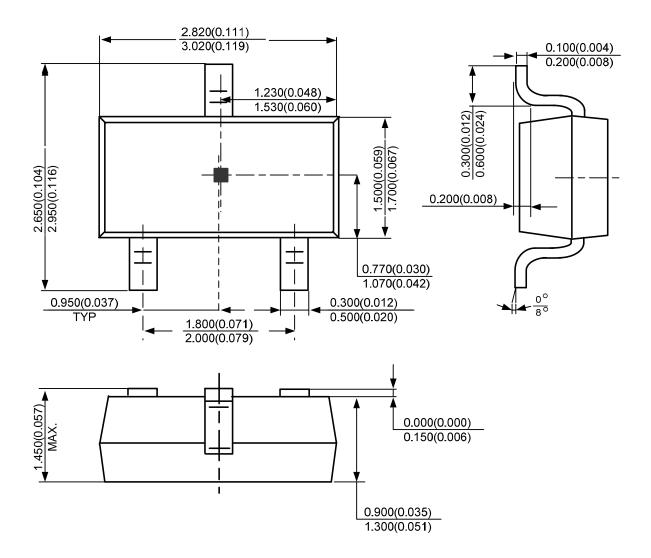
Figure 18. Typical Application Circuit of AH921




AH921


Mechanical Dimensions

TO-92S-3



AH921

Mechanical Dimensions (Continued)

SOT-23-3

Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788