
Fair-Rite Products Corp. Your Signal Solution®

Fair-Rite Products Corp. PO Box J.One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 2743021446 Printed: 2010-11-09

Land Pattern for Fig. 1

Part Number:	2743021446
Frequency Range:	Broadband Frequencies 25-300 MHz (43 & 44 materials)
Description:	43 SM BEAD
Application:	Suppression Components
Where Used:	Board Component
Part Type:	SM Beads (Differential-Mode)
Preferred Part:	\checkmark

Mechanical Specifications

Weight: .300 (g)

Part Type Information

Surface mount beads are available from Fair-Rite in several materials and sizes. Their rugged construction lowers the dc resistance and increases current carrying capacity compared to plated beads.

-SM Beads on 12 mm tape width are supplied taped and reeled per EIA 481-1 and IEC 60286-3 standards. SM Beads on 16 and 24 mm tape widths are supplied taped and reeled per EIA 481-2 and IEC 60286-3 standards. Taped and reeled parts are supplied on a 13" reel.

-SM Beads can also be supplied not taped and reeled and then are bulk packed. This packing method will change the last digit of the part number to a '6'.

-The copper conductors have a lead-free tin coating.

-SM Beads meet the solderability specifications when tested in accordance with MIL-STD-202, method 208. After dipping the mounting site of the bead, the solder surface shall be at least 95% covered with a smooth solder coating. The edges of the copper strip are not specified as solderable surfaces.

-After preheating the beads to within 100 oC of the soldering temperature, the parts meet the resistance to soldering requirements of EIA-186-10E, temperature 260±5 oC and time 10±1 seconds.

-Suggested land patterns are in accordance with the latest revision of IPC-7351.

-SM Beads are controlled for impedance limits only. The impedances listed are typical values. Minimum impedance values are specified for the + marked frequencies. The minimum guaranteed impedance is the listed value less 20%. SM Beads in 73, 43 and 44 materials are measured for impedance on the 4193 Vector Impedance Analyzer. The 52 and 61 SM Beads are tested for impedance on the 4191A RF Impedance Analyzer.

-Recommended storage and operation temperature is -55°C to 125°C.

-The maximum practical current rating for these SM Beads is 5 amps.

-For any SM Bead requirement not listed, please contact our customer service group for availability and pricing.

-Our 'Surface Mount Bead Kit' is available for prototype evaluation.

-Explanation of Part Numbers: Digits 1&2 = product class, 3&4 = material grade, last digit 6 = bulk packed, 7 = taped and reeled.

Fair-Rite Products Corp. Your Signal Solution®

_

_

_

-

-

-

Ferrite Components for the Electronics Industry Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

_

_

_

-

-

37

56

95

Fair-Rite Product's Catalog Part Data Sheet, 2743021446 Printed: 2010-11-09

Mechanical Specifications

Dim

A B

C D

Е

F

G

н

J

Κ

_

_

-

-

-

Electrical Specifications

Typical Impedance (Ω)

10 MHz

25 MHz+

100 MHz+

mm	mm	nominal	inch
	tol	inch	misc.
2.85	±0.20	0.112	-
3.05	±0.10	0.120	-
9.60	-0.95	0.359	-
1.50	±0.50	0.059	-

_

_

-

-

-

Land Patterns

V	W	Х	Y	Z
	ref			
4.500	7.500	1.800	3.000	-
0.177	0.295	0.071	0.118	-

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch	Parts 7 "	Parts 13 "	Parts 14 "
mm	mm	Reel	Reel	Reel
-	-	-	-	-

Package Size

Pkg	Size
-	
(-)	

Connector Plate

# Holes	# Rows	
-	-	

250 MHz 100 Electrical Properties Max Rdc(m 2) 1.20

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A $\frac{1}{2}$ turn is defined as a single pass through a hole.

I/A - Core Constant

Ae: Effective Cross-Sectional Area

 A_{I} - Inductance Factor $\left(\frac{L}{N^{2}}\right)$

N/AWG - Number of Turns/Wire Size for Test Coil

I e: Effective Path Length

Ve: Effective Core Volume

NI - Value of dc Ampere-turns

Fair-Rite Product's Catalog Part Data Sheet, 2743021446 Printed: 2010-11-09

Ferrite Material Constants

Specific Heat	0.25 cal/g/ºC		
Thermal Conductivity	10x10 ⁻³ cal/sec/cm/°C		
Coefficient of Linear Expansion	8 - 10x10 ⁻⁶ /°C		
Tensile Strength	4.9 kgf/mm ²		
Compressive Strength	42 kgf/mm ²		
Young's Modulus	15x10 ³ kgf/mm ²		
Hardness (Knoop)	650		
Specific Gravity	\approx 4.7 g/cm ³		
The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.			

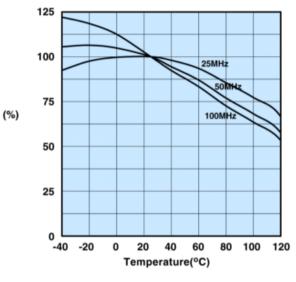
See next page for further material specifications.

Fair-Rite Products Corp. Your Signal Solution® Ferrite Components for the Electronics Industry

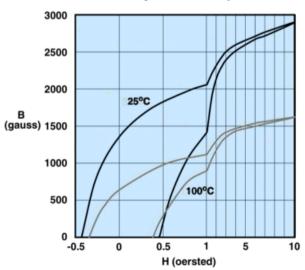
Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

This NiZn is our most popular ferrite for suppression of conducted EMI from 20 MHz to 250 MHz. This material is also used for inductive applications such as high frequency common-mode chokes.

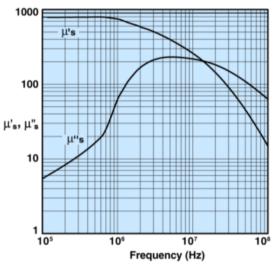
EMI suppression beads, beads on leads, SM beads, multi-aperture cores, round cable EMI suppression cores, round cable snap-its, flat cable EMI suppression cores, flat cable snap-its, miscellaneous suppression cores, bobbins, and toroids are all available in 43 material.


Fair-Rite Product's Catalog Part Data Sheet, 2743021446 Printed: 2010-11-09

43 Material Characteristics:

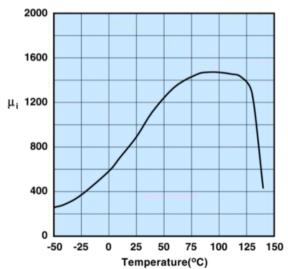

Property	Unit	Symbol	Value
Initial Permeability		μ	800
Flux Density	gauss	В	2900
@ Field Strength	oersted	н	10
Residual Flux Density	gauss	B,	1300
Coercive Force	oersted	He	0.45
Loss Factor	10-6	tan δ/μ _i	250
@ Frequency	MHz		1.0
Temperature Coefficient of Initial Permeability (20 -70°C)	%/°C		1.25
Curie Temperature	°C	Tc	>130
Resistivity	Ωcm	ρ	1x10 ⁵

Percent of Original Impedance vs. Temperature



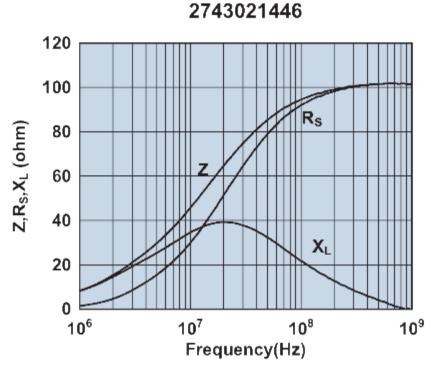
Measured on a 2643000301 using the HP4291A.

Hysteresis Loop

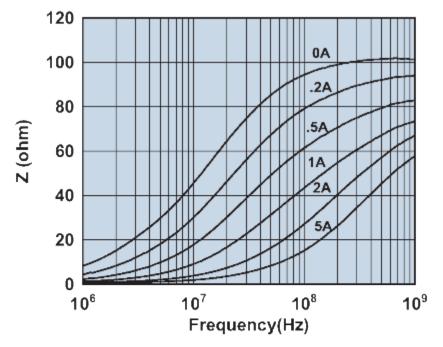


Complex Permeability vs. Frequency

Measured on a 17/10/6mm toroid using the HP 4284A and the HP 4291A.



Measured on a 17/10/6mm toroid at 100kHz.


Measured on a 17/10/6mm toroid at 10kHz.

Fair-Rite Product's Catalog Part Data Sheet, 2743021446 Printed: 2010-11-09

Impedance, reactance, and resistance vs. frequency.

Impedance vs. frequency with dc bias.